3. (δ', δ) satisfies condition (ii). Suppose $|p - q| < f_{\delta'}(a)$. Choose $a' = a$ and a'' so that $0 < 2f_{\delta'}(a'') < f_{\delta'}(a) - |p - q|$

4. Finally, $F(a, b) = 0$ for $0 < a, b < 1$. Suppose a, b, c given. Choose x so that $f_{\delta'}(2x) < f_{\delta'}(x) + f_{\delta'}(x)$. Then p, q, r such that $|p - q| < f_{\delta'}(x)$, $|q - r| < f_{\delta'}(x)$, and $|p - r| > f_{\delta'}(2x)$.

The author wishes to express his thanks to Professor T. Nishihara for his help and encouragement during the preparation of this paper.

References

WAYNE STATE UNIVERSITY

Repas par la Redaction le 14. 10. 1966

Sequents in many valued logic II *

by

G. Rousseau (Leicester)

The notions of validity in classical and intuitionistic logic may be defined semantically by the methods of Tarski [5] and Kripke [2] respectively, if we replace the two truth-values occurring in these definitions by a system of M truth-values, we obtain what may be referred to as classical M-valued logic and intuitionistic M-valued logic respectively. Gentzen [1] gives sequent calculi LK and LJ for classical and intuitionistic logic. The present work is concerned with the many valued analogues of these calculi. We shall limit our attention here to propositional logic; some remarks about predicate logic will be made at the end of the paper. We show that for each choice of M-valued truth-functions there exist corresponding sequent calculi LKM and LM for classical M-valued logic and intuitionistic M-valued logic respectively.

The relation between these calculi is similar to that between LK and LJ.

We note that the calculus LKM differs from the sequent calculus constructed in [3] (§1) in that the notion of sequent is more restricted.

We take $M = \{0, 1, ..., M-1\} (M \geq 2)$ as the set of truth-values and consider a fixed system of M-valued truth-functions $f_{n}, M^{n} \rightarrow M$ ($k = 1, ..., w$). We also choose a set \mathfrak{A} of k atomic statements and connectives P_{k} of degree r_{k} ($k = 1, ..., w$), thus determining the set \mathfrak{A} of statements. We denote statements by the letters $a, b, c, ...,$ and finite sets of statements by $\Gamma, \Delta, ...$

A sequent is an expression of the form

$$(1) f_{n}[\Gamma_{1}] ... [\Gamma_{M-1}] [\Delta_{1}] ... [\Delta_{M-1}]$$

where for each $a \in \mathfrak{A}$ the set $\{w : a \in \Gamma_{w}\}$ is the complement of an interval of M. Thus if $a \in \Gamma_{w}$ then either $a \in \Gamma_{w}$ for all $w' < w$ or $a \in \Gamma_{w'}$ for all $w' > w$. Sequents will be denoted by the letters $\Pi, \Sigma, ...$. We observe that the notion of sequent as here defined coincides with that used in [3] only in the case $M = 2$.

* This paper is a sequel to [3]. We note that p. 32 line 18 of [3] should read: $a \rightarrow \mathfrak{A} \cup (\forall a \rightarrow \mathfrak{A}) \rightarrow \mathfrak{A}$.
Proof. Any subset S of M' can be expressed as the union of at most $\lfloor (M' + 1)/2 \rfloor$ Cartesian products of intervals of M. Indeed, if M is even then M' is the sum of $\frac{1}{2} (M' - 1)$ two-element products of intervals, and if M is odd then M' is the sum of $\frac{1}{2} (M' - 1)$ two-element products of intervals together with a single one-element set; in either case M' is the sum of $\lfloor (M' + 1)/2 \rfloor$ one- or two-element products of intervals; we obtain the desired representation of S by forming the intersections of S with each of these one- or two-elements products of intervals, since each such intersection is obviously a product of intervals. The first part of the lemma now follows by an application of this remark to the sets

$$S = \{(x_1, \ldots, x_n) \in M': f_d(x_1, \ldots, x_n) > m\}$$

and

$$S = \{(x_1, \ldots, x_n) \in M': f_d(x_1, \ldots, x_n) < m\}$$

respectively. The set $S = \{(m_1, \ldots, m_n); m_1 + \ldots + m_n = 0 \mod 2\}$ has $\lfloor (M' + 1)/2 \rfloor$ elements but includes no Cartesian product of intervals with more than one element; from this we deduce that the bound $\lfloor (M' + 1)/2 \rfloor$ is best possible.

Let f_d be a truth-function of degree $r = r_k$ and let m be a truth-value. For any $x_1, \ldots, x_n \in \Gamma$ the sentence

$$\Gamma_k \models \\Gamma \models \text{true}$$

will be denoted by $\mathcal{H}_k(\eta_1, \ldots, \eta_n) \models \eta_i \models \Gamma$ or by $\mathcal{H}_k(\eta_1, \ldots, \eta_n) \models \eta_i$.

We now describe the rules of the weakest calculi L_kM and L_kM. Both calculi have the following "weakening" rule:

$$\Gamma \models \Sigma \models \Gamma_k$$

In addition both calculi have the following introduction rules for each P_k and m:

$$\begin{align*}
(P_k, m)^- &\vdash \mathcal{H}_k(\eta_1, \ldots, \eta_n) \models \eta_i \models \Gamma \\
P_k &\vdash \mathcal{H}_k(\eta_1, \ldots, \eta_n) \models \eta_i \models \Gamma \\
(P_k, m)^* &\vdash \mathcal{H}_k(\eta_1, \ldots, \eta_n) \models \eta_i \models \Gamma
\end{align*}$$

The only difference between the two calculi lies in the fact that in L_kM the rule $(P_k, m)^*$ may be applied unrestrictedly whereas in L_kM we require that

$$\mathcal{H}(0) \models \mathcal{H}(1) \models \ldots \models \mathcal{H}(M-1)$$

A sequent Π is said to be fundamental if there exist a statement σ such that σ occurs in every place of Π. In either calculus the provable
order used in this proof is the reflexivity; this property however is essential.

Theorem 2. A sequent is provable in \mathbf{LJ}_M if and only if it is intuitionistically valid.

Proof. In view of what has been proved already, it suffices to show that every valid sequent is provable.

If Ω is an unprovable sequent then there exists an unprovable sequent Ω' such that

$$\Omega \subseteq \Omega'$$

and such that for each connective F_k and each truth-value m,

$$\text{if } [F_k a_1, ..., a_n] \subseteq \Omega' \text{ then } H_i(a_1, ..., a_n) \subseteq \Omega'$$

This may be seen as follows. If $[F_k a_1, ..., a_n] \subseteq \Omega$ then, because Ω is unprovable, there exists $i \in I^-$ such that $\Omega H_i(a_1, ..., a_n) = \Omega'$ is unprovable; now apply the same argument to Ω' with respect to a different sequent $[F_k a_1, ..., a_n] \subseteq \Omega'$; continuing in this way we obtain a sequent $\Omega, \Omega', \Omega'', ..., $ which must terminate after a finite number of steps in a sequent Ω'' with the desired properties (7) and (8).

If Ω is an unprovable sequent and $\Sigma = [F_k a_1, ..., a_n] \subseteq \Omega$ then there exists an unprovable sequent Δ^Σ such that

$$\text{if } [a] \subseteq \Omega \text{ then } [a]^\Sigma \subseteq \Delta^\Sigma (a \in \mathbb{S}, i \in IM),$$

and such that

$$\text{if } [a] \subseteq \Omega \text{ then } [a]^\Sigma \subseteq \Delta^\Sigma$$

This is achieved by Ω and Δ^Σ with respect to a different sequent $[F_k a_1, ..., a_n] \subseteq \Omega'$; continuing in this way we obtain a sequent $\Omega, \Omega', \Omega'', ..., $ which must terminate after a finite number of steps in a sequent Ω'' with the desired properties (9) and (10).

Let Π be the sequent whose i-th place is $\Omega(0) \cap \cap \Omega(i)$ for each $i \in IM$; since Ω is unprovable and $\Pi F_k a_1, ..., a_n \subseteq \Omega'$ it follows that $\Pi^\Sigma F_k a_1, ..., a_n \subseteq \Omega'$ is unprovable; but then since Π satisfies the restrictions, we see that $\Pi^\Sigma F_k a_1, ..., a_n$ is unprovable for some $i \in I^+$; the sequent $\Delta^\Sigma = \Pi^\Sigma F_k a_1, ..., a_n$ has the desired properties (9) and (10).

Let Π be an unprovable sequent. We construct a “tree” A and a mapping $\lambda \rightarrow \Pi_i$ which associates with each node λ an unprovable sequent Π_i. The construction proceeds by levels: at the 0-th level we place a single node λ_0 with $\Pi_0 = \Pi^*$; if λ is at the k-th level and $\Sigma = [F_k a_1, ..., a_n] \subseteq \Pi_i$ then we connect λ to a node $\mu = (\Sigma, (k+1))$ at the $(k+1)$-th level and set $\Pi_\mu = \Pi^\Sigma$. The set A is thus partially ordered in the obvious way.

By (7) and (9) we see that for all $a \in \mathbb{S}$ and $m \in IM$

$$\text{if } [a] \subseteq \Pi_\mu \text{ then } [a] \subseteq \Pi_m \text{ whenever } \lambda < \mu.$$
No H_a is fundamental and so it is possible for each $a \in \mathbb{M}$ to define $v(a)$ as the least m such that $a \in H_a[m]$. The family $(v(a))_{a \in \mathbb{M}}$ is an intuitionistic valuation in view of (11).

We shall prove that for all $a \in \mathbb{M}$

\[(12) \quad \text{if } a \in H_a[m] \quad \text{then } v(a) \neq m \quad \lambda \in A.\]

This holds for $a \in \mathbb{M}$ by construction. Suppose (12) holds for a_1, \ldots, a_r and consider $a = F_{a_1 \ldots a_r}$. If $a \in H_a[m]$ then either $[a]_{\lambda} \subseteq H_\lambda$ or $[a]_{\lambda} \subseteq H_\lambda$.

In the first case we have by (11)

\[|F_{a_1 \ldots a_r}| \subseteq H_\lambda \quad \text{for all } \mu \geq \lambda.\]

Hence, by (8), for all $\mu \geq \lambda$ we have $H_\mu(a_1, \ldots, a_r) \subseteq H_\mu$ for some $i \in I_\mu$.

Thus by inductive hypothesis we have for each $\mu \geq \lambda$

\[\bigvee_{i \in I_\mu} \left[v(a_i) \notin R_i^{j} \wedge \ldots \wedge v(a_{i+1}) \notin R_{i+1}^{j} \right].\]

We deduce by (4) that for each $\mu \geq \lambda$

\[f_\mu(v(a_1), \ldots, v(a_r)) > m.\]

Thus by (2) we have

\[v(F_{a_1 \ldots a_r}) > m.\]

In the second case $|F_{a_1 \ldots a_r}| \subseteq H_\lambda$, so by (10) we have for suitable $\mu \geq \lambda$

\[H_{\mu}(a_1, \ldots, a_r) \subseteq H_\mu \quad \text{for some } i \in I_\mu.\]

Thus by inductive hypothesis

\[\bigvee_{i \in I_\mu} \left[v(a_i) \notin R_i^{j} \wedge \ldots \wedge v(a_{i+1}) \notin R_{i+1}^{j} \right].\]

Hence by (5) we have

\[f_\mu(v(a_1), \ldots, v(a_r)) < m,\]

and so by (2)

\[v(F_{a_1 \ldots a_r}) < m.\]

Thus in either case we have $v(a) \neq m$, and this completes the proof of (12). If H_a were valid then H_a would be valid; hence for some $a \in \mathbb{M}$ and $m \in \mathbb{M}$ we would have

\[v(a) = m \quad \lambda \in A.\]

which contradicts (12). We see therefore that every unprovable sequent is invalid, which was to be shown.

Theorems 1 and 2 solve the problem of constructing sequent calculi for classical and intuitionistic propositional logic. We may consider the same problem for predicate logic. From [3] it follows that for each choice of M-valued truth-functions and quantifiers there exists a calculus of sequents for the corresponding classical M-valued predicate logic. However it remains open whether a similar result holds for intuitionistic M-valued predicate logic. In certain cases the result does hold — e.g. for the quantifiers $\exists X = \sup X$ and $\forall X = \inf X$.

References

