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It 8h(Z, ) = Sh{X, 2)+Sh(Y, ¥,), then Sh(X, z,) and Sh(Y, y,)
will be said to be constituents of Sh(Z, z,). And if Sh(Z, z,) = Sh(X, 41’0)‘X
X Sh(Y, yo), then Sh(X, ) and Sh(1Y, y,) will be said to be factores of
Sh(Z, z). Thus (8.1) implies that every constituent and also every factor
of a pointed shape is less than or equal to that pointed shape.

Let us say that a pointed shape Sh(X, ) is movable if (X, x,) is
movable. It follows by (2.3) and (8.1) that all constituents and all factors
of a movable pointed shape are movable.

A pointed shape Sh(X, 2,) is said to be simple if each of its consti-
tuents either is trivial or coincides with Sh(X,2,). A pointed shape
Sh(X, x,) is said to be prime if it is non-trivial and each of its factors
either is trivial or coincides with Sh(X, x,).

Let us formulate some problems concerning those notions:

1. Is it true that every pointed non-trivial shape has at least one
non-trivial simple constituent and at least one non-trivial prime factor?

2. Is it true that there is at most one decomposition of a pointed
shape info a finite sum of simple pointed shapes?

3. Is it true that for every compact manifold X the shape Sh (X, )
is simple? .

4. Is it true that the shape of every acyclic curve is trivial?

' 5. Is true that Sh(X, )= Sh(Y, y,)+8h(Z,z2,) implies that the
fondamental dimension Fd(X) of X iy equal to Max(Fd(l'),Fd(Z))?

By the fundamental dimension of X we understand here the number
Fd(X) given by the formula (compare [3])

Fd(X)= Min dimY.
Sh(X)<Sh(I)

6. Is it true that if Ze ANR and Sh(Z, z) = Sh(X, 2)+Sh(Y, 5,),
then Sh(X, ;) is determined by Sh(Y, y,) and Sh(Z, z)?

7. I§ .it true that for every ANR-set X the shape Sh{X,x,) has
only a finite number of simple constituents and prime factors?
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The global dimension of the group rings
of abelian groups III

by
'S. Balcerzyk (Torun)

This paper is a continuation of papers [1], [2] and is eoncerned with
computation of the global dimension of the group ring of arbitrary abelian
group with commutative Noetherian coefficient ring. Also the dimension
of those rings as algebras is computed.

In this paper all rings and groups are assumed to be commutative.

For any R-algebra .1, we denote by dim .l or E-dim .1 the pro-
jective dimension of A as A°-module. If A= R{I) is & group ring, then
it is known (see [4]) that dimR(JT)= dimgmR where II operates
trivially on R.

1. In this section we prove some preliminary lemmas.

LeyA 1. Let IT be a group and aC R be an ideal of a ring R. If
E = Rja, then R-dimR(IT) > R-dimR(IT).

Proof. If P is a projective resolution of R(I/I)-module R, then
P ®zr R is a E(IT)-projective complex. Since Ho(P ©r B) = ToZ (R, R),

then P ® B is a projective resolution of R and the lemma follows.
' LeavyA 2. If II, is a subgroup of a group II, then
gl. dim R(IT) > gl. dimR(I,) ,
dim R (1) > dim R(IL,) .

Proof. It is easy to prove the formula
dimR(uu)A = diml?(H)A @R(Ho)R(II)

for any R(I7,)-module A and this implies the first inequality. The second
one follows by the fact that any R(JT)-projective module is R{I1,)-pro-
jective.

Leamga 3. If R is a field and mR = R if m is an order of an element
in a group IT, then in the group ring R(IT) any set of orthogonal idempotents
is at most countable. .

Proof. It is easy to see that all idempotents of R(II) belong to the
subring R(T) where T is the maximal torsion subgroup of IT. The group T
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is a union of a countable increasing sequence of groups, which are direct

sums of finite cyclic groups. Consequently, it is sufficient to prove the

lemma in the case of the group T which is a direct sum @ {ts} of
) jeJ

finite cyelie groups.
We define support of an element r e B(T) as the (finite) set of all
such j, eJ that » ¢ R( @ {t;}). If supports of elements r, s are disjoint
FE )

then 77" 7 0. Using this and semi-simplicity of rings R({1;}) it is easy to
prove that the ring R(T) contains at most countable set of orthogonal
idempotents with supports consisting of n elements and this proves
the lemma.

Lmuwa 4. Let R be o Noetherian ring. If for any mazimal ideal m C R

we have R-dimB(IT) = R-dim R(IT) with B = Rjm, then
(1) gl. Aim R(I7) = gl. Aim R+ dim R (IT) .

Proof. Let us denote s = gl. iim R, n = dim R(IT). By results of 57,
p. 74, it follows that

(2) gl. dAmR(IT) < s-+n.

In either case s =0, s = oo, n =0, n = oo, formula (1) is obvious. Let
us assume 0 < s << co and 0 < n < oo, Let

P: 00— Py—>s... —> Py— R—— 03

be a free R(II)-resolution of R and P, = R(II). There exists a finitely
generated R-module 4 such that dimg A = s; then, there exists a finitely
generated projective resolution

00— Qs> ... —>Qp——>4—>0.

To prove the lemma it is sutficient to find a projective & -module @
such that

diMpm(4 @ Q) = s+-n.

'H we add to all modules @, ..., Q, appropriate finitely generated
projective modules, we obtain a finitely generated free resolution

(3) 0Ty s B A D Q' —> 0

of 4@ Q’ W’ii‘ih‘ projective Q. Among all projective modules @’ such that
there exists finitely generated free resolution (3) of A @ Q’, let us consider
a @ such that the rank of F7 is minimal, Then we have a free resolution

PPt P s A®Q—s0

and let v, ..., vr be free geherators of F,. By Lemma 2 of [2] it follows
that there exist proper ideals Gy, 0r CR such that dgw; C asFs s,
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j=1,..,7. Let §=P ®@zF; then S is an acyclic free R(/7)-complex
and Hy(S) = 4 @ @ and thus S is a free vesolution of R(IT)-module 4 @ Q.
Let {4}, 7el, be a set of free generators of P, 2, =¥, ® v; € Ssyn,
and let
w: Ssgpn—>Po @Ry =W, o Sszn-1—>Pp @Ry, =V

be projections on direct summands. By Lemma 1 of [2] it is sufficient
to prove that Im(SS+n—§—>SS+n_1) is not a direct summand or that there
does not exist a homomorphism p: Ss;in—1—>S8srn such that od=1. If
such homomorphism were exist, then

2y = 7z, = wode, = med(y, ® 1)
= 7 {tny, ® v)+ (—1)"7g(y, @ dsmy) .
Let m C R be & maximal ideal which contains g;. Then dsv, e mFs—; and
70 (Yy ® dgvy) € wMBgyn=mW. TLeta: WV be __defined by 8(y, ® %)
= dny, ® v;; then w—mnpéw emW forallw e W. It W = WmW, V= V/mV,
and a: W—W, p: V-V are canonical homomorphisms, then aw = ampéw
= amgiww where it V->Ssin-1 is the embedding. In the diagram

e
Ss+n —_ Ssﬂkl

P,@rE—> P 1®rE

both squares commute. If 7= amgs then 0= a and T(mW) =0, and
hence there exists an induced homomorphism 7: VW and -7_’0 = 1, Thus
Im(P, ® R>P,1® R) is a direct summand of P,—,® K and con-
sequently dimgpyR <n since P®grE is a projective resolution of
R(IT)-module R, We get a contradiction and the lemma follows.

2. In this section we compute dimR(T) of a group ring E(T) <.)f
an abelian torsion group T assuming that 7' is a direet sum of cyclic
groups T= @ {t;}, Ris a field, and mR = R if m is an order of an element

jeJ .

in T. This results are used in Section 3.
Let T= @ {t;} be a direct sum of finite cyelic groups; let us assume
jeJ

that R is a commutative ring and mR = R if m is an order of an element

Fundamenta Mathematicae, T, LXVII 17
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in T. We write K = R(T), my is the order of # for j eJ and

1
my

g= =1 +tG+ o F1TY, G =1y,

Then & = ¢;, 05=d;, &6, =0 and we have a free acyclic complex
X (8}
®)

—~>K€j
where ¢;” are free generators and Hy(Xj) = K/Ké;. I §;, ..., jmed are
distinct, then the CODJPIEX th__,,imz le Rk ... Ok X:,'m is free and
Hy(Xs,..in) = E[E (84,5 ...; 0j). The complex Xy, ;. is acyelic: for
m = 1 it is obvious; then, let us assume that it is true for m—1. We con-
sider the complex X'® X;, with X' =X, ®..® X;,.. We have

a spectral sequence such that B, = X, ® EP. By induction hypothesis,

Im

LN ) (- ¢ DL NN RN\

HyX')® Kef) for g¢=0,

1
Eﬁ,q =

for ¢>0,

and dpo is induced by the differential of X ;.. Then E;,q——— 0 for ¢>0
and Epyis a pth homology module of the complex

o By X) 25 F(X) 0 F () 2 H (X — 0
Bince Hy(X')= K[K(d;, ..., 0;,.) and. the following conditions hold ()

(0515 ey 57',,‘,1): (lsﬂ'm) = (61'15 e
(67'1) ey 5;fm—1): (e:im) = (57'17 e

we have that Foo= 0 for »>0 and the complex X, ;. is acyclie.

Let < be a well-ordering relation of type ws on J. We denote by X
the direct limit of complexes X, ® ... ®Xjpy J1< e <jm, over the
system of all finite subsets of J, with respect to an obvious embedding
o(f ?omplexe& The complex X is acyclic and is freely generated by elements
D .. ® P (G, < ... <Jm and Py, .oy P> 0) of degree p -+ ... + P
and by element 1 of degree 0. Moreover, H(X)= E|K{5;} = R, thus X
is a free resolution of the trivial R(T)-module R,

In the same way we find a projective resolution of R
tensor products ¥; ®..® ¥, of complexes

3 Otmeys Eim) ’

’ 67’m—17 67‘m) ’

starting with

Y3 0—=K¢ egl)ﬁK—ao .

Since ¥; is a direct summand of X;,

U the direct limit ¥ of complexes
Y?'x ® ... ® ij}.71< <j7717

is also a direct summand of X. Consequently,

(*) Since Kej, is the annihilator of Kdjp, and conversely,

we see that this property
may be regarded as a generalized normality of a sequence.

icm®
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Y is projective and acyclic, and it is easy to see that Hy(Y)= R. For
any finite subset &= {ji, ..., Jm}, J1 < ... <jm, Of J we write

e(@)=6(j1y o jm) = ) ® .. @ €5

6(a) = 5,‘1 S 5_—;m .
The complex Y is generated by the elements 6(a)e¢(a) and by 1. Differentials
of ¥ are defined by the formulas

d’n(ail 6ime(j17 “'ij))
m
( for =2>1,

~1) 85, v 03 (f15 ere3 Jiy vre Gm)

i=1

dl(éilg(jl)) = 5:"1 .

LEMMA 5. Let an abelian group ._’l‘ be a direct sum of finite cyclic groups,
let R be a field, and let mE = R if m is an order of an element in T. If |T| = w8,
then AimR(T) = s+41.

Proof. If s = —1 then T is a finite group, R is projective and the

lemma follows.
Let us assume s> 0 and 7= @ {;}. We preserve the previous
jeJ .

notation. Let I be the ideal of K = R(T) generated by all elements
87,4 €J. By Lemma 2 of [3] it follows that dimgI < s; then

AmR(T) = AimK = dimg KT < s+1 .

Since R is K -projective for finite T' only, it is sufficient to prove that
dimgI>s if 0 <s< co. We have a projective resolution of I

o> Yo —>Y, Y i —— X — T —0

and we shall prove that the module U = Imd, is not projective.

Let us assume that U is projective. The ring K is regular and all
elements u(a) = ds(6(a)e(a)) generate U if 4 runs over the family J, of all
s-element subsets of J. By Theorem 3.1 of [6] it follows that there exist
idempotents f(a) ¢ K such that

(4) U= @ Kf(a)u(a).

aeds
Since d(a)u(a) = u(a), we can assume that f(a)d(a) = f(a). Similarly as
in [6] we prove the following properties of idempotents f(a):

(i) £(@) # 0 for all aeJs,
17#
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(i) I Jro < Ju <Jao <Ju < er < oo < oo < Juz 98 @ sequence of elements

of ‘J, and' for any map q: {1,2,..,8}>{0,1} we denote a{q)
= {J1a)s -+ s Jsater}, them

[[7lat@) =

aq

where the product is taken over all q.

To prove (i) let us write u(a) as

= kf(a)u Z Fonf (@) 14 (@)

m=1

with distinet @, @y, ..., an e Js. Then there exist jj, ..., ju eJ such that

Jméa, jmean, m=1,..,n, and we have e5,u(ay) = (L —87,) % (@)

= U{tm)—Oj,u(an) = 0 - because &;,%(an) = 5jm(am) U(tm) = 0 (m)u(am)

izu(am). Consequently, e, ... e,u(a) = &, ... o5, kf (a) 4 (a) and if a = {ji, ..., jo}
en

&y Eabf(@)u(a) = e, ... 67, d5{8(a)e(a))
= ey e &0 D) (— 1) 8@V oy iy ey ) £ O

=1

because e, ... £,6(a) # 0; we have proved (i).
To prove (ii), let us write ¢ = []f(a(q)); then of (a(g)) = ¢ for all g.
q
If p: {0,1,..,5-1}>{0,1} is a map, then we write

@ (p) = {jlm(l): ~-'7js —~1,p(s~1) 3 js,o; js,l} )

and let an element ¢ of Y,.; be defined as follows
@ = 02 °(7’)6 e(a’(p))

where the sum is taken over all p and o(p) = P(0)+ ... +p(s—1). We
have

— o(p)+i— ' . o~ . A .
ds+l¢ == 022 (_1) v 16 (a, (p))e(]l,p(l); ciey ]i,p(i), "'1.78—1,1)(3—15, 98,05 js,1)+
p i=1 —

I o(p)+a— ’ . . .

Te 2 (=1 16(“ (1’)) e(Jipm)s vy Js—tpis—1) Je1)

o(p)+ .
'H’;:( 1™ (a p)) (T, 5 +ov's Fom10t6-1y5 Js,0) »
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In the fivst sum, for fixed 4 the terms corresponding to the maps p, p1,
which differ only on 4, canceal. Since ¢d;; = ¢, we have cé(a’(p)) =¢

and ¢d(a(q) = ¢, thus

dst10 = (—1)8 y(—l)amﬂ(’@(ﬁ,pa): wves Jo1pte—1) Jsa) T

Lad
»

+( 1) y a(;) le(l):- ‘:jS—'l,p(S—l):js,ﬂ)

= (=1 > (1) (a(q))e(a(q)) .

q
Consequently, we get

0 = dediap = (—1)* Y (—1)@edi(8(a(g) e(a(q))

aq

= (-1’ Z 1) %f(a(g)) u(alg) -
By (4) it follows that of (a(g)) u(a(g)) = 0 for all g. Each element

u(a(@) = ds(8(a(g) e(a(@))) = 6(a(q)) dsfe(a(0))

belongs to ¥,—; and is a linear form on free generators e¢(a”), a" eJo,
of X,_, with coefficients - 8{a(g)): Since cu(a(q) = ef{a(q)ula(q), we
bave cda(g) =0 and c= ef(a(g) = ed(a(g))f(a(g)) = 0; we have
proved (ii). )

Let us denote by J the funetion f: J° =K defined as follows

F({dry eesJs)  if all i, ..., Js ave distinet,
1 in opposite case .

Fls s Js) =

By (ii) it follows that if f satisfies assumptions ‘of Lemma 5.3 of [6], then
there exists distinet elements §i,..,js such that f({ji,...,7s}) =0
contrary to (i).

3. In this section we prove main theorems.

LEaa 6. Let T be a torsion abelian group, |T|=8s (8= —1), let B
be a commutative Noetherian ring, and let mBE = R if m is an order of an
element in T. We have

dimR(T) = s+1.

Proof. T s— —1 then R is a projective R(T)-module and
M R(T) = 0.
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Let us asume s > 0. By Lemma 2, it is sufficient to prove the lemma,
for § < co. By Lemma 2 of [3] it follows that

then
(6) dimR(T) < s+1.

By Lemma 1, for any maximal ideal m C R we have
(7) E-dimB(T) < dimR(T)

where R = R/m. The group 7' contains a direct sum of cyclic subgroups T,
with [Ty =15, or =10, and T contains a generalized cyclic (Priifer)
group T;. In the first case, by Lemmas 2 and 5 we have '

(8) AimE(T) > dim B(T,) = s4+1

and the lemma follows by (6), (7), (8).
In the second case, R(T)-module B is not projective then by (5) it
follows that dian(I) =1 and the lemma is proved.

THREOREM 1. Let II be an abelian group, T the mawimal torsion sub-
group of IT and |T| = 8; (s = —1). Let R be a commutative ring and mR = R
if mis an order of an element in T; then

gl AimB(Il) = gl. Aim R4 (I} +s11 4t

where e =1 4f s = —1 and IT is not Finitely generated, and e = 0 in opposite
case (*) (r(II} = rank (IT)).

Proof. If s=—1 then T=T@® T and R(T) is Noetherian. By
the equality gl. imR(7) = gl. dimR and by Theorem 1 of [2] it
follows that

®

gl. dim R(IT) = gl. dim (R(T))(IT) = gl. dimR4-r(IT)+¢ .

Let us assume s> 0; it is sufficient to consider only the cage s < oo.
If 7{IT) > 8, then by Lemma 2 and by the first part of the proof it follows
that gl. dim R(IT) = co. Thus we assume 7(II) < &. There exists a sub-
group IT,CIT such that IT,= T@®IL, v(II)=r(Il,) and IT, is a free
abelian group. We have R(II) = (R(IL)) (T) and R(IT,) is Noetherian.
By Lemmas 4 and 6 and Theorem 1 of [2] we get

(9) gl dimR(IT,) = gl AimB(IT)+s4-1 = gl. dimRB-4+r(ID)+s+1 .

() If mR # R for some m, then gl.dim R(IT) = oco.

e © :
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By Theorem 2 of [3] we have gl. dimR(II) < gl. dimR+r(/T)+s-+1 and
the theorem follows by (9) and Lemma 2.
THEOREM 2. Under assumptions and notation of Theorem 1 we have

dim R(I1) = r(II)+s+1-+e.

Proof. It is proved in [5] that '
(10) BP(r, HY(A, A)) = B A®gT, A)
for all R-algebras A, I'and all 4°—I"-bimodules 4. Then we get (see [5])
(11) dim (4 ® I') < dim A4dim?".

‘We keep notation of the proof of Theorem 1.

If s = —1 then dimR(T)= 0 and by (11) and Lemma 2 it follows

dim R(IT) = dim R(T)+dim R(JT) > dim R(T) @ R(IT)
= dimR(T) > dimR(II) .

By Theorem 2 of [2] we geb
dimR(1) = AimRT) = r(IT)+e=r{Il)+s.

i ree abelian group of rank 1 then dimR(¥F)=1 and if is
easyltfoﬁélizei fbhaﬂ; for anyg’clv;'ivilll R(F)-module A we have HY{R(F), 4)
= 4. By (10) it follows that if dimI'=m .ﬂﬂld H™I', A) %0, then
H™R(F)®I',4) 0 and oconsequently dimRE(F)® I'= dimI'4-1.
Trivial induction argument show that

(12) dmR(F) ® I'= dimI'+r(F)

: 7 fre lian group F. ]
o aﬁzt fli; (;szzine];;y 0; ?f 7(IT) > %, then by Lemma 2 and by the first
part of the proof it follows that dimR(II) = oo. Thus we can assume
7(II) < co. It is proved in [2] that dim R(IT) < r({ID)+s+1 and by (12)
and Lemmas 2 and 6 we have

dimR(IT) > dim B(I,) = dimR(T)+r(IL) = r(ID)+s+1

thus the theorem is proved.
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INSTYTUT MATEMATYCZNY POLSKIES AKADEMIL NADK Coanalytic sets that are not Blackwell spaces

UNIWERSYTET MIKOERAJA KOPERNIKA W TORUNIU b
INSTI
Rl 'TUTE OF MATHEMATICS, POLISH ACADEMY OF SCIENCES .
OLAS COPERNICUS UNIVERSITY IN TORUN AShOk Maitra (Calcutta)

Recu par la Rédacti
par la Bédaction le 4. 12. 1968 A os-algebra B of subsets of a set X will be said to be separable if (i)

B is countably generated and (i) {#} ¢« B for all z « X. Call a measurable
space (X, B) geparable if B is a separable o-algebra. We shall say that
a measurable space (X, B) is a Blackwell space if (i) (X, B) is separable,
and (i) for every separable o-algebra CC B, C = B. Say that a separable
metric space X is a Blackwell space if (X, Bx) is a Blackwell space (here,
and in the sequel, whenever Z is a metric space, By will denote the
o-algebra of Borel sets of Z). In [17, Blackwell proved that every analytic
subset of a Polish space is a Blackwell space. The question then arises
it every separable metric space which is a Blackwell space is analytic
in its completion (and, consequently, analytic in any Polish space in
which it can be imbedded). I do not know the answer to this question.
The aim of this note is to exhibit complementary analytic (referred to,
hereafter, as coanalytic) subsets of Polish spaces which are not Blackwell
spaces. Again, I do not know if every coanalytic non-analytic subset
of a Polish space fails to be & Blackwell space.

We first characterise Blackwell spaces. We shall say that g is
a measurable mapping from a meagurable space (X, B) to a measurable
space (¥,C) if g is a function from X into ¥ and g~}C)CB. Call
2 mapping g an isomorphism between (X, B) and (¥, C) if ¢ is one-to-one
on X onto ¥ and both g and g—! are measurable. Tn cage the range of
a mapping is a metric space, the relevant o-algebra will always be the
Borel o-algebra and it will not be mentioned explicitly.

ProposiTioN. Let (X, B) be a separable measurable space. Then the
following conditions are equivalent:

(a) (X, B) is a Blackwell space.

(b) If (¥, C) is any separable measurable space and f is a one-to-one
measurable mapping from (X, B) onto (Y, C), then f is an isomorphism
between (X, B) and (¥, C).

(c) For every one-to-one B -measurable mapping f from (X, B) fo
a Polish space, f 18 an isomorphism between (X,B) and (f(X),B;(X)).
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