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INSTYTUT MATEMATYCZNY POLSKIES AKADEMIL NADK Coanalytic sets that are not Blackwell spaces

UNIWERSYTET MIKOERAJA KOPERNIKA W TORUNIU b
INSTI
Rl 'TUTE OF MATHEMATICS, POLISH ACADEMY OF SCIENCES .
OLAS COPERNICUS UNIVERSITY IN TORUN AShOk Maitra (Calcutta)

Recu par la Rédacti
par la Bédaction le 4. 12. 1968 A os-algebra B of subsets of a set X will be said to be separable if (i)

B is countably generated and (i) {#} ¢« B for all z « X. Call a measurable
space (X, B) geparable if B is a separable o-algebra. We shall say that
a measurable space (X, B) is a Blackwell space if (i) (X, B) is separable,
and (i) for every separable o-algebra CC B, C = B. Say that a separable
metric space X is a Blackwell space if (X, Bx) is a Blackwell space (here,
and in the sequel, whenever Z is a metric space, By will denote the
o-algebra of Borel sets of Z). In [17, Blackwell proved that every analytic
subset of a Polish space is a Blackwell space. The question then arises
it every separable metric space which is a Blackwell space is analytic
in its completion (and, consequently, analytic in any Polish space in
which it can be imbedded). I do not know the answer to this question.
The aim of this note is to exhibit complementary analytic (referred to,
hereafter, as coanalytic) subsets of Polish spaces which are not Blackwell
spaces. Again, I do not know if every coanalytic non-analytic subset
of a Polish space fails to be & Blackwell space.

We first characterise Blackwell spaces. We shall say that g is
a measurable mapping from a meagurable space (X, B) to a measurable
space (¥,C) if g is a function from X into ¥ and g~}C)CB. Call
2 mapping g an isomorphism between (X, B) and (¥, C) if ¢ is one-to-one
on X onto ¥ and both g and g—! are measurable. Tn cage the range of
a mapping is a metric space, the relevant o-algebra will always be the
Borel o-algebra and it will not be mentioned explicitly.

ProposiTioN. Let (X, B) be a separable measurable space. Then the
following conditions are equivalent:

(a) (X, B) is a Blackwell space.

(b) If (¥, C) is any separable measurable space and f is a one-to-one
measurable mapping from (X, B) onto (Y, C), then f is an isomorphism
between (X, B) and (¥, C).

(c) For every one-to-one B -measurable mapping f from (X, B) fo
a Polish space, f 18 an isomorphism between (X,B) and (f(X),B;(X)).
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(d) Boery countable collection {4
f > i
separates poinis of X generates B.{ m L o sds belonging to B which

Proof. (a) = (b). Let (X B) b
. . 5 e a Blackwell space, (¥, C) a separ
ggazt;mi]jls g)ace _z}.lnd f & one-to-one measurable mzuppi;lg( fr,om) (5‘?8]1;&1 e
A 2 B gonsezuf tSIC) ;[‘hen D is a separable o-algebra and D C I; s()) %EZ(;
) = B. ently, for any F e B, there exist :
e e Ea B, exists an e C such thag
R . nto ¥, it follows that & —
) = f(&).
J7 s measurable, so that S is an isomorphism beb " SN
76 ween (X, B) ang
(b)= (e). Clear.
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el 1;711 » 5 ;g Sigzizbiy }? liche. o-algebra generated by {4,, n>£
; : S - dollowing Szpilrajn-Marezewski F e
the hchavlacterlsmc function of the sequence {4, Zsil’l}we tlhe;tf ?38

s =1y, 18,

~ Sar
f 2,214,187, where I, denotes the indicator function of A, Ao
7. -

cording to a result of Szpilra;

' pilrajn-Marczewski i

morph o B o

mo 1B f;fa:‘ffﬁzz (g:g » D) anél (fix), Byx)). Since’ DCB, )} {slz izelig
! Ping and hence, by (c), fis an i rphi cen

(X, B) and (f(X), Byx). Gonsequentiy, D :,-fB * Bpmorphism betmean

d
{En’(n ;:; }(aﬁ;3 aLCet D be a separable c-algebra and let DCB. Tet
s mmtal?le seb of generators for D. Since D is s '
m; % 2 1} separates points of X and hence, by (d) generatese%m?]ble,
, s B. Con-

sequently, D = B, 5o that (X i
e, X (X, By is a Blackwell space. This completes

Cororr .
that A be a él;;}cﬁgz fip[;eo e“ cft’%alﬂ/mc subset of a Polish space X. In order-
! 20 % 15 necessary th o ’ ¢
measur ; 2 Y that, for ever; 1001
urable function f on A into o Polish space Y’ , ];(A) b: yco(:zzzlt;t;c: pl B‘Ig:
walytic in Y.

Proof. It 4 i k i
stion et 1 SA alz ?Sfﬁsfgfﬂ sp]acg, it follows from the previous propo-
1S between (4, B
a result of K i o B ’
s oL K ;ﬁit;(;w]i]; (31, p. 343), f admits an extensic(){l( g)s’ucljl(:{i)g)];afy
Shsets o y : ween (#, Bg) and (¥, Br), where B, F are B !{
ety O - ,B s 1espeetn-rely, and ACE and f(A)CF N’ote that . 3
s sp0-o rez Slﬂzl(t-.\tl?)]l)naf)pggg on an absolute Borel Sef; B and :0 gbl;
o anda 5 D W I(d)=g(4)is coanalytic. This termiri&tes
We are now ready to prove our main result, |

THEOREM. There emist coa

not Blackwell spaces. malytio subsets of Polish spaces which are

icm®

o
ot
w

Coanalytic seis that are not Blackwell spaces

Proof. We shall give two methods of exhibiting such sets.

Method I. Let 4 be an analytic non-Borel subset of the real line.
Denote by J the set of irrationals. Since 4 is analytic, there is a continu-
ous funetion f from J onto A. By a theorem of Mazurkiewicz ([3], p. 389),
there is a coanalytic subset ¢ of J such that if g is the restriction of
fto C, then g is one-to-one and g(0)= 4. Thus, g is a one-to-one Bg-
‘measurable function on C into the line and g(C) is not coanalytic. It
now follows from the corollary above.that ¢ is not a Blackwell space.

Moreover, if E is the o-algebra of Borel sets on the line, then
g~YE) is a separable sub-o-algebra of B¢ such that g—(E) s B¢, Note
that (C, g‘l(E)) is a Blackwell space. This follows from the fact that
(G’, g*l(E)) and (4, Bx) are isomorphie and that every analytic set is a
Blackwell space. But, of course, g~}(E) is not the Borel g-algebra of C.

Method II. The second method depends on the existence of a Borel
set not containing a graph. The existence of such Borel sety has been
shown by many anthors, including Novikoff [4], Sierpinski [5], and
Blackwell [2].

Tt follows from the results of Sierpirtiski [5] and Novikoff [4] that if
X,Y are two uncountable Borel subsets of Polish spaces, then there
exists » Borel set DC XX Y such that the projection of D to X is X
and for every Borel mapping f from X to Y,

graphf:{(w,y)eXxY: y=Ffx)} ¢ D.

Tt now follows from the uniformization theorem of Lmzin and Sierpinski
([3], p- 398) that there exists a coanalytic set ¢ C D which uniformizes D, that
is, for every @ ¢ X, the vertical section O, of ¢ at & is a singleton. Let g
be the projection to X restricted to C. Then ¢ is a one-to-one continuous
funetion on C and so a one-to-one Bg-measurable function from ¢
onto X. Claim that g is not an isomorphism between (0, Be) and (X, Bx).
For if it were, then ¢ would be a Borel seb and, consequently, by virtue
of & known result ([3], p. 398), ¢ would be the graph of a Borel funetion
from X into ¥, contradicting one of the properties of D. Now the propo-
sition proved above implies that ¢ is not a Blackwell space. This com-
pletes the proof.
Incidentally,
subget of a Polish space i
analytic non-Borel subset of some Polish space. Thi

of Mazurkiewicz quoted above.
T am indebted to Mr. B. V. Rao for many stimulating discussions

on this and related topics and also for suggesting improvements in an
earlier version of this article.

the above proof shows that every uncountable Borel
s 2 one-to-one eontinuous image of some co-
s augments the result
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A general realcompactification method

by
J. van der Slot (Amsterdam)

Conventions. The closure of a set 4 in a space X will be denoted
by clx A. Collections of subsets of a space are indicated by German letters.
Tf U is a family of subsets of a space then the symbol clx¥ is used to
denote the collection of all clx U for which U e [, The union and inter-
section of a family of sets U will be denoted by U U and () U, respectively.
For further basic conventions in general topology we refer to [6].

Introduction Let X be a T;-space and let & Dbe a subbase for the
closed sets of X. If © has certain separation properties and is closed for
cortain sebt-theoretical operations (for instance, closed for the taking
of finite intersections), then there is a standard way [2] to extend X to
a compact Hausdorff space. Indeed, we consider all maximal centered
systems of members of & which have empty intersection in X, and let
them serve as the new points for the extended space B(S)X. B(8)X
endowed with a suitable topology is a Hausdorif compactification of X.
In particular, f(S)X is the Clech—Stone compactification of X in case X
is completely regular and S is the collection of all zero-sets of X [4]

In [5] Aarts and de Groob generalized bhis construction for the case
where & is not closed for finite intersections but only has certain sepa-
ration properties (cf. also [1]). Leb M Dbe the eollection of all maximal
centered systems of members of G. By adding to each u ¢ M the elements
§ e G that intersect each member of 4 we obtainnew collections u. Those x
which have empty intersection in X are in general not centered, but
still do have the property that each two elements of it have a non-empty’
intersection; they are so-called maximal linked systems and serve as the
new points for the extended space 5(&)X. By choosing & suitable topology
for (S)X we obtain a Hausdorff compactification of X. .

In this paper our purpose is to adapt the above procedure for the
realcompact case; thus, starting from a fixed closed subbase &, to obtain
a general realcompactification v(&)X which depends on & (see [4] for
the definitions of realcompactness and realcompactification). Of course,
we must see to it that »(S)X = vX, the Hewitt realcompactification
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