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Post algebras and pseudo-Post algebras *
by
G. Rousseaun (Leicester)

Post algebras were first considered by Rosenbloom [6] and have
been studied in recent years by Epstein [3], Traczyk [8], [9] and Dwin-
ger [2]. From the work of Epstein and Traczyk it follows that a distributive
lattice with 0,1 is a Post algebra if and only if it is the coproduct of
a Boolean algebra and a finite chain. Similarly a distributive lattice
with 0,1 will be called a pseudo-Post algebra if it iy the eoproduct of
a pseundo-Boolean algebra and a finite chain. The first part of the paper
deals with the theory of Post algebras and pseudo-Post algebras.

At the end of the paper we consider an application to logic. The
notion of validity in classical and intuitionistic logic may be defined
semantically by the methods of Tarski and Kripke (*) respectively. If we
replace the two truth-values occurring in these definitions by a system
of # truth-values, we obtain what may be referred to as classical »-valued
logic and intuitionistic -valued logic respectively. The representation
theory of Post algebras and pseudo-Post algebras can be used to establish
the completeness of suitable axiomatizations of these logies. We consider
clagsical and intuitionistic »-valued propositional caleuli from this point
of view in Section 6.

Consider the category of distributive lattices with 0,1 and 0,1-"
preserving homomorphisms; the objects and morphisms of this category
will be referred to simply as lattices and homomorphisms, A lattice is
called non-degenerate if it contains the two-element lattice 2 as a sub-
lattice. A pseudo-Boolean algebra is a lattice in which the element
6D b=max{zx eL: zra < b} exists for every pair of elements «,b; we
shall write —a = max{z eL: wAa = 0}. A Boolean algebra is a lattice
in which for every element a there exists an element o’ such that

aAd = 0, ava =1;

* The results of this paper (with the exception of Theorems 5 and 10) were com-
munieated at Professor Mostowski’s seminar in the Mathematical Institute of the Polish
Academy of Sciences, Warsaw, in October and November 1966.

() Cf. Kripke [4].
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clearly every Boolean algebra is a pseudo-Boolean algebra with
adb=avh and —a=a'. The meet and of the elements a,d will
often be denoted by ab.

1. Coproducts. A lattice L is said to be the coproduct of lattices I*
and L, if there exist homomorphisms 4,: Ly —L and 4y: L,—L such that
whenever hy: Ly »L* and hy: L, ~L* are homomorphisms into a lattice L+
there exists a unique homomorphism.h: L -—+L* such that hy = h o4, and
hy=h oty

L~ s T,

N
hi
O\, ¢ i s
\:L L* }Z

The existence and basic properties of the-coproduct may be derived
from results in general algebra.

THEOREM 1. Any two lattices L, and L, have a coproduct L which is
unique up to isomorphism; the coproduct L is generated by the union of
the tmages of the mappings 4,2 Ly ~L and i Ly—>L and if Iy and L, are
non-degenerate then these mappings are injective.

Proof. Every equational class of algebras has coproducts. Indeed,
using a construetion of Sikorski [7], it can be shown that a class of algebras
has coproduets if it has free algebras and is closed under the formation
of homomorphic images. The uniqueness of the coproduct I can be proved
in any class of algebras. So, too, can the fact that 4,(Ly) v (L)
generates L. To prove that ¢, is injective, let hy: I, —L; be the identity
and let h,: L,—>L; be any homomorphism (2). We know that there exists
a homomorphism h: L L, such that % o4, = hy; sinee I, is injective,
50 t00 is 4;. A similar argument shows that ¢, is injective, and this com-
pletes the proof.

If we agree to restrict our attention to non-degenerate lattices, then
in view of Theorem 1 we may always suppose that the lattices L, and L,
are sublattices of the eoproduct L.

An explicit construction for the coproduct may be given as follows
(cf. Sikorski [7]): if L, and L, are identified with suitable lattices of sets
then their coproduct I may De identified with the lattice of sets generated
by the sets of the form A4, x 4, where 4, e I, and A, e L,. It is also of
interest to note the following algebraic characterization of the coproduct
which was communicated to the author by W. Holsztyfiski: a lattice L
is the coproduct of its sublattices I, and L, if and only if it is generated

(*) There exist homomorphisms hy: Ly >, in virtue of the prime ideal theorem.
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Dby their union and for any elements a;, b, ¢ L, and a,, b, ¢ L, such that
Ay < b,vb, we have a; < b, or a, < b,.

2. The lattices [D],. Let D be an arbitrary lattice and let B be
a finite chain with » > 2 elements. The coproduct of the lattices D and B
will be denoted by [Dln.

We suppose that F consists of the elements

(1) O=¢ <6, <..<p1=1.

If a lattice L containg D and F as sublattices, then by a monotone rep-
resentation (w.r.t. D and B) of an element x ¢ we mean a represen-
tation of the form

=1

(2) o=\ &ie; (B> .. = Gp),
=1

where G, ..., n-1€D. If ® and y have monotone representations
n—1 n-=1 . . . .

2=\ @eandy = bieq, then it follows by means of the distributive
=1 =1

law and (1) that zvy and #Ay have monotone representations

n—1
LVY = \/ (aivbi)es,

1=1

(3)

n-1

oAy =V (aAbi)e.
i=1

We now determine the structure of the lattice [Dls.

THEOREM 2. If a lattice L contains D and B as sublattices then L is
isomorphic to [Dln if and only if every element of L has a unigue monotone
representation w.r.t. D and E.

Proof. If § is the set of all elements of [D], which have monotone
representations, then we see from (3) that § is a sublattice of [Dls.
Since § includes D and F it follows from Theorem 1 that § coincides
with [D]y; hence every element of [D], has a monotone representation.
By the defining property of [Dl], there exists for each 4(i =1, ..., n—1)
a unique homomorphism Dy: [ D], —D such that D; reduces to the identity
on D and
1 i<k

0 ik (k=0,1,..,n—1};

Dier) = {

operating on (2) with D; we obtain
I)i(m) = i (7; == 17 sy 77'—1) )
which implies that the monotone representation is unique.

From. (3) we see that any two lattices in which every element has
a unique monotone representation are isomorphic. Hence if every element
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of L has a unigue monotone representation then it follows that I ig
isomorphic to [D],. This completes the proof of the theorem.

As an immediate consequence of Theorem 2 and the relations (3) we
obtain the following construction for [D],:

THEOREM 3. The lattice [D], s isomorphic fo the lattice of all formal
expressions (2) combined according to (3). Equivalently, [D], is 1somorphic
to the sublattice of D*~1 consisting of all elements (ay, ..., Gy_1) Such that
[ N

Since every distributive lattice. may be represented as a lattice of

" open sets, it follows from Theorem 2 that every [D], may be represented
as a lattice of lower semicontinuous n-valued functions.

3. Post algebras and pseudo-Post algebras. If D is a Boolean algebra
then [Dln is called the Post algebra of order # over D. Similarly if D is
& pseudo-Boolean algebra then [D], is ealled the pseudo-Post algebra
of order n over D. Clearly every Post algebra is a pseudo-Post algebra,
but not conversely. . .

The above definition of Post algebras is equivalent to those appearing
in the literature, as can be seen by comparing Theorem 2 with results of
Traczyk [8]. We note that Chang and Horn [1] define a generalized Post
algebra as the lattice of all continuous functions from a Boolean space
to a diseretely topologized chain; if we consider only chains with 0, 1 this
can be shown to be equivalent to saying that a lattice is a generalized
- Post algebra iff it is the coproduct of a Boolean algebra and an arbitrary
chain.

The operations Dy, ..., D,_; and the constants €y O1y vrey €y ATE
defined in any lattice [D],. We show now that if [D]x is a Post algebra
or pseudo-Post algebra then the pseudo-Boolean operations D and — are
also defined. The fact that — is defined in any Post algebra was noted
by Epstein [3]. :

TreorEM 4. Bach pseudo-Post algebra [D]s is a pseudo-Boolean algebra

containing D and B as pseudo-Boolean subalgebras. The following identities
hold (i=1, .., n—1):

() D@D 9) = A (D)2 Dy,
(5) Di(—z) = — Dy(z) .

Proof. Suppose z,ye[D], have monotone representations

n-1 n-1
. ‘Vl aie; and y = \/ bie;. If we let
i= i=1

=N (;Dby) (i=1,.,0-1),

=1
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then there exists an element =z with the monotone representation
z_—_ﬂ\_/1 ciei. We shall prove that z= max{u: uAz <y}; ie., for any
i=1

welDln,y
ULz UANTSY .
If u < 2 then for each i=1,..,n—1 we have

Diu) < Dif2) = A (Di(@) D Di(y)) < Du(@) D Du(y) 5

j=1
from this it follows that : »
Diura) = Du)ADy(z) < Dily) (¢=1,..,2—1),
0 that wAz < y. Conversely if uaz <y, then for each j
Dj(w) A Dyl@) < Dy{y);
it follows that for each j <14
Di(u) < Dy(u) < Di(2) D Dily)
and so we have
Diu) < Difz) (i=1,..,0—1),
from which we conclude that u <z
We have proved.that [D], is pseudo-Boolean. If #,y « D then zeD
and similarly if @,y ¢ E then z ¢ E; hence D and F are psgudo-Boole:un
subalgebras and it is consistent to write 2 = w‘.’)g./. Equatu?n (4) holds
by definition, and we obtain (5) on setting y = 0 In (4). This completes
the proof.
%‘or many purposes Boolean algebras and pseudo-I'BOf)lean algebras
are best considered as algebras B = (B, A, V, D ,—)- Similarly we may
consider Post algebras and pseudo-Post algebras as algebras

L= (L, A, V,D,—, Dy iy Dn; 0,1, -ey en1) -

The one-element algebra will also be regarded as a Post algebra, although
the underlying lattice is degenerate. ) )

We mayv ask to what extent the additional operations are u.mquely
determined.ult is clear that if D and EF are given t“hen all operations are
uniquely determined. A more precise answer is given by the followmgt
theorem, part of which was obtained by Dwinger [2], whose argumen
may be extended to give an alternative proof. .

TurorEM 5. If L is a Post algebra then the order n and the ope’ra»tq:ons
of I are uniquely determined. If L is a pseudo-Post algebm‘ over a Igwe'n,
pseudo-Boolean algebra D then the order n and the operations of L are
uniquely determined.
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Proof. We note first that the operations D and — are uniquely
determined in any pseudo-Boolean algebra. If L iy a Post algebra over
the Boolean algebra D, then D coincides with the set of elements of the
form —; indeed by (5) —&% = —Dy(x)e D, while conversely if zeD
then 2 is of the form —# where & = —z. Thus D is uniquely determined,
and it suftices to prove the second part of the theorem. To do this we
have only to show that the elements of F are uniquely determined.
However this is a consequence of the following assertions: (i) ¢, = 0;
(ii) if e;, exists and is less than 1, then e; is the least 4 ¢ I which satisfies
the condition '

(6) forall ae D, if #<ave;; then a=1.

The proof of (ii) is as follows. If ¢; << aVe;—; where a ¢ D, then operating
on both sides of the inequality with D; we obtain a = 1, so that o = ¢
satisfies (6); on the other hand if # satisfies (6) then setting a = D)

n—1
and using the fact - that 2=\ Dy(@)e;< eivDi(x) we obtain
f=1

7= .
Di(z) =1 or x> e;, so that ® = e;, is the least # which satisfies (6).

This completes the proof of the theorem.

We observe that the order n and the operations of a pseudo-Pogt
algebra are not uniquely determined in general. For example, the co-
product of chains D and F of lengths m and n respectively may be con-
sidered either as the pseudo-Post algebra of order n over D or the pseudo-
Post algebra of order m over Z.

4. Equational characterization. We now give simple equational charac-
terizations for the class of Post algebras and the clags of pseudo-
Post algebras. The class of Post algebras was characterized by means of
equations in Traezyk [9]. We note that the clags of pseudo-Boolean
algebras (L, A, v,D, —) is equationally definable (cf., for example, Ra-
siowa and Sikorski [5] p. 124). If L is a pseudo-Boolean algebra we denote
by 0,1 the uniquely determined zero and unit.

THEOREM 6. In order that I = (L, A 1 V3 —y Diy ey Dyy,y 6, 4y o
w1 €n—1) Should be a pseudo-Post algebra of order w it is necessary and

sufficient that L be a pseudo-Boolean algebra and that the Sollowing identities
hold (i=1,...,n—1):

(M Di(zry) = Dilw) A Dily)

(8) Di(wvy) = Dyw)v Dily) ,

(9) Di(Du()) = Di(a) (h=1,..,n-1),
(10) —Di(ek)?—{zj ;f;: (k=10,1,..,n-1),

icm®
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The necessory and sufficient condition that L be a Post algebra is oblained
if we add the identity
(12) . Dy(@)y —Dy(x) = 1.

Proof. In each case the necessity of the condition is clear; Ale’c us
prove the sufficiency. Suppose I is non-degenerate. Setting # = ey in (11)

n—1
and applying (10) we see that eg = i\il Difer)er> epy k=1, ..., 0-1);

ituting @ = y = 11n (11) we obtain ¢, = 0 and e, = 1.
substituting @ = ¢ resp. # = 1 in ( X
gliioce 0 # 1 it follows from (10) that the e; are all distinct; thus we have

0= << o<etpy=1,

and 5o the chain B is a sublattice of L. '

By (9) the mappings Dy(i = 1-, ey n—1) h.ave a common.lmagt-sD Iis
Since by (7), (8), (10) these mappings are lattice ]10momorph]smls), o
a sublattice of L. We show that D is closed upder 3: I:x' @, :g)/ € : x‘<
D) = =z and Di(y) = Y; applying D; to the inequality (zD9)rz<y
we obtain D@D y)ar <y, e

DisDdy)y<ady (i=1,..,n-1);

i is 1 i in Dy(xD y) < Di(zD y), and so
lyine Dy to this inequality we obtain . i
3}3&}’3 yb) :k... = Dp-r(zD y); hence by (11) we obtain Dy = Di(lm ?_y)
e}) Thus D is a pseudo-Boolean sublattice of L, or a Boolean sublattice
if (12) holds. 1
i kY dex) = Div
Operating on (11) with D; we have Df(m) >k\=/1 D) Dilex) (@),

s0 that Dy(#) = ... 2> Dy_1(x). Hence (11) gives a monotone representation
n—1

for each element of L. If s =YV

=1

n applying D we obtain D 4 :

i(l); friofx%:;ne 11*}31351‘95511’5&tion is unique. By T}leorgm 2 it follo:r‘s1 :fhlzz ‘il}bl;

the coproduct [D], of D and E. The operatl?ns in [D]y wer ey

means of certain properties which are a%?] ezizﬁqllalzl ;1:1(2 t(;gll;l mﬁd oy D
ions in L. Since the operations in [D]s . -

zﬁgragjzﬁsfoﬁjvs that the ogemtions in L coincide with the;r cour;teg)a.ri;z

in [Dl,. Hence L= (L, A,V;2,—Duyies Dy, 30‘2)0}, i;,c(;;lplet&

2 pseudo-Post algebra (resp. Post algebra), and the pr e

We note that it is possible to reduce the nur'nber _t(?f primi

erations for pseudd-]?ost algebras in view of the identities

aie; is & monotone representation

(#)=ai (=1, ..,n—1), and s0

Dy(@) = Dp—1(es D @) (i=1,. n—1) .
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However this would make the equational characterization more com-
plicated.

5. Representation theory. The simplest pseudo-Post algebra is the
Post algebra B = [2],. Beginning with this algebra we can construct
new pseudo-Post algebras as follows. Let A be any partially ordered set;

Cons_irler the set B of all families {@}1¢4 in B which satisfy the followin
condition for all 4, u e A: g

(13) @ <@, Wwhenever A< pu.
We define the operations in E“ by setting
{a}n{ba} = {anby},
{a}vib} = {avd;}
(@} 2 {bi} = { inf (0,D0,)},
N=A

—{w} = {img(“au)}y
=2

Di{a;}) = {Dz‘(“a)}

€y = {C’i}

(i=1,..,n-1),
(t=0,1, .., n—1).

) By Theorem 6 we see that B“ ig indeed a pseudo-Post algebra: it
is or}ly necessary to verify that B ig a pseudo-Boolean algebra and t].lat
the identities (7)~(11) hold. Clearly B“Y = [2], where 24 i the péeudo-
Boolean zflgebra of all elements of 24 which satisfy (13). If A is discretely
ordered (i.e. 2 <y only if 1= &) then B ig simply the Post algebra B*
;)th :;111f Oﬁ -vaylued functions on A, with the operations defined point-wise
Owing representation t ‘ ir, ¥ i i .
oy a‘1gebm;gr bypwme [1031. theorem was firgt proved in the case of
TEEOREM 7. Every pseudo
Post algebra of the form B
algebra of the B,

-Post algebra can be embedded in a pseudo-
- Brery Post algebra can be embedded in a Post

Proof. It is easy to see that if D
then any pseudo-Boolean homomor
& unique manner to a
given by

apd D’ are pseudo-Boolean algebr-as,
phism ¢: DD’ can be extended in
pseudo-Post homomorphism % [Pl —[D',

n—

1
h(z) = 1'\=/1 <p(D¢(aa)) €:;
further it is clear that % is o

1 ne-one iff ¢ i -
first part of the Theorem it o that a0 prove fhe

suffices to show that any pseudo-Boolean

icm
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algebra D can be embedded in a pseudo-Boolean algebra of the form 2t
Tet A be the set of all prime filters 1 of D, partially ordered by inclusion.
If ¢, is the characteristic function of the set 1, define
p(®) = {gal@) e

Obviously ¢ is a lattice homomorphism D—>2"; let us show that it
preserves D. This amounts to showing that #Dy e iff for all u= 3,
% e p implies y e x. In one direction this is trivial; for the other we note
that if Dy ¢ 2 then the filter generated by 4w {&} is disjoint from the
ideal generated by y and so may be extended to a prime filter u mot
containing y. Thus ¢ D2 is a psendo-Boolean homomorphism,
For any two distinet elements @, y e D there exists a prime filter 2 which
contains exactly one of # and y; hence ¢ is one-one. Thus the first part
of the theorem is proved. If D is Boolean then A is discretely ordered,
and so E“Y = E"; this proves the second part of the theorem.

6. Many-valued propositional ' calculi. An #%-valued propositional
caleulus is set up in the following way. We choose a set ¥ of proposi-
tional variables and a family {o}er of connectives. In addition we take
E = {eg, 1, -, en—1} a5 the set of truth-values and for each connective
w; we choose a corresponding truth-function, which we also denote by
;. The set of formulas will be denoted Dy §, and particular formulag
will be denoted by a, f, ...

We now define classical and intuitionistic validity for formulas of
the n-valued propositional calculus. This will be done in such a way
as to minimize the differences between the two definitions. It will be
clear that the definition of classical validity which we give is equivalent
to the usual one, and that the definition of intuitionistie validity is
equivalent to that of Kripke [4] when n = 2.

If A is any set, then a family {hz}1cq of mappings hx §~F is said
to be a classical valuation if for each o; we have for all Ae A

h‘;'(o)t(a, /é, )) = 01!(7?'1.((‘)7 (), ) .

A formula a8 is clagsically valid if for each classical valuation {fi}iea
we have hy(a) =1 for all Ze A.

If 4 is any partially ordered set, then a monotone (%) family {Fi}iea
of mappings h;: §-F is said to be an intuitionistic valuation if for
each w; we have for all e 4

ha(wa, By o))

inf w(hy(a), ha(B), ) -
=2

(*) The family {k,}, ., is said to be monotone if for each a ¢ § we have k,(a) < k{a)
whenever 4 < u.
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A‘formula a ¢ 8 iy intuitionistically valid if for each intuitionistic valy.
ation {h;};e4 we have h{a) =1 for all 1le A,

' “‘Ae shall limit our attention in what follows to the case where the
primitive truth functions are the operations of the Post algebra E:

(14) Ay V,D,—,Dl,...,Dngl,eo,el,

There is no e_ssential loss of generality in this, since it can be shown. that
any f(.n'l.nula, 1s classically and intuitionistically equivalent to some formula,
containing only the connectives (14). :
If we regard § as an algebra equi i i
We 1 : quipped with the operations (14), the
the def}mtlons of‘ classical and intuitionigtic validity may be f(il‘m)l,llateg
algebraically. It is easy to see that the equation

h(a) = {hx(a)}sea

determines a one-one correspondence bet i i
. ween clagsical (intuitionigtic
va»luai{;mns and homomorphisms h: § B (: 8 > B, Heéce a ;Ooilﬁjllg
ael is classically (intuitionistically) valid iff for each (partially ordered)
set A we have k(a) =1 for every homomorphism %: 8 >EYh: §>F
An application of Theorem 7 yields the following result: '

TEEOREM 8. For a formuls a io be classi imtuitions
. 2 f assically (intwitionistically) valid
it is necessary and sufficient that Jor each Post algebra (pseudo-Post J(/L%gebm)

L we have h(a) = 1 for every homomorphism h: 8 ~1I.

mea“efsh@ now characterize classical and intuitionistic validity by
0§ o6 axioms. Let (A1)-(A10) be a system of axioms for Heyting’s
propositional caleulus; we add the following schemes ® @E=1 n—1):
5 ey B—1):
(All)  Dyanp) = Di(a)ADi(B)
(A12)  Di(avp) = Di(a)v Dy(p),

(413)  Dy(aDp) = A

ey Opoy .

3

A (Di(a) D Dy(p))

(A1) D=0 = ()

(A15)  Dy(Dy(a)) = Dy(a) (G=1,..,n-1),
(A16)  Difey)
(A1) —Difey)

(A18) a= V {Di(a)/\ gi) s

i=1
(A19)  Dysl@)d Dyfa) (0 < j < n—1),

(A20) Dl(a)v—Dl(a).
) .We take (A1)~(A19) a
ositional caleulus and (A1)~(
(!) The formula (a=

(=1,..,n-1),
(G=0,..,4-1),

8 axiom schemes for the intuitionistic prop-
A20) for the classical propositional ealculus.

B) is an abbreviation for the formula (@D BABDa).

icm®

Post algebras and pseudo-Post algebras 143

In either cage the rule of inference is modus ponens. We now prove the
completeness of these axiomatizations.

TaEorREM 9. A formula is intuitionistically valid iff it is derivable from
(A1)~(A19); a formula is classically valid iff it is derivable from (A1)—(A20).

Proof. It is easy to see from Theorem 6 that any formula derivable
from (A1)-(A19) is intuitionistically valid. Consider the relation a~p
which holds when (a = f) is derivable from (A1)-(A19). It can be shown
that this relation is a congruence on § and that the quotient algebra 8/~
is a pseudo-Post algebra. By Theorem 8 the natural homomorphism

© 88~ carries any intuitionistically valid formula into the unit element

of §/~; hence every intuitionistically valid formula is derivable from
(A1)-(A19). This proves the first part of the Theorem; the second part

is proved similarly.

We now describe a transformation a«—a* of the formulas of the
n-valued caleulus into formulas of the two-valued calculus such that o is
clagsically (intuitionistically) valid iff o* iy classically (intuitionistically)

valid in the ordinary two-valued sense. .
We arrange the propositional variables of the n-valued calculus in

a sequence P, ¢, ... and similarly we arrange the propositional variables
of the two-valued calculus in a sequence
(15) Piy ooy pn—ls Gis oeesy Qn——lg

The set S, of formulas of the two-valued propositional calculus is the

least set which contains each member of the sequence (15) and which

contains aAf, avf,aDp and —a whenever it containg o and f. )
The mappings 8 S—8 (i=1,..,n—1) are defined inductively

as follows:
8i(P) = PaA . AD1
0i(q) = @A A,

di(anB) - i) A Bi(B) 5
de(av ) = di(a)Vvi(B) ,

5(ad )= A\ (Be) D 8(6) 5
=) = —4(a)
du(Dya) = b(a)  (J=1, n—1),

1 i<

‘51(31)*—‘{0 P> (j=10,1,..,2-1).
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Here 1 and 0 may be taken to be the formulas (9.2 py) and (BLA—p))
respectively. ‘

TeEOREM 10. 4 formula o of the n-valued propositional caleulus s
dassically (intuitionistically) valid iff the corresponding formula On—1(a) of
the two-valued propositional caleulus is classically (intuitionistically) valid,

Proof. It is easy to check that for any Boolean or Ppseudo-Boolean
algebra B there is a one-one correspondence between homomorphismg
ki 8B and homomorphisms fi 8-+[Bly determined by the relation

Di(f(a)) = h(de(a))  (i=1, ey 1) .

Hence the result follows from Theorem 8.

Theorem 10 gives a solution of the decision problem for the classical
and intuitionistic n-valued propositional ealeulus. It is also eagy to deduce
the following analogues of some well-known properties of Heyting’s
propositional calculus.

COROLLARY. If a and B are formulas of the n-valued propositional
caleulus then a v g is intuitionistically valid iff either a or f is mtuitionistically
valid. The formula —q is classieally valid iff 4t is intuitionistically valid.

Those formulas which contain only the connectives Ay V,D, — are
common to all x-valued propositional caleuli; we ghall denote by J,
Tesp. Ko the set of all such formulag which are intuitionistically resp.
classically valid in the n-valued propositional caleulus. From the fact
that every pseudo-Boolean algebra is embedded in a pseudo-Post algebra
while conversely every pseudo-Post algebra is itself pseudo-Boolean, it
follows that each Jn coincides with the set of formulas provable in Heyt-
ing’s propositional caleulus. In contrast the setg K, form a strictly de-
creasing chain X, K, D ...

We note that one can set; up classical and intuitionistic #-valued
predicate caleuli which may also be studied by algebraic methods. However
it will be clear from the above that this would merely involve a straight-
forward generalization of the corresponding two-valued theory.
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