One-to-one mappings into the plane

by
Dix H. Pettey (Salt Lake City, Utah)

1. Introduction. Kenneth Whyburn [16] and L. C. Glaser ([4], [5],
and [6]) have given examples which show that for each n > 3 there is a
connected n-manifold with boundary which can be taken onto E" by a
nontopological 1-1 mapping. This contradicts an asserted theorem of V.
V. Proizvolov [11]. '

It is known (see [11] and [15]) that every 1-1 mapping of a connected,
locally peripherally compact topological space onto E* is a homeomorphism.
(A space is said to be locally peripherally compact if it has a basis B of
open sets such that every member of B has a compact boundary.)

In [4], Glaser showed that if a connected 2-manifold with boundary
M? is a subset of I?, with Int M*= IntI®, and if a 1-1 mapping f of
II? onto B* is continuous in M> at I*—M*® (see {4] for a definition of this
last condition), then f is a homeomorphism.

The main result of the present paper (Theorem 35.1) is that every
1-1 mapping of a connected 2-manifold with boundary onto F? i3 a homeo-
morphism. An analogous theorem (Theorem 5.2), in which E* is replaced
by &, is also shown to be valid. Finally, we prove a generalization of
Theorem 5.1; i.e., if each of M* and ¥* is a connected 2-manifold with
boundary, Int ¥? is an open 2-cell, and f is a 1-1 mapping of M* onto b
then f is a homeomorphism (Theorem 5.3). An immediate corollary to
this last result is that every 1-1 mapping of a connected 2-manifold with
boundary onto I? is a homeomorphism (Corollary 5.4).

Some related results, pertaining to 1-1 mappings of connected topo-
logical spaces onto E?, have been obtained by BEdwin Duda [2] and
R. F. Dickman, Jr. [1].

A

2. Definitions and notation. Throughout this paper, " will denote
Buclidean n-space. The sets {{(#y, ..., T) € B"] @n > 0} and {(@1, .., Zn)e
¢ B"| @, <0} will be denoted, respectively, by E% and F-. The unit
n-sphere, denoted by Sy, is defined to be the set of all points & of Bt
such that the distance from @ to the origin is 1. The unit n-cube, denoted
by I, is defined to be the set {(@y, .., @) e B"| 0 < s <1forl<i<nl
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A set €' in a topological space is said to be an n-cell if ¢ is homeo-
morphic to I". A 2-cell is called a disc. If a set O in a topological space
is homeomorphic to E", then O is said to be an open n-cell.

A metric space M is said to be an n-manifold if for each point 2
of M, some open neighborhood of » is an open n-cell. A metric space A’
is said to be an n-manifold with boundary if for each point z of r,
either x is in an open set which is an open n-cell or % is in an open set
which is homeomorphic to B%. If M’ is an w-manifold with boundary,
then the interior of M’', denoted by Int M’, is defined to be the set of
all points @ of M’ such that » is in an open set which is an open 7n-cell;
the boundary of M’, denoted by Bd M', is defined to be the set
M'—Int M.

Remark. n-manifold and n-manifold with boundary are sometimes
defined without the requirement that such spaces be metric. However,
by [12], Theorem 1, a locally connected, locally compact topological
space is metrizable if it has a 1-1 continuous image in a metric space.
Therefore, the theorems of Sections 4 and 5 are still valid as stated even
if these less restrictive definitions are used.

A set L in a topological space is said to be a topological line if T is
homeomorphic to . A set R in a topological space is called a topological
ray if B is homeomorphic to E..

If K is a set in a topological space 8, then C1(K) denotes the closure
of K in 8. :

A collection of point sets having more than one member is said to

be a nondegenerate collection. If @ is a collection of point sets, then by
the union of G (or | &) we will mean the union of the members of @.

The word mapping, as used in this paper, will always refer to a continu-
ous funetion. ’

3. Preliminary theorems. The theorems stated in this section will be
used in proving the theorems of Sections 4 and 5. Some of these
preliminary theorems are well-known theorems of point set topology or
the immediate consequences of well-known theorems, and in these cases
we will usually include references but no proofs. In other cases, where
the theorems may be less familiar, proofs will be given.

THEOREM 3.1 (BAIRE’S THEOREM). Suppose that X is a nonempty,
locally compact Hausdorff space and that & is a countable collection of closed
subsets of X such that X = | J§. Then there is a nonempty open set O in X
such that O is a subset of some member of F. (See [3], p. 250.)

. THEOREM 3.2. Suppose that each of M, and M, is an n-manifold and
that f is a 1-1 mapping of M, into M. Then fis a homeomorphic embedding.
(This theorem follows easily from Brouwer’s theorem on invariance of
domain; see [7], pp. 95-96.)
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TuzoREM 3.3. Suppose that M, is an n-manifold, M, is an n-manifold
with boundary, and f is a 1-1 mapping of M, into M,. Then f takes M,
nomeomorphically into Int M,.

Proof. Assume that for some point z of I, f(z) is in Bd JII?.
Choose an open neighborhood N of f(#) such that N is homem}lorph’ie
to B%, and let & be a homeomorphism of ¥ onto EY. Then kf(z) ¢ B ~ EZ.
Let O be an open set in M, such that # € O, 0 is an open az—gell, a,1.1d C1{0)
is a compact subset of f~(N). Then if takes O homegmorphwally into E’;
Since O is an open n-cell, Brouwer’s theorem on mva,rlan(;e of.domam
tells us that if (0) is open in B"™. Because hf(0) is a subset of B%, this means
that hf (0) does not intersect Y. ~ F~. But f() « f(0) and kf (x) ¢ EY ~ BZ.
This contradiction implies that f(M;) is a subset of Int M.

Since Int M, is an n-manifold, Theorem 3.2 tells us that f takes
M, homeomorphically into Int M,.

THEOREM 3.4. Suppbse that each of I, and M, is an n-manifold
with boundary and that f is a 1-1 mapping of M, info M, such that f(Bd M;)C
Bd M,. Then f is a homeomorphic embedding.

Proof. Lét 2 be a point of Bd M, and let U be an open set con-

. taining . Choose an open set O in I, such that f(#) € O and such that 0 is

homeomorphic to E%. Let ¢ denote a homeomorphism of O onto Ei
Let N denote an open neighborhood of x such that N 1s~1itomeomorphm
to E% and such that C1(¥) is a compact subset of U~ f (O): Let 611})7?
2 homeomorphism of Y. onto N. Then ¢f6 is a homeomorphism of. T
into itself such that ¢f(FL ~ B~) CEY ~ B, Let h be a homeomorphlsm
of B™ into itself such that gf 0| B% ~ B = h|E} ~ E. Define the function H
of " into itself as follows:

() h(x) it wmeBL,
) = off(a) it weEL.

Clearly, H is a homeomorphism of E" into it.self.nBy Brouwer’s theozfyznm
on invariance of domain, then, H (E") is open in F". Qonsequently, .H (E%)
is open in B%, i.e., ¢f(N) is open in E%. This implies that f(&) is gp‘en
in M,. Hence, for every point z of Bd M, and every 4openrset U cc;ln al;-
ing &, there is an open neighborhood N of » such that NCU and f(N)
is open in M,. ‘

By Theorem 3.3, Int M, is taken homeomorphically by f into -In}t M;.
Thus, for every point z of Int M, and every open set U contauimg : 1;
there is an open neighborhood N of # such that NC" U and ]"(_Z\.T ) s O]i)ies
in M,. We conclude, then, that f is an open mapping, and this imp
that f is a homeomorphic embedding.
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THEOREM 3.5. An n-manifold with boundary is connecied if and only
if dts dnferior is connected. (This theorem is an immediate consequence
of the definition of n-manifold with boundary.)
TaBOREM 3.6. If M' is a nonempty 1-manifold, then every component
of M* is either a simple closed curve or a topological line. (See [14], p. 194.)
In [9], Janiszewski showed that if each of H, and H, is a closed,
connected, bounded set in F° and if H, n H, is disconnected, then
H, v H, separates E’. Each of the following two theorems is easily ob-
tained from Janiszewski’s result by use of the method of inversion.
{Bee [10], p. 36, for an illustration of this method.)
THEOREM 3.7. Suppose that each of Hy and H, s a closed, connected
subset of B* and that Hy ~ H, is a disconnected, bounded set. Then H, v H,
" separates FP.
THEOREM 3.8. Suppose that each of H; and H, is a closed, connected,
unbounded subset of B* and thai Hy, ~ H, is nonempty and has & bounded
component. Then Hy v H, separates F.

4. Mappings onto separating sets in B The main results of this
section are Theorems 4.7 and 4.8, each of which is important in proving
the main theorems of Section 5. Since Theorem 4.8 follows quite easily
from Theorem 4.7, most of the material in this section iy directed toward
the proving of Theorem 4.7. The first six theorems of the sechion are
included primarily as lemmas to be used for this purpose.

TororEM 4.1. Suppose that the nonempty set H in FP is the ungon
of a countable collection & of ares and that CL(H)—H is the union of count-
ably many closed sets. Then there is an open set O in E* such that O ~ Cl(H)
is a topological line and a subset of some member of &.

Proof. Let § be a countable collection of clogsed sets such that
U&= Cl(H) and such that each member of & which intersects H is
a member of . Because Cl(H) is a closed subset of E*, Cl(H) is locally
compact. Hence, by Theorem 3.1, there is a nonempty open set 0’ in B2
such that 0’ ~ Cl{H) is a subset of some member ¥ of &. Since every

point of CI(H)—H is a limit point of |, it follows that F ¢ @. Therefore, -

since each member of @ iy an arc, there is an open subset O of 0’ such
that O N F (= O ~ CI(H)) is a topological line.

TrEuoREM 4.2. Suppose that the nonempty set H in BE* is the union
of countably many ares and that CLH)—H is the union of countably many
closed sets. Then CL(H) is nowhere dense in B2

Proof. Let § be a countable collection of closed sets such that
US = Ol(H) and such that every member of § which intersects H is
an arc in H. Since every member of & is either an are or a subset of
Cl(H)—H, it follows that no disc in E® is a subset of a member of §;
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i.e., each member of § is nowhere dense in B*. Let D be a disc in E*. Then,
for each F e, F' ~ D is nowhere dense in D. Therefore, since D is com-
pact, D# | J (F ~ D); i.e., D is not a subset of { JF. This implies that
Ug (= 01(5‘:'[6)2 is nowhere dense in E. :

THEOREM 4.3. Suppose that the nonempty set H in E* is the union
of countably many arcs and that CL(H)—H is the union of countably many
closed sets. Suppose, furthermore, that some subset K of CL(H) separates E*.
Then CL(H) separates BP.

Proof. Assume that Cl(H) does not separate E°. Let B and C denote
two mutually separated nonempty sets sueh that B*—K = B u . Let 0
denote an open set which intersects B but not C, and let O’ denote an
open set which intersects C but not B. If follows from Theorem 4.2 that
there is a point & of B*—CL(H) in O and a point =’ of B*—Cl(H) in 0"
Since Cl(H) does not separate E?, there is an arc 4 from z to m’ in
E*—Ci(H). Then A is a connected subset of Bw C. But, since
2e[0n (BwC)]CBanda «[0 ~(Bwv 0)]C C, this is impossible. }_Iel'me,
the assumption that Cl(H) does not separate E* has led to a contradietion.

TarorREM 4.4. Suppose that the topological space S is the union of
a finite, nondegeneraie collection {Ry, Ry, ..., Bs} of disjoint iopological
rays and that for each i (1=1,2, ..., n) p; is the end-point of R;. Suppose,
ﬂmhermore, that f is @ 1-1 mapping of S into E* such that

(1) for i=1,2,..,n—1, f(pu1) ts a limit point of f(R:),

(2) f(p1) 98 a limit point of f(Bx),

(3) CLIf(8)]—f(8) is the union of countably many closed sets.

Then CI[f(8)] separaies E*.

Proof. For each ¢ (i=1,2,..,%) R; is the union of countably
many arcs. Therefore, since f is 1-1 and continuous, f(8) is the unio.n
of a countable eollection G of arcs, each of which is the homeomorphic
image (under f) of an arc in some R;. It follows, then, from Theorem '4.1
that there is an open set O in B* such that O ~ CI[f(8)] is a topological
line and a subset of some member of G. Let H' be an arc in 0 n C1[f(S)],
and let H” denote the closure of f(S)—H'. Clearly, H" is connected.
Since H' ~ H” consists of the two end-points of H’, Theorem 3.7 implies
that H' v H' separates EP, i.e., Cl{f(S)] separates E°.

TaEoREM 4.5. Suppose that the topological space 8 is the «'wmion_ of
a finite, nondegenerate collection {Li,Ls, ..., La} of disjoint topological
lines and that f is a 1-1 mapping of S into E* such that

@) for i=1,2, ..., n—1, f(Li+1) contains a limit point ¢iy1 of f(Li),

(2) f(Ly) contains a limit point g of f(Lm),

(8) CILF(8)]—F(8) 4s the union of countably many closed sets.

Then CL[f(8)] separates E". ‘
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Proof. For i=1,2,...,n—1, there is a topological ray R; in I
such that f™(g;) is the end-point of R; and g1, is a limit1 point of f(Ry),
Similarly, there is a topological ray R, in L, such that f(g,) is the end-

n
point of R, and ¢, is a limit point of f(R,). Let 8" = '—U1Ri' Now for

e
each 7 (i=1,2,..,0), Li—R; is the union of countably many ares
Therefore, since f is 1-1 and continuous, f(S—8') (= f(;S')~f(S’)) iy the
union of countably many ares. This, together with Condition (3) of the
hypothesis, implies that CL[f(8)]—7(8") is the union of countably many
closed sets and, consequently, that CI[f(S")]—f(8’) is the union of countably
many closed sets. Therefore, by Theorem 4.4, Cl[(§")] separates B~
By Theorem 4.3, then, CI[f(S)] separates E.

THEOREM 4.6. Suppose that L is a topological line and that fisal1
mapping of L into B such that CI[f(L)]—f(L) is the union of countably
many closed sets. Then either T is a homeomorphism or CI[f(L)] separates B~

Proof. Assume that f is not a homeomorphism. Then theve is
a point p, of I and a sequence <#;> of points of I such that no subsequence
of (@ converges in L but (f(z;)> converges to f(py) in B Let R be
a topological ray in L such that p, is an end-point of B and R containg
infinitely many points of {w:>. Let p, be a point of B— 1, and let R,
and B, be disjoint topologieal rays such that R = B, v Ry, p, is the end-
point of R;, and p, is the end-point of R,. Then Ff(p2) is & limit point of

J(By),and f(p,) is alimit point of f(R,). Since L—R is the union of countably .

many ares, CI[f(L)]—f(R) is the union of countably many closed sets,
and, consequently, CI[f(R)]—f(R) is the union of countably many closed
sets. By Theorem 4.4, then, Cl[f(R)] separates E°. Therefore, by
Theorem 4.3, CI[f(L)] separates FEZ .

Remark. Without the requirement that CI[f(L)]=f(L) be the
union of countably many closed sets, Theorem 4.6 is no longer valid.
For example, we can easily construct a nontopologiecal 1-1 mapping
of " into E* such that the closure of the image of " is the indecomposable,
nonseparating plane continuum illustrated in [8], Figuve 7. Another
example is obtained by constructing a 1-1 nontopological mapping f
of B' into F* such that f(EYCIntI* and such that F(B") contains
a countable dense subset of I% we then have CI[f(EY)]= I®

THEOREM 4.7. If M is a nonempty separable 1-manifold, f is a 1-1
mapping of M* into B?, and f(MY) is closed in B, then f(M*) separates B

Proof. Assume that f(M') does not separate E?. -

Since M' is a separable 1-manifold (and is. therefore the union of
countably many ares), and since fis 1-1 and continuous, it follows that
F(3Y) is the union of countably many ares. Theorem 4.3, then, implies
that no subset of f(Y) separates B*, From this we conclude that F(MY)
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contains no simple closed curve. Therefore, if follows from Theorem 3.6
that every component of IM* is a topological line. Let ¥ denote the
collection of all components of MY, and let G denote the collection
{I| L = f(K) for some K e J}. ‘

Tf 3 is a subcollection of X, then M'— | &’ is the union of countably
many arcs, and this implies that f(M*) —F({JK') is the union of eountably
many arcs. Since f(M') is closed in F?, we conclude that for each sub-
collection &' of X, Cl[f(|lJXK')]—f(JK') is the union of countably many
closed sets. For each K e X, then, CI[f(K)]—f(K) is the union of countabl_y
many closed sets. Therefore, since no subset of f(M") separates E"‘:, it
follows from Theorem 4.6 that for each K ¢ X, fiK is a homeomorphism,
i.e., each element of G is the homeomorphic image, under f, of some
element of X. o

Now let Iy, Ly, ... denote the elements of @. For eachi (i= 17 2, )
let ki be a homeomorphism of E* onto L;, and define the following sets.
and collections of sets as indicated:

L = hy(By)  and  Li = hy(BL) ;
St = {Le @ L Li, L OULT) # O}

S7(1) = {L e G| L+ Ly, L~ CL(Ly) #@};
for n=1,2,..
Sf(” +1)={L G L~ CUL)#O for some L' eSJ{(n)}
and
Si(4+1) = {L e @ L~ ClI) %O for some L' eJ;(n)};

St= Uty and Sr= U 37);

1 n=1
Ji=3T v v {L}; .
Vi=CoUSh, Vi=0(U3), amd Te=O0(UZ).

It is clear that whenever L; €%; we will have J;CJ: a,nx?. .VjC Vi It
follows from Theorem 4.5 that there does mnot exist a finite, nonde-
generate collection {Ki, K,, ..., Kn} of elements of_J{;l such that f(K,)
containg a limit point of f(Kn) and such that for ea,c_h i(i=1,2,..,m—1)
f(Kis1) contains a limit point of f(Ki). Using this fact we are able to
conelude the following:

(1) if L; €S and ¢ # j, then L; ¢ Jj; and

(2) for each positive integer 4, L; ¢ 37 v 7.
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Now for each positive integer ¢, J: is a subcollection of &, and therefore
CILUJd— U3Je is the union of countably many closed sets;ie., V;— US;
is the union of countably many closed sets. From Theorem 4.1, then
it follows that there is an open set O in B such that O ~ V;is a topologicai
line and a subset of some member of ;.

Since ¥;C Vs whenever Ly e Ji, we can choose a positive integer %
such that for some open set O in #°, O ~V; is a topological line and
a subset of Ij.

Case 1: V¥ v L is bounded. Then 3% is non-empty, and, for each g
such that L;-e i, neither 37 nor 3 is empty. There exists an integer m
such that L, e 3¢ and I, ¢ Sm. (If Ly ¢ 3¢ then m can be any integer such
?,hat L e3%; it Ly eSF choose m such that Lp €3{.) There exists an
integer #(1) such that Ly € Jm and such that for some open set 0 in B2,
O;r\ Vi is a topological line and a subset of L.iy. One of the sets
Vew, Ve does not intersect IL,. (For if I, intersected each of Vi
and Vy), there would then be an are 4 in I, intersecting each of Vj,
and Vyy. Then Theorem 3.7, along with the fact that 0"~ Vyy is
& topological line in L.y, would imply that 4 o V,y separates E)
L‘et.R1 denote a member of {V;y, Vxy} which does not intersect L.
Similarly, we can find an integer (2) such that Vrey C Ry and such that
one of the sets V), Vi does not intersect L,. Let R, denote a member
of {Viy, Vim} which does not intersect L,. Continuing in this manner,
we define a sequence (R;> of nonempty, compact sets such that for,

each i, Riy1 C Ry and R~ Ly — 0. Then () Ej+ 0. But dearly () B,
J=1 F=1

can intersect no L;. Since f(M*) is the union of the Ly’s and since each R;
is & subset of f(M*), this gives us a contradietion.

Case 2: Vi v Lg 4s bounded. This case is analogous to Case 1 and,
therefore, also leads to a contradiction.

Case 3: Bach of Vi O Ii and Vi o I is unbounded. Then, from
Theorem 3.8 and the fact that 0 ~ ¥y is a topological line in Ly, it follows
that’ Vi separates E®. This, again, is a contradiction.

Since each of th(? i':hree possible cases results in a contradiction, we
conclude thq,t our original assumption is false; i.e., f(M?) separates "

T'HEOREM 14:8. If M is o nomempty separable 1-manifold, f is a 1-1
mapping of M into 8, and f(M") is closed in &, then F(HMY) separates S

) Proof. Assume that f(M') does not separate §°. Since f(M") is the
un;;)in of count'a:bly 2mamy arcs, it follows from Baire’s Theorem that
f (f Sz)#sa. Thus, 8*—f(M') is a nonempty, connected, open subset
0 sz. Choose p e [§°—F(M")]. Since §*—f(M*) is » connected open seb
in 8% p does not sepa.rate‘82~f(lll“). Therefore, §*—[p v f(M')] is con-
nected. But, since §2—p is homeomorphic to E,, Theorem 4.7 implies

©
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that f(M*) separates §*—p, i.e., that §°—[p v f(M*)] is not connected.
Hence, we have a contradiction.

5. 1-1 mappings of 2-manifolds with boundary. In this section we
will consider a 1-1 mapping f of a connected 2-manifold with boundary
onto & space Y. Theorem 3.1 says that if ¥ -is E?, then f must be a
homeomorphism. Theorem 5.2 asserts that the same is true if ¥ is 5%
Theorem 5.3 is a generalization of Theorem 5.1 in which we require
only that ¥ De a 2-manifold with boundary such that Int Y is an open
2-cell.

THEOREM 5.1. Suppose that M* is a connected 2-manifold with boundary
and that f is a 1-1 mapping of M* onto E*. Then f is a homeomorphism.

Proof. Assume that M> has a mnonempty boundary. It follows
from [137, Corollary, p. 111, that M?® is a separable metric space. Hence,
Bd M? is a separable 1-manifold. For each point # of Int M, there is
an open set O in Int M? such that = € O and f(0) is open in E°. Therefore,
f(Int M) is open in FP, and f(BA M) is closed in E?. By Theorem 4.7,
then, f(Bd M*) separates F*, ie., f(Int M*) is not connected. But by
Theorem 3.5, Int M? is connected, and, since f is continuous, this means
that f(Int 3%) must also be connected. This contradiction implies that
our assumption is false; i.e., Bd M* = @. By Theorem 3.2, then, f is
a homeomorphism. :

THEOREM 5.2. Suppose that M* is a connected 2-manifold with boundary
and that f is a 1-1 mapping of M* onto S°. Then f is a homeomorphism.

The proof of Theorem 5.2 is analogous to that of Theorem 5.1. Theo-
rem 4.8 is used instead of Theorem 4.7.

THEOREM 5.3. Suppose that each of M* and Y* is a 2-manifold with
boundary, that M? is connected, and that Int¥* is an open 2-cell. Suppose,
furthermore, that f is a 1-1 mapping of M* onto ¥*. Then f is @ homeomorphism.

Proof. Since f'(Int¥?) is an open subset of M, f(Int¥") is
a 2-manifold with houndary. By Theorem 3.5, Int M*® is connected, and
by Theorem 3.3, f(Int M?) C Int ¥° Therefore, Int M* C f '(Int ¥*), and
from this it follows that f*(Int Y?) is connected. By Theorem 5.1, then,
F(IntY?) is taken homeomorphically onto IntY". This means that
FInt Y% is an open 2-cell and, consequently, that Bd M* does not
intersect f'(Tnt ¥*). Tt now follows from Theorem 3.4 that f is a homeo-
morphism.

COROLLARY 5.4. Suppose that M is a connected 2-manifold with
boundary and that f is @ 1-1 mapping of M> onto I*. Then [ is a homeo-
morphism.
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a universal null set:
(6) If pis a non-negative non-atomic finite Baire measure on I, then
p(B) = 0.
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stricter than its snccessor are given in [3], which was written while the

author sought to answer the following gquestion.

If B is a subset of I with property (6) and h is a continuous funciion
of bounded variation on I (OBV), then must h(B) have property (6)2

TUnfortunately, the author was ignorant of a vast amount of pertinent
information that was available. For example, A. S. Besicoviteh ([2])
had shown that property (4) does not imply property (3) (ct. [3]). Before
becoming aware of Besicovitch’s result, the author found another proof of
it; but, he was still unable to settle the original guestion or to show
that property (5) does not imply property (4). However, W. Sierpinski
(4], p. 57) had shown that a contintious image of a universal null set
need not be a universal null set, from which it follows that (5) does
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' The purpose of this note is to answer our question in the negative
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be applied. o .
Tet P be the Cantor set in I of measure 1/2 which is obtained by

taking out middle quarters. Let Iy, j < 9%, denote the ith staigej interyals
in the canonical representation of P as an intersection oflfmlte unions
of intervals, and let Oy, j < 27", denote the corresponding segments

which are removed at the ith stage.
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