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Introduction. Consider a category K and denote by  the set of
objects and by Mor[X, ¥]—the set of corresponding morphisms
(see [6])-

We define the quasiorder < in £0:

Xgl’? V feMor[Y, X].
P

We shall refer to this relation as the natural order in K.
The relation < induces the equivalence relation =:

Xz—YﬁXQY/\YéX.

The decomposition of the set  into the equivalence classes with
respect to the relation = will be called the natural classification in K.
It i clear that this concept is closely connected with the ideas of
the famous Erlangen Program of Felix Klein (see [9] compare also [1]).

Bxamprms. 1. Let G be an arbitrary group of transformations of
a given space M onto itself. Consider the category Kg, the objects of
which are subsets of M. Let f e Mor[X, Y] whenever f maps X onto Y
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and can be extended to j e« . Obviously the natural classification in I,
is a Klein’s classification.

9. Let R be the category, which has the compact ANRs as objects
and r-maps as morphisms. By means of the nmatural classification we
get 7-types (see [1] or [3], p. 17).

3. In the category of groups with r-homomorphisms as morphisms
(see [3], p. 32 or Section 1 of thig paper) the natural classification gives
us r-types of groups, ie. the classes of r-equal groups.

The natural order induces a relation <:

X< ¥ = XY A~Y£X).

Moreover, we can introduce the notion of neighbours in IC, i.e. such
two objects X, ¥ 2 that X < ¥ and no object Z e 2 satisfies the con-
dition: X < Z< Y. Then X is said to be the left neighbour of ¥, in
symbols: X <7

In particular, in the category K¢ (ex. 1) there are mo neighbours
at all; in the category R (ex. 2) we get r-neighbours (see [3], p. 200).

In this paper we are interested in some categories of topological
spaces with h-maps as morphisms. The notion of A-map is due to
J. H. C. Whitehead. The map f: X—Y is said to be an h-map provided
that it has a right homotopy inverse, i.e. such a map ¢: ¥-+X that fg~1yp
(1 denoting an identity map of the space ¥). The natural order in such
categories is called &-domination or h-order and is denoted by =; the

13

relations =, <, < are denoted by = <7, < respectively. The natural
o u 1

classification in such categories is called &-classification; the equivalence
class of a given space X with respect to the relation == is said to be an

h-type of X and is denoted by [X]. *

These notions are closely related to the notion of homotopy type
introduced by Hurewicz. Two spaces X and Y are said to be homotopically
equivalent (in symbols X ~¥) provided that there is a map fi XY
having a two-sided homotopy inverse. Given a space X we shall denote
by [X] the homotopy. type of X, ie. the class of gpaces homotopically
equivalent to X. Obviously [X]C[X]s, but the converse inclugion does
not hold necessarily (see [5] and [15]). Some positive results are formu-
lated in Section 3.

Section 1 deals with the theory of groups. The notion of admissible
class of groups is defined there; it makes possible to distinguish the largest
class of spaces which can be h-classified and %-ordered by means of
Whitehead’s theorems (see [16] or Seetion 3 of this paper).

The main results can be found in Sections 4-10.

Ird
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1. Admissible classes of groups. This section is of auxiliary
character. It containg some simple group-theoretical statements which
will be usefull in the sequel. The author did not find them quoted ex-
plicitely in the literature.

Let us recall that, given two groups %, B, a homomorphism p: A-—-B
is said to be an 7-homomorphism whenever there is a homomorphism
p: B-UA such that @p is an identity. If such an 7-homomorphism
does exist, we refer to the group B as an r-image of A (in sym-
bols B < A).

r

To express that the groups % and B are isomorphic we write U~ B.

Now, let us consider a class & of groups satisfying the following
three conditions:

(G-1) If A e ® and B <Y, then B 6.

(G-2) A, Be® and A = B, then A~ B.

(G-3) £ A, Be®, A~B and ¢: A—B is an r-homomorphism,

then ¢ is an isomorphism.

‘We shall refer to such a class & as an admissible class of groups.

Given any admissible class @ we shall also use the letter G to denote
such a category which has the elements of ® as objects and r-homo-
morphisms as morphisms. Let us observe that the natural elassification in
such a category ® is a decomposition of & into classes of isomorphic
STOUpS.

ExampLE 1. Let G4 be the class of finitely generated Abelian groups.
It is known that

(1.1) An arbitrary group A e . is a direct sum of cyclic indecom-
posable groups: A= REx T .. xNE#, RN denoting a cyclic infinite
group, k>0 and ; (i=1, ..., u) being a group of order p7, where p;
are prime numbers and (p:, a;) # (pr, ar) for i 14'. Moreover, such
a decomposition is unique (up to isomorphism) (see [10]).

(1.2) If 9, B are two arbitrary Abelian groups and g: A—VB is an
r-homomorphism, then A~ B x kerg; (see [3], p. 33).

Applying (1.1) and (1.2) one can easily verify that

(1.3) The class ® 4 is admissible.

ExAMPLE 2. Let ®r be a class of finitely generated free groups.
Observe that

(1.4) The class ®p s admissible.

The proof of this remark is based on the following four statements:

(1) An r-image of any group U is isomorphie to some of its subgroups
(131, P- 32).

(2) Any subgroup of a free group is again a free group ([7], p. 96).
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(3) The rank (%) of a group A ¢ Gp determines this group uniquely
up to isomorphism and & free group of rank I iy freely generated by
any set of & elements which generate it (see [7], p. 109).

(4) If A« Gy and B :‘ 9, then o(B) < o(%).

The last property of the class Gp is an immediate consequence of
(3) and of the following argument:

Tor any group U an arbitrary epimorphism g: A—B transforms any
system of generators of the group 9 onto a system. of generators of B.

Remark. The class of all free groups with the countable set of
generators is not admissible, since it does not satisfy the condition (G-3).

By the properties (1.1) and (1.2) of the clags ®4 we obtain the fol-
lowing propositions concerning the y-order and #-neighbours in the
category ©..

1.3) If A, B e G, then

W < B <= there is such € e Gy that BrAXE.
(1.6) If A, B e G4 and ¢: B -3 s 7 - homomorphism, then
A< B« kerp is a cyclic indecomposable and non-trivial group.
r

1.7) If A, B, B' e« G4, then
AXBLUXB <= B < B,

r T

AXBrAX B <= BB,
UxB< AUXB <> B< B, AXB<UXY = B< Y.
r r r r
The theorem on uniqueness quoted above ([7], p. 109) implies the

following proposition on the category Gg:
(1.8) If A, B e GF, then A, B are v-comparadble and

A< B = oW+ = o(8B).

Finally, let us formulate a simple

(1.9) LEMMA ON HOMOMORPHISMS. Let he: Wy—>By be a homomorphism
of ‘@ group Wi into By for i=1, 2.

If h: W xWy—>B X B, s defined by the formula h(ay, )= (hl(a,l),
holas)) for as e Wi, i=1,2, then “

h is epimorphism <= hq are epimorphisms for i =1, 2,

h is monomorphism <= hi are monomorphisms for i =1, 2,

b is isomorphism <= Ry are isomorphisms for ¢ =1, 2.

icm®
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2. Some classes of topological spaces. According to the
notation used by Whitehead in [16] let (a) be the class of connected
topological spaces which are h-dominated by CW-complexes. A class
of all simply-connected spaces of class (a) will e denoted by () (*)-

Given a sequence {®,} of admissible classes of groups we shall denote
by Cand )s, @ class of such spaces in (e) that their homotopy groups 7z
belong respectively to Gp for n=1,2,.., N (¥ being an integer or
N = o0). Analogically, (a?)@,, will be the class of such spaces in (ap) that
their homology group H, belongs to &, for n=1,2,... Finally, the
symbol (o;) will be used for the class of spaces which are homotopically
equivalent to some connected and simply connected polyhedrons.

Let us observe that

(2.1) All the classes introduced above are closed under arbitrary h-maps.

Infact, it is obvious for the class (a). The classes (a), (a™¥)g, and (eE)g,
are also closed ynder h-maps, since h-maps induce r-homomorphisms of
homology and homotopy groups and since G, are assumed to be admissible.
By the theorem of de Lyra ([11], p. 58) the spaces of the class (a;) coincide
with the connected and simply connected spaces h-dominated by poly-
hedrons. Hence (a;) is also closed under h-maps.

(2.2) Buery compact and connected ANR-space belongs to the class (a).

In fact, by the Borsuk theorem ([2], p. 97) such a space is h-dominated
by a polyhedromn.

As an immediate consequence of both the Borsuk theorem ([2]; p. 97)
and the theorem of de Liyra ([11], p. 58), we obtain the following statement:

(2.3) Bvery compact connected and simply connected ANR-space
belongs to the class (ay).

Now let us establish some connections between the classes defined
above:

(2:4) (ar) C (@64 C (a) C ()

(2.5) (a6, C (a™")5s C (2)-

The condition (2.4) is obvious. By the Serré theorem ((5.1) [11],
p. 50), if connected and simply connected CW-complex has finitely gen-
erated homology groups, then it has finitely generated homotopy groups
as well. Hence (2.5) is verified.

We have also

(2.6) If ®,CG, for n=1,2,.., then
(aH’N)@,, C (a™™)g,, for every N.

(2.7) If N < N', then (™)s, C (a™V)s, for an arbitrary sequence {Gn}
of admissible classes.

()6, C (ab)g, and

() In [16] the symbol (a,) denotes some larger class.
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Sometimes we shall uge the notation X ¢ (™) {( (ag ) t0 express that

there exists such a sequence {®,} that X e (™), ((aor)%) .

3. Consequences of two Whitehead’s theorems. The further
arguments are based upon two Whitehead’s theorems (see [16], p. 215).
The first one (denoted here by (@) deals with the clags (a), the second
one (denoted by (H))— with the class (o). According to the notation
used in [16], let AX be the minimum of dimension of all CW-complexes
which dominate X — whenever such CW-complexes do exist — and let
AX = co otherwise. For any two spaces X, ¥ e (a) lot N = N(X,Y)
= max(4X, 4Y).

TamoreM (IT). If X, Y e (a) and the map f: X=X induces isomor-
phisms fo: ITn(X)—~In(Y) for n==1,2, .., N, then fis a homotopy equiv-
alence.

THEOREM ( IfX Ye(a) and the map f: XY induces isomor-
phisms fn: Ha(X —>H,. Y for n=1,2,..,then fis a homotopy equivalence.
The above two theorems imply Lhe following five propositions:

(B.1) If X e(a™%) or X e (all), then [X]=[X].

The inclusion [X]C [X], holds for arbitrary space X. The converse
inclusion [XJn C [X] follows from both the condition (G-3) and one of
Theorems (/7) and (H) respectively.

(32) If X, ¥ e (a™)g,, the class Gn being admissible for n =1, .., N
=max(4X, 4Y), then
Exf Y] = [ AI(X) < IT(X) AI\/NHM(X) < IL(X)].
n r <. *
In fact, any h-map f: ¥Y—X induces r-homomorphisms fu: IT(Y)
->IIy(X). If T[k(X).—T:Hk(Y) for every k < N, then IIyX)~ IIi(Y) by

(G-2) and fr (k=1,2,..,N) are isomorphisms by (G-3). Hence by
Theorem (II) f is proved to be a homotopy equivalence, contrary to our
assumption

(3 3) Let X, Y e( HN)@,,,, the class Gy being admissible for n =1, .., N
=max(4X, AY). If there ewisis an integer k, such that ITIC(X)<. (X))
and IT(X)rs IT(Y) whenever & +# n < N, then '

X<Y=>X<7Y.
h

It X = Y, then ITy(X) = II(Y). Let X§ Y and suppose that ¥ ig

not a neighbour of X; ie. there is a space Ze(a™)s, such that
Xf Zf Y. So IL(X) < IT(2) < II(¥) for n =1,2, ..
T 7
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By hypothesis IT(X)~ IT,(Y) for N >n # k, hence it follows from
(G—2) that ITy(X )~ IT(Z)~ IIn(Y) for N > n # k. By the statement (3.2)
there are two integers k', %" <N such that ITp(X)< II(Z) and

r
I\ Z) < M/ X). Hence k' = k"' = &k and IT{(X) < ITx(Z) < II4(¥), which
contradicts our assumption.

Now let us formulate two statements (3.4) and (3.5). The proofs
are analogous to that of (3.2) and (3.3); instead of Theorem (IT) we use
now Theorem (H).

(3.4) If X, Y € {(a)w,, the class Gy being admissible for n=1,2; ...,
then

X< ¥]= (A HalX) < Hao(X) A y Hy(X) < Ho(Y)]-
n r r

(3.5) Let X,Y e ((ZDH)(E", the class Gn being admissible for n=1,2, ...
If there ewisls an integer I such that HE(X)<. Hi(Y) and Hu(X)~ Ho(Y)
r
for n # k, then
X<T=>X<T.
n h
Of course, the last two propositions concern in particular all compact
connected and simply connected ANRs.

4, Natural order and Cartesian products. One can easily
verify the following assertion:

(+.1) Let X, ¥, ¥’ be three topological spaces and let f: Y' =Y be an
h-map whick has a map f': ¥—X' as the right homotopy inverse. If a map
gt XXY' X XY is defined by the Sormula

9=, ¥") = (@, fy)) for (2,9)eXxY,
then sefting
g, y) E(‘D:f/(y)) for (w,y) e XXX

we obtain the right homotopy inverse g’z XX Y—-XxY of g.
This statement implies three corollaries:
(4.2) For any spaces X, Y, Y,
F<Y =XIXY<XXY .
P )

(4.3) For any spaces X, Y, Y’
YooY = XIxY~XxY'.

(4.4) The class (a,) s closed under the Cartesian multiplication.
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Tet us notice that the last proposition fails as regards the clasy (a),
since the Cartesian product of two CW-complexes is not neeessarily
COW-complex again (see [4]).

The assertion (4.2) holds for arbitrary topglogical spaces. Under
some additional assumptions we shall prove the fimilar property of the
relation < :

5 .

(4.5) TemoreM. If Xx X, X XY e (a”’N Jony the class Gn being ad-

missible for n < N = max(4Y,dY’), then
Y<¥ =>=XxXY<<XxY.
n h

Proof. Takethe h-map f: ¥'-Y. By (4.1), setting g (x, ¢') == m,f(q/f))
for every (z,4') e XX X', we obtain a h-map g: XX X' X X ¥. Let us
suppose that X' xY ; X xY'. Then, for any point (wo, y)) e X x X', we

have
. ]Ll(xx Y, (@, f’/il))}N Hn(x XY, (m, ?/0)) ’
where y, = f(%,). Since IIn(X X Y), II(X X Y') belong to some admissible
class for n=1,.., N, the r-homomorphisms gu: ILi(X XX, (20, )
—>]L,(X XY, (2, y(,)) induced by ¢ are isomorphisms for n < N.
Let I" denote the - dimensional Euclidean cube, and let I" be its
boundary. Any map ¢: (I", i")—>(X>< Y, (m, 9o)) is of the form

o= @), (ot (I IN—=(X, @), @y (1", I (T, yo)) 5

analogically, any ¢': (I", i”)e(Xx Y, (#, 43)) is of the form ¢’ = (¢}, ¢p).

Define the homomorphisms Jiy: II,,(X XY, (2, yo)) > ITn( X, 2y) X
XII(X, yo) and hy: I (X X Y7, (20, Y6) >ITa( X, o) X IT( X', y5) Dby the
formulae:

(o)) = ([pa], [@a) s Pnllop']) = (L], ) -

The homomorphisms hy, by are isomorphisms (see [8], p. 144).
Consider the following diagram

ILIX XX, (w0, 90)) s, (XXX, (a5, o))
h;, hn

II(X ) @) X IL( X', y5) t;"nn(xa Do) X I (X o)

g,
Setting gn = hugnle * for n=1,2, ... we obtain isomorphisms

gz II( Xy @0) X IIn(X, y3) >TTn(X., ) X [Tn( X, 7o)
(since each of g3 is a superposition of the isomorphisms for n = 1,..,N)

Homotopy classification of spaces 7

Let us observe that
gnle, b)) = (a,fn(b')) for every a e IIn(X, ;) , b' e IL(X', yo)
n=1,2,..,
fn Dbeing the homomorphism induced by f. In fact, denoting a = [¢],
b =[] (where gu: (1", 1> (X, @), g (1", I —(T", 98)), we have
ga(a, b)) = gl ([pe], [95)) = hngulgo, #0) = halg (@ #1)]
= hl(@z, fpi)] = (9a], (i) = (ol Faloy]) = (@, fal(8)) -

Hence the homomorphisms g4 satisfy the assumptions of Lemma (1.9)
and therefore f, are isomorphisms for n=1,.., N. But ¥, ¥ ¢(a),
since they are retracts of X x ¥ and X x ¥’ respectively. Thus it follows
from Theorem (I7) that f is a homotopy equivalence, contrary to our
assumption.

(4.6) Remark. The assumptions of Theorem (4.5) can not be

omitted.
In fact, let us consider the following example (3):

Define
x=P Ay, where A,=48v§ for n=1,2,..
=1
(i.e. 4, is a one-point union of two circles). Then X is homeomorphic
to X X {y,} and we have
X x{y} =Xx 8 although {yo} % St
3

5, Construction of h-neighbours by means of Cartesian
multiplication. The question arises, what assumptions ‘are to be done
in order to prove that

Y< Yo XIXT<XIXY.
h h

The answer is given in the following
(8.1) TemorEM. Let k be an arbitrary positive integer. Let XX 7Y,
IXY e (™), the class Gn being admissible for n=1,.., N

= max[A(XXF), A(XXTY)] and G = G. If Y <Y, Uk(Y)<. (X"
h r
and IL(Y)~ IT,(Y') for N =n + k, then XX T< XxY.
3
(*) This example was used by Fox ([5]) in order to prove that the &-type and the

homotopy type for some spaces do not eoincide. Let us notice that X fails to he compact
ANR against the supposition due to Fox in [5].
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Proof. By (4.1) we obtain the condition: X' x Y ’ XXY'. By (3.3)
(]
it suffices to verify that

II(XxY) < T{XxY) and IL(XXY)~SI(XXY') for N == n o F,
” .

Sinee JT(X X Y)~s In(X) X Tn(Y) and IIf(X X X')ms I (X) X IT,(Y"),
we have IT (X X Y)a~ I (X xY’') for m # k. By the Remark (1.7) the
condition IT(Y) < IT(Y') implies

r

T X)X I(Y) < ITW(X) X IT(X') .
r

Hence ITi(X X Y) < II (X' xY'), which completes the proof.
r .

Now, let us recall the notion of homotopy type in the sense nsed,
for example, in [8], p. 198. Given a group U and & positive integer &, we
say the space ¥ to be of the homolopy type (W, k) provided that
R for n==F,

[{0} for wn£k.

Theorem (5.1) implies the following

(5.2) CoroLLARY. Let & be the positive integer, and let A be some eyclio
indecomposable group. If the space X' is of the homotopy type (U, k) and
X, IXY e(d™)g,, the class G, being admissible for m==1,..,N
= max(4X, A(XXY")), then X< XX Y.

h

II(Y) ~

Proof. Setting in Theorem (5.1) ¥ =v{y0} we obtain J7,( .Y)~ I X"
for n # % and IT(Y) = {0} < A IT(X’) (by (1.6)). Hence X x ¥ < X x ¥’
r W
and therefore X < X x Y.
h
(5.3) Exampere. In (5.2) set ¥' =8 (h=1, A= N — the group
y

of integers, G, = G4 for n =1, 2, ...). We obtain the following sequences
of h-neighbours:

{0} < < §'x $< .
h A I
S"”<h 8™ Slf B X< e, m2.
3 13

The question remains open, whether in (5.1) the assumption con-
cerning the homotopy groups can be omitted or not. In particular, the
author does not know, if 8™ < 8™ x 8™ for m = 2, although the relation

{a:,,}f 8™ does hold (as we shsull prove in Section 7).
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6. Homotopy properties of l-neighbours. Some condition
sufficient for two given spaces of the class (a) to be h-neighbours, was
formulated in Section 3 (the statement (3.3)). Assuming the spaces under
consideration to be of given homotopy types (in the sense determined in
the previous section), we can establish a connection between the relations
<,<,<. (with respect to these spaces) and the relations <,<,<. (with
A hoh roror
respect to their homotopy groups).

(6.1) THEOREM. Let X, ¥ e (a), A, B ¢ G, where & = G4 or 6 = G,
and let m, n be two positive integers. If X and Y are of the homotopy type
(U, m) and (B, n) respectively, then

(3) XL Y <=m=nAULSB,

h T

) X< Y <= m=nnAUA<B,
I r

(c)X%Y©m=%/\i’I% B.
n ”

Proof. 1° Let G = G4.
Firstly we shall verify all the implications =.
(a) If X' < Y, then Hk(X) I(Y) for k= 1,2,...; hence m=n

and A < B.
(b) Assuming X < ¥, let us take a h-map f: Y—X and suppose
h
that 9 = B. Since A, B € G4, we have A~B and fn: B->UA is an isomor-

phism. But ITyX) = {0} = ITy(Y) for k#n so fi: I(Y)—>II{X) is
isomorphism for ¥ =1,2,... Then, by Theorem (II), we have X~7¥,

contrary to our assumption. Hence A< B.
r

() X < Y, then ‘2I< B by the assertion above. In order to prove

that ‘l{< B, let us suppose that there exists a group €e G4 sa,’msfymg
the eondltlon. N< C< B. Let p: B>C and p: €A be the r-homo-
r r

morphisms. By (1.2) we have BaCxkerp and C~UAx kery, where
kerp £ 0 and kery s 0. By the Whitehead theorem on realizability
([17], p. 261) there exist two locally finite CW-complexes Z’ and Z" of
the homotopy types (kergp, n) and (kery,n)respectively. Then X x Z'x 2"
is of the homotopy type (UAX kerpx kery,n), i.e. of the type (B, n).
Sinee X, Y ¢ (a) and their homotopy groups are countable, it follows
from theorem of de Lyra ([11], p. 48) that there exist two locally finite
OW-complexes K, T such that X ~K and ¥ ~L. According to the state-
ment in [16], p. 227, the space K X Z'x Z” is a CW-complex as well

Fundamenta Mathematicae, T. LXVI 6
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Moreover, by (4.3), XX Z'X Z" ~K X Z'xZ". Since any two CW-com-
plexes of the same homotopy type (B, n) are homotopically equivalent
(8], p- 199), so we have KX Z'x Z'" =L and therefore X' X Z'X 2" ~ Y.
Hence X f XXz /< Y, contrary to the assumption.

L v

Now let us prove <=.

(a) If A< B, then B~Ux kerl, the homomorphism ¢ Dbeing an
7-homomorphism. Take a locally finite CW-complex Z of the homotopy
type (kerl, m). Since the spaces ¥ and X X Z are hoth of the homotopy
type (B,n), we infer that ¥ ~X x Z. Hence X - X.

I

(b) Moreover, if 9[< B, then kerf 0 and therefore X«
h

(e) Assume A< B, According to (1.6), we have BaUx ', the
group € being cyclic indecomposable. Let ¥’ be a locally finite CW-com-
plex of the homotopy type (&', n). Then X X ¥’ ~ ¥ and hence, by (5.2),

we obtain the desired relation X < ¥
I

20, Let ® = Op.

If n>1 and A, B ¢ Gp, then A~nB~N (the group of integers), so
A, Be®4. Therefore we can assume n = 1. By the arguments similar
to those used in the case 1°, we infer that X and ¥ are homotopically
equivalent to some locally finite CW-complexes, and the homotopy type
of such CW-complexe determines it uniguely up to a homotopy equiv-
alence. Then

X SV ¥ =8uY...v 8, where k= (), = o(B).
Hence, applying (1.8), we obtain:

X]Y@k/lmﬂ[ 193,

X?Y@k<l<::>ﬂ[<&3,

v *

X<;Y<=>7a+1:zmg1<‘g3,
’ r

Thus the proof is complete.
There is a question, whether the implication

X <Y = A UTdZ)~ D)W ITX) < TT4Y)]
)

holds.
In Section 7 we construct an example (see (7.4)) which gives the
negative answer even in the case of the simply connected polyhedrons.
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7. Construction of h-neighbours by means of one-point
addition. Let us recall, that the space ¥ is said to be of the homology
type (A, k) (where k> 1), provided that

(A for n=1%,
1{0} for n # k.

Asg proved in Section 5 (Corollary (5.2)) for spaces satisfying certain
conditions, we can construct an h-neighbour ¥ of X by means of multiply-
ing X by the space ¥’ of homotopy type (U, »), the group U being cyclic
indecomposable. Now, we are going to prove the similar statement on
the one-point addition of a space of the homology type (U, n).

(7.1) TaEorEM. Let k> 1 and let X, XVY e (a)6,, the class ©n
being admissible for every m, and Gr= G.4. If Y is of the homology type
(A, &), the group U being cyclic indecomposable one, then

II(Y) = {0} and Hn(Y) =

x <h XVY.
Proof. Obviously X < XVY. Moreover, I (XVY)= {0} = IL(X)*
% IT(Y) ([8], p. 146), and '
Hn(XV Vi~ Hy(X) for n#k, HJXVY)~HX)XY;
then, by (1.6), Hi(X) <r Hy(XVY). Hence from (3.5) if follows that
X< XV

EXAMPLES.
(7.2) If A~ N — the additive group of integers and ¥ is of the
homology type (A, k), then ¥ ~ ~ 8. Assuming X to be of the class (@)en,

where G = G4, we obtain X< XvsE.
n
For instance,
{x.,}% S’“’lé S"‘VS"2<' ey for Ri=2,i=1,2,..
(7.3) I A = N — a cyclic gloup of order m, then m = p , Where p

is a prime number. Then ¥ = PEF (on pseudoprojective space PR
see [8], p. 321), and we have

X< XVPET for X e(c)pn Or= Ga.
h
For instance,

{-To}< Py < Py —sz Ry}

6*
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the integers m; being powers of some prime numbers, my; = 2 and ny == 3;

W

P,7§,<m PhyS* (n = 2, k= 3).
I

Remarks.

(1.4) As concerns the question set at the end of Section 6 let ug
notice that ez Sty 8%, bub II,(8%) and IT,(8?v 8% are neither isomorphic

1

or r-neighbours.

Tn fact, since [I(8%) == My, (a finite group of order 12), and I7,(S*y §%)
has a divisor 9, X Ty (see [8]), so ‘

IT(8%) < Pug X Ny < IL(S7V 87) .
7 T

(7.5) The question arises, whether X f Xv 8. We are going to show
g
that, as regards locally finite polytopes, the answer is negative.

Tor the purpose, given any sequence {X,} of spaces, we define the
space X:

[o
X = L‘f Y., where Y, = Xy, Yppr= YpVXpg for ne=1,2,.,
=

and Y, is assumed to be a subset of Ypis.

This space X will be denoted in symbols: {7 Xn.

n=1
Now, let us consider the following example (3).
Take a sequence {Tn}, the space T, being a torus for = =1,2,..
The spaces

X=V T, and Y=XV§
=1

are both locally finite poljrtopes. Besides, like in [15], X = ¥, then all
the more X = Y. Hence, really X and XV S are not r-neighbours. As
regards compact ANRs, the question is open.

8. Construction of h-neighbours by means of topological
 division. In contrast with Carfesian multiplication and one-point
addition, a result of a topological division — as defined in [13]— i,
in general, a space h-incomparable with a given one; for ex@m"ple, if
X =8x8 and A= 8"X {m}, then the spaces X and X|4 are Ji-in-
comparable. However, Theorem (4.1) of [13] implies the following two
statements. '

(*) This is a slight modification of Stewart’s example of two r-equal spaces which
are not homotopically equivalent (see [15]). ‘
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(8.1) TurorEM. If X and A are both compact and connected ANR-
spaces, and there ewists an AR-set D such that ACDCX then

X<X4.
h

(8.2) TrroREM. If X is compact and connected ANR-space and there
exists an AR-set D such that 8 C D C X (8" denoting n-dimensional sphere,
n > 0), then

X< X|8".
h

The first of these two statements is an immediate consequence of
Theorem (4.1) of [13] mentioned above. The second one fol T rom
Theorem (4.1) of [13] and (7.1), (2.3).

9. Homological properties of h-neighbours. Some condition
sufficient for two given spaces of the class (a) to be h-neighbours,
was formulated in Section 3 (the statement (3.5)). Assuming the con-
sidered spaces to be of given homology types, we can establish a connec-

tion between the relations <,<,<. (with respect to these spaces) and
B R R
the relations <,<,<' (with respect to their homology groups).
r T r

(9.1) TrrEOREM. Let X, ¥ e (0), A, B« B4 and let m, n be two positive
integers. If X and ¥ are of the homology type (2, m) and (B, n) respectively,
then

(a) X<i Ye=m=nnrULB,

k3

M X<YT<=m=nrAU<B,
h T

(e) X<.I’©m=n/\9[<- B.
R r

(An analogy to Theorem (6.1) is evident).

Proof. We shall use the following two results:

(1) If two spaces X, Y e(q,) are both of the same homology type,
then X~ ¥ ([12]).

(2) For any group % G4 and arbitrary integer »>1 there exists
a finite polytope of homology type (U, ) ([11], p. 60 or [14], p. 262).

Firstly let us verify the implications = .

(a) is obvious.

(b) Let X<h Y. By (a) we have m = n and % < B. Suppose A = B;

T

by the properties (G-2) and (G-3) of the class G4 and by \Whitehead’s
Theorem (H) we obtain X ~Y¥, contrary to our agsumption.
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(e) Let X < Y. By (b) we have m=n and A< B. Suppose there
i r
exists 2 group Ge®, such that A< C< B and let ¢g: B-C, p: €Y
r r
be the r-homomorphisms. Then B E X kerp, C~UAxkery, where
kerg # 0, kery # 0. Take tw0 finite polytopes Z’ and Z'' of the homology
type (kerp, n) and (kery, n) respectively (by (2) such polytopes do exist).
By (1) and (2) we can assume X to be also a finite polytope. Then
XIVEVZ" ¢ (a). Moreover, XVZ'VZ" i3 of the homology fype
(9 x kerp X kery, n), i.e. of the type (B, n), as well as the space Y. Ience
it follows from (1), that XVZ'y%" ~ Y and then X ? Xvz' ’\ Y, contrary
A L

to our assumption.

Now let us prove <=.

(a) If m=n and A < B, then BaAx kerl, the function {: B--A

r

Dbeing an 7-homomorphism. Take a finite polytope Z of the homology
type (kerf, n) and assume again X to be a finite polytope as well. Then
the polytope XVZ is of the homology tiype (U x kerl, n), i.e. of the type
(B, n), as well ag the space Y. Hence XvZ~ Y and therefore X < Y.

h

o

) If m=n and A< B, then the r-homomorphism ¢ mentioned
r

in (a) has a non-trivial kernel; hence X < Y.
. 13

(e) Let m = n and ‘1[<. B. Then, by (1.6), ker{ is a cyelic indecom-
r
posable group. Hence, by (7.1), we have X < XVZ and thercfore X < Y,
13 h
which completes the proof.
10. Decreasing sequences of spaces. The sequence {X,},-1s,..
of spaces will be said h-decreasing (h-increasing), provided that X, < X,
h
(X“<z X)) for p=1,2, ...
1
The examples given in Section 7 show that
(10.1) In the class (a,) there exist h-imcreasing sequences.
(10.2) There ewists such a space X e (ay), which has an infinile family
of h-incomparable left h-neighbours.

We can prove a liftle more (see (10.3)). To this effect, let us define
% homotopical dimension of the gpace X (in symbols dh.X) as follows:

dh X = min dim X’ .
A yrox

(10.3) Thew.a ewists a space X e (o;), which has am infinite Sfamily
{Lo}h=1e,... of h-incomparable h-neighbours all of one homotopical dimension.
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Proof. Let us observe that, for any integer m, dhPpt' = n-t1,
the space P - being a pseudoprojective space (see [8]). In fact, if ¥ ~ P
then Hy(Y)= Nm —a cyclic group of order m; hence, by theorem on
universal coefficients, Hp+1(¥, Nm) = 0, and therefore dim ¥ > n-1.

Now, take a sequence {m,},—ouz,.., Where m; is & power of a prime
number, i=0,1,2,.. and m, #my for v £’ Let X = Pt and

X, = XVP;" for »>1. As showed in (7.3), we have X< X, for
h

v=1,2,3,..; moreover, each two of the spaces X, are incomparable,

since by (1.1) their n-th homology groups Ha(Xs)= Jm, X Nm, are

r-incomparable. Hence X and {X.},-1,...are proved to be the desired ones.

There is a question, whether there exist a space X and infinite se-

quence {X,}, p=1,2,.. such that X,,fX for u=1,2,.. and no
0

one of X, is homotopically equivalent to another. In particular

1° Does there exist a &-decreasing sequence?

2° Do there exist a space X and a sequence {X,} of k-incomparable
spaces such that X,‘<h X for every u?

As regards the class (a;), the answer to the question 1° is given in
the following

(10.4) THEOREM. There is no one h-decreasing infinite sequence in
the class (a;).

Proof. In order to prove our theorem, it suffices to verify the
following condition:

(10.5) If X, X, ¢ (ay), X,,<}:X for u=1,2,.. and no one of X, is

homotopically equivalent to another, then there exists u, such that any two
Xy Xy are incomparable for w, ps > p.
Take X and {X,} satisfying the assumptions of (10.5), and observe
that
\/q [Hi(X) 5 0JA[H(X) = 0 for i > k]

and E>2

/,\k\éa[Ek“(X“) # 0JA[Ho(X,) = 0 for i > k,] -

¢ Rpa

Since X, < X, we have k, <<k for p=1,2,.. Given ¢ <k, let us
h

consider the sequence {Hi{X,)}u=12,... Since {X,}C(a), all the groups
Hi(X,) belong to .4 and therefore almost all of these groups are iso-
morphie, i.e.
VoA H{X)~HAX).
. Hy >
Now, setting

= max [
o agisch ’
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we obtain the following condition:

/\ Hi(XH)NHi(X,/) for g = 1, 2,..

>
Let us suppose that
AV X X, are h-comparable

o u >y
and take v = g,. Then the spaces X,, X, are h-comparable and
Hy(X,)~ Hi(X,) fori=1,2,..; hence, by Whitehead’s Theorem (H), we
obtain X, ~ X,, contrary to the assumption. This completes the proof,

As regards the class (o), the question 2° remains open, It is closely
related to the following problem concerning the class (ay):

Given a sequence of groups {%,} C G such that Ay == (0) for almost
all m, do these groups %, can be realized as n-th homology groups for
only finite number of homotopy types?

The positive answer to this problem would imply the negative answer
to the question 2° for the class (o).

Congerning the class (a,), the answer to both questions 1° and 2°
is positive. Moreover, we shall prove the following

(10.6) TomOREM. (a) There ewists o h-decreasing sequence {X,},-1s,..
of h-neighbours in (ay);

(b) There exist in (a) a space ¥ and a sequence {¥,} of h-incomparable
spaces, such that ¥, < ¥ for v=1,2, ..
h
o
Proof. (a) Let X, = %\LS’“’” for u=1,2,.., 8" denoting m-gphere.

Since each of the spaces X, is a locally finite polytope, so it is a CW-
complex ([16], p. 223). Besides X, is connected and simply connected;
thus X, € (ap).

Since X, = 8"y X1, and Hy(X,) e Gy for every %, it follows
from (7.1) that

me” X,.
(b) Let ¥ = X, ie. ¥ =YV 8% Then we have
. n=2

Sv<h Y for »=2,3,..

and &, 8" are incomparable for v 9,
This completes the proof.
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