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Approximations of one-one measurable transformations *

by
Fred J. Smith (Lafayette, Ind.)

There have been numerous results in the theory of functions of-
a real variable which show that measurable functions, and even arbitrary
funections, have certain continuity properties. Examples of these are the
well-known theorems of Lusin [5], Saks—Sierpitiski [1], Vitali-Carathé-
odory [7].

The form of Lusin’s theorem considered here is: if f is a measurable
function defined on a measurable subset § of Euclidean n-space, then
for every positive & there is a continuous function g defined on § such
that f= g except on a set of measure less than e.

The related subject of measurable, or arbitrary, one-one trans-
formations has been studied by Goffman [2].

Goffman [2] showed that if 2 <% and f is a one-one measurable
function of the unit #-cube I, onto I, with a measurable inverse f,
then for every positive & there is a homeomorphism (g, g7) between In
and I, such that f = g and f "= ¢~* on sets of measure greater than 1—e.
He also showed that if f is a one-ome measurable function of the unib
interval I, onto I, with a measurable inverse f, then there is & one-one
function ¢ of Baire class 2 from I, onto I, whose inverse is also of Baire
class 2, such that f=g¢ and f'= ¢~ almost everywhere.

Shaert [6] showed that the result of Lusin’s theorem is valid in more
general spaces. If X is an arbitrary neighborhood space, Y is a topological
space satisfying the second axiom of countability, and f is a function
from X into ¥ which is measurable with respect to a measure u on X
then for every u-measurable set B of X and every positive ¢ there is
a closed subset 7 of B such that z(B—F) < ¢ and such that f is continu-
ous on F relative to 7' if and only if u is a regular measure.

In this paper it is shown that if X and ¥ are locally compact separ-
able metric spaces with totally finite regular Borel measures p and 7,
then any one-one function of X onto Y, which is u-measurable and
whose inverse is »-measurable, can be approximated up to sets of meas-
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ure ¢ by & one-one function of X onto ¥ which is of Baire class 1 and
whose inverse is of Baire class 1; and can be approximated up to sets
of measure 0 by a one-one function of X onto ¥ which is of Baire clags 2
and whose inverse is of Baire class 2. It is also shown that if X and ¥
are homeomorphic images of I, for # > 2, and have totally finite regular
Borel measures, then any one-one measurable transformation can he
approximated up to sets of measure ¢ by a homeomorphism between I
and Y.

Finally some examples are given to show that these approximations
are “best possible” in the sense that the conclusions of the above gtate-
ments will not be valid if “Baire 2” is replaced by “Baire 1”, or “Baire 17
is replaced by “continuous”. An example is also given to show that the
hypothesis that the measures be totally finite canmnot he eliminated.

To demonstrate these facts we will make use of the following lemmas.

Leyora 1 (Goffman [2], p. 271). If (f,f ") is a measurable transfor-
mation between I and Inm, then for every &> 0 there are closed sefs 8 C I,
and T C I, of measure greater than 1— e such that (fif Hisa homeomorphism
between S and T.

Leyara 2 (Kuratowski [3], p. 212). If X and ¥ are complete separable
topological spaces of the same cardinality, then there is a one-oné trams-
formation (@, p=1) between them of Baire class (1,1).

Leyva 3. If A and B are Gy sets of complete separable topological
spaces and have the same cardinality, then there is a one-one transformation
(@, ¢71) between them of Baire class (1,1).

Proof. It is known [4] that any @ set in a complete separable space
is homeomorphic to a complete separable space. Let (f, f™) and (9,97
be homeomorphisms between 4 and X and B and Y respectively. By
Lemma 2 there is a one-one transformation (hy B™) between X and Y
of Baire class (1,1). Then (p,¢™") = (g o hof, f Loh o ) is a one-one
transformation between 4 and B of Baire class (1,1).

TeeoreM 1. If 1< n<m and (f,77%) is a one-one measurable trans-
formation between I, and Inm, then for every &> 0 there is a one-one trans-
formation (g, g7") between I and In such that f— g and f7 = g7 on seis
of measure greater than 1—e and such that (g, g*) 4s of Baire class (1, 1).

Proof. Let e> 0. By Lemma 1 there are closed sets SC I, and
T ClILn of measure greater than 1—s such that (-7 is a homeo-
morphism between § and 7. Then (In—~8) and (In—T) are open sets
hence G sets. By Lemma 3 there is @ one-one transformation (¢, ¢~
between I,—8 and I,—T of Baire class (1,1). Then if
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(g, g~ is a one-one transformation between In and Im. Let & be an open
H
seb in Im. Then

gHH =FHEFT) v g G A (In—T))

where f~{(G ~ T) is open in 8 hence F, in I, and ¢ (G ~ (I,,,'—.T)) is By
in In—S hence F, in I,. So ¢g~Y(@G) is an F, set and thus ¢ is of Baire
class 1 at most. Similaxly, ¢g—* is of Baire class 1 at most.

THEOREM 2. If (f,f) is a one-one measurable trmzvsfm”mut'io-n between
I, and Im where n and m are any positive integers, then there is a one-one
wransformation (g, g~*) between 11” and Im‘ such that g=f a.e. in I, and
g =1 ae in In and (g,97") is of Baire class (2, 2).

Proof. By Lemma 1, for every ¢> 0 there are clo_sgd-sets SCI,
and T C I, of measure greater than 1—e such that (f,f ) is a homeo-
morphism between S and T. For every k= 1,2, ..., let 83 C1L,, T4 C I,
be such sets for e = 1/k. Then

S= U8, T=UTs
k=1 k=1

are F, sets of measure 1 such that (f,f ") is a one-one transformat%on
between S and T of Baire class (1, 1). I,— 8§ and I,,—T are G; sets haV{ng
the same cardinality so by Lemma 3 there is a one-one transformation
(@, p~1) between In—8 and In—1T of Baire class (1,1). Let

’ €8,
g(m)___{f(w) ©

o), ®el,—8S.
Then (g, =) is a one-one transformation between I and I'm. Let G be
an open set in In. Then
IO =FHE~T) v (6 o Tn—T).

Now f (@ ~ T)is an F, set in S, and hence an F:, setin I,. ¢:1(G ~ (IZ_T)E;
is an F, set in I,— S, a G; set, hence a G4, seb in In. Sq g H@) is a Gy si
and g is of Baire class 2 at most. Similarly g—* 1s‘of Baire ‘e‘lass 2 at x:-aols,;
Tt should be noted that these approximations are “best p0551bf3t
in the following sense. If » is different from m,.the_n therg does not e;lxilsh
a one-one transformation between I and I, which is contlnl}ous .or W cf
has a continuous inverse. Fence the best possible approximation 1sb(1)
Baire class (1,1). C. Goffman [2] gives an example of a mea,sxg.:n;
transformation (f,f™) between (0,1) and (0’_11) Smi}i that hanyboﬁh
formation (g, g~") satisfying f=yg a.e and f =¢ .a.e.l as(9 % agﬁ
and g~' everywhere discontinuous and ther-efore of. 'B;m?(? class (2,
least. This example readily extends to arbitrary dimensions. i
These results can be extended to more general spaces USIng

following lemma.
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Leaona 4 (Shaerf [6], p. 35). If X is a meiric space with o totally finile
regular Bovel measure p, Y is @ topological space salisfying the second
azwiom of countability, and f is a function of X into Y which is measurable

“relative to p, then for every measurable set EC X and every positive ¢ there
is @ closed set I'C B such that u(B—F) < e and such that f is continuous
on B relative to E.

THEOREM 3. If X and ¥ are locally compact separable metric spaces
with totally finite regular Borel measures p and v and (f, ™) is a one-one
measurable iransformation between X and Y, then for every e > 0 there is

o ong-one transformation (g, g~*) such that f + g on a set of u measure less -

than & and f = ¢~ on a set of v measure less than ¢ and such that (7,974
is of Baire class (1,1).

Proof. By Lemma 4 there is a closed set B C X such that w(X—F) <s
and such that f is continuous on . Since u(X) < oo and X is locally
compact, we can choose B to be compact. Then (f, f %) is a homeomorphism
between % and f(H). There is a compact set ' C (Y —f(B)) such that
¥ ~F v f(E)) <e and such that (f,f ") is a homeomorphism Debween
I and F. Let S=E o fF) and T =f(E) o F. Then (Fs 70 s
a homeomorphism between S and T and by applying Lemma 3 ag in

the proof of Theorem 1 we get a one-one transformation (9,97") with
the desired properties.

ToroREM 4. Under the hypothesis of Theorem 3, there is a. one-one
transformation (g, ¢=2) between X and Y such that f# g on asetof u meas-
wre 0 ond f' g7  on a set of » measure 0 and such that (g, g™") is of
Baire dass (2, 2).

Proof. Let B, CX and F,C Y be the sets E and F of Theorem 3
for ¢=1. Then for n =1, 2, vy let

n
Enpn CX— U (Bew f(F)

k=1
be compact and such that

n+1 n

a(X— kgl By kL JFUF) < Yn+1)

=1

and such that f is continuous on E,,;. Let

Fon C{Y— T 1B ) 1)
k=1 k=1

be compact and such that

7+l n

v(Y— U f(Br

Y Y Fy) <1fn+1).
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Then (f,f ") is a homeomorphism Detween ,H (B o FHFy) and
pa

1

”Dl (f(Br) v Fy)) for every n. Let
k=1

[==] o

8= Ll (Byw f(Fn) and T= U1 (f(Bn) w Fy) .

A= T~
Then u#(X—8)=0 and »(¥—T)= 0, § and T are ¥, sets and (£,
is a one-one transformation between S and T' of Baire class (1,1). By
applying Lemma 3 to (X —8) and (¥ —T) as in Theorem 2 we get a one-
one transformation (g, g—!) between X and ¥ with the desived properties.

The question which arises from the result of Theorem 3 and the
results of [2] is under what conditions on homeomorphic spaces X and ¥
can the approximating transformations be made homeomorphisms? This
question i partially answered here.

DerFINITION 1. A subset B of I, is called sectionally zero dimensional
it for every hyperplane = parallel to a face of I, and for every positive ¢
there iy a hyperplane zn* parallel to # whose distance from = is less than &
and which contains no points of H.

LemMA 5. If u and v are totally finite reqular Borel measures defined
on In for w22, and (f,17") is & one-one tramsformation of I, onto ilself
such that f is u-measurable and f~* is v-measurable, then for every positive &
there is a closed sectionally zero dimensional subset B of I, such that
wIu—EB) <&, plli—1(B) <& »(Ia—B) <& and w(Ii—f(B) <e.

Proof. Of all the hyperplanes = parallel to a face of I,, there are
2 countable number which have positive x measure. For if uncountably
many of them had positive p measure, parallel to a specific face of I,
there would be infinitely many hyperplanes with x measure greater
than 1/k for some positive integer k. This contradicts the hypothesis
that w(I,) is finite. Similarly there are a countable number of hyper-
planes z parallel to a face of I, such that u(w), p(f (%)), #(x) or »(f(w))
is positive. Consequently, parallel to each face of I,, we can select
& denumerable set of hyperplanes =, whose union is dense in I., and
such that p(w) = u(f () = »(7) = »(f(=)} = 0. This eollection of hyper-
planes, as a finite union of denumerable sets, is denumerable and can
be written as m, sy« Tk oo

Let ¢> 0 be given. For each pair of positive integers k and 7,
let Gry be the set of points in I, whose distance from = is less than 1/n.

Because m; = ﬁo Gin, the sets Gy, are decreasing and p(mr) =.0, there
n=1

is an Ny such that u(Gwm) < 5/27“ for all n >l\; 1. Similarly there are
Nu> N> Nio> Ny such that o(f(Grm) < ¢f2° when n> Ni, #(Gin)
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< &/2" when # > Ny, and ‘u(f‘l(G;m)) < £/2" when n > Ny Let ng, — N,
o0

Gy = Ging, and G = |J @%. Then & is open and contains a dense set of
k=1

hyperplanes parallel to each face of I, 50 F = (I— @) is a closed section-
ally zero dimensional set and has the desired properties.

LemMA 6 (Gotfman [2], p. 266). If 8 and T are closed sectionally zero
dimensional subsets of I, for n>2, and ( f,f™ is a homeomorphism
between S and T, then there is a homeomorphism (g, ™) of I onto itself
such that f=¢g on 8 and f =g¢" on T.

THEOREM 5. If p and v are totally finite regular Borel measures defined
on In for n =2, and (f,f™") is a one-one transformation of I, onto tself
such that f is a u-measurable function and f~' is a v-measurable Sunction,
then for every positive ¢ there is a homeomorphism (g, g=1) of I, onto dtself such
that f = g except on a sel of u measure less than & and £~ = g~ except on
a set of v measure less than e. .

Proof. Let e > 0 be given. Asin the proof of Theorem 3, by Lemma 4
there are compact subsets S and T of I, such that- u(I.— &) < I
v(In—T) < }e and such that (f,f") is a homeomorphism between §
and T. By Lemma 5 there is a closed sectionally zero dimensional sub-
set B of I such that u(I,—E) < e/4, v(Ih,—E) < 1¢, ,u(I,.—f”l(E)) < ie
and »(I,—f (B)} < }e. Then B~ §is a closed sectionally zero dimensional
set and f is continuous on E ~ § relative to B ~ §, so f(E ~ 8) is closed.
Let H=FE n f(I ~ 8). Then H is a closed sectionally zero dimensional
subset of T and f is continuous on H relative to H. Let @ = FHE)
= f'l(E) N HEn~ 8. Then & is a closed sectionally zero dimensional set
and (f,f77) is a homeomorphism between ¢ and H. Now

#In—6) < p(L—F B+ p(Tn—B)+ p(In—8) < e, -
and

(Lo —H) < v(In—B) +9(Tua—F(B) +9(Tn—T) < & .

By Lemma 6 there is a homeomorphism (g, g~1) of I, onto itself such
that f=g on G and f"=g¢"" on H.

THEOREM 6. If two spaces X and ¥, with totally finite regular Borel
measures g and v, are both homeomorphic to Iy, for n > 2, and (f,f ") is
@ one-one transformation between X and ¥ such that f is u-measurable and f~*
s v-measurable, then for every positive = there is a homeomorphism (g, g=%)
between X and Y such that f= g emcept on a set of u measure less than &
and f = g?l except on a set of v measuré less than e.

Proof. Let (£,27") be a homeomorphism hetween X and I,. Define
a measure p* on In by p*(B)= u({"YB)). Then u* iy a totally finite
regular Borel measure defined on I. Similarly if (y, y~!) is a homeo-
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morphism between Y and I, we can define a totally finite regular Borel
measure »* on In by »*(B) =»(y"'(B)). Let (f*,f) be the one-one
transformation of I, onto itself given by f*=yofo™ Then (£*,7*°Y
is a one-one meagurable ftransformation of I, onto I,.

Let ¢ > 0 be given. By Theorem 5 there is & homeomorphism (g*, 1)
of I, onto itself such that f* = g* except on a set of u* measure less
than ¢ and f*" = ¢"™" except on a seb of +* measure less than e. Let
(g, g‘l) be the homeomorphism between X and Y given byg=9p"0 g* L.
If A= {weX: f(#) # g(w)} then

pld) = p({(4)) = w'w e X: fHm) £ g*@)] <& .

By a similar argument, if B = {z ¢ X: f7(z) £ g~ (w)}, then »(B) < .

The following example is given to show that the conclusion of
Theorem 6 is not valid if the measures on the spaces X and Y are o-finite
but not totally finite.

ExAmpLE 1. There exists a one-one measurable transformation (f, /™)
between the plane R, and itself such that any homeomorphism (g, g-1)
between R, and itself is such that f # ¢ and f™ =2 ¢~" on sets of infinite
measure.

Verification. Let 8y, 8y, ... be the open squares in the half plane
y > 0 whose boundaries are the lines s = ..., —1,0,1, ..., y= 0,1, 2, ...
Let T, Ty, ... be the open strips in the half plane ¥ < 0 given by T
=[(#,y): -k <y <—k-+1] For each k= 1, 2, ..., let (hz, k") be a hom-
somorphism between Sp and Ty.

Let
h(®), ze8,
o) = hit@), ®eTy, ]

Then f has an inverse function and f' = f. Let (g, ") be a homeo-

- morphism between R, and itself. Let F be the closure of 8. Because F'

is compact and (g, ¢g—') is a homeomorphism, both g(F) and g—(F) are
compact hence bounded. But 7; is a subset of both f(#) and f(ZF), so
on the set (T —g (), f* # ¢~ and on the set (Ty—g (F)), f # g and
both of these sets have infinite measure, since T, bas infinite measure
outside of any bounded set.

References
[11 C. Goffman, Proof of a theorem of Saks and Sierpifiski, Amer. Math. Soe. 54 (1948),

Ppp. 950-952.
[21 C.Goftman, One:one measurable transformations, Acta Math. 89 (1953), pp. 261-278.


GUEST


17

[31

[4]
[5]

{61
{7

©
F.J. Smith m

¢. Kuratowski, Sur une généralisation de la notion d’homéomorphie, Fund. Math.
22 (1934), pp. 206-220.

— Topologie I, Warszawa 1933.

N. Lusin, Sur les propriéiés des fonctions mesurables, C. R. Acad. Sci. Paris
154 (1912), pp. 1688-1690.

H. M. Shaerf, On the continuity of measurable functions, Portugaliae Math. 6 (1947)
Pp. 33-44.

W. Sierpiniski, Démonstration de quelques théorémes fondamentaus sur les fonctions
mesurables, Fund. Math. 3 (1922), p. 319.

PURDUE UNIVERSITY
Lafayette, Indiana

Recu par la Rédaction le 14. 8. 1967

Une application de la méthode
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1. Préliminaires.

1.1. Résumons d’abord certains résultats développés dans [1] et
dont nous ferons usage dans la suite. A cet effet, considérons les axiomes
A,B,C, D, B de Godel [3] et placons-nous dans le systéme axiomatique
(ABC). Appelons wnivers toute classe U telle que U = U, ol §U désigne
Ia classe des sous-ensembles de U. Par exemple, I'univers V (la classe
de tous les ensembles) est un univers. On peut montrer que toute classe X'
est contenue dans un plus petit univers U(X). Pour toute classe transi-
tive A (c-&-d telle que A CTFA) on peut établir les principes suivants:

(a) Principe d’induction dans U(4):

Si @ () est une formule prédicative et si y ne figure pas dans @ (),
alors

[(V2) 4@ (@) A (V2) vty a((F9)a B (9) = B (@) = (V&) w2 (). (1)

(b) Principe de récursion dans U(A):
8i Fy: V>V et Fy: V=V, alors il existe une et une seule fonction
F: U(4)-V telle que

14 .
vy i wed,

F‘m 1 113
FoB's st weU(A)—4.(®)

1.2. Notong N D’axiome de von Neumann: ‘“Toute classe propre
est équipotente & I'univers ¥ et posons K = {z| # = {w}}. Nous savons
que sile systéme (ABC) est consistant, alors le systéme (ABCNPr(K)) (%)

Pest également (voir [2]). Mais dans ce dernier systéme, la classe U(K)

* Aspirant du T.N.R.S.
() (Va),P(2) est une abréviation de (Vo)(z e 4 =B (w)).
,_.() Remarque importante: la fonction F peut dtre construite 4 'aide d'une formule
‘prédicative.
(*) Pr(K) affirme que K est une classe propre.
Fundamenta Mathematicae, T., LXVII 13
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