$C^*(X)$ with cardinality 2^ω and with $\lvert f_A - f_B \rvert \geq 1$ for $A \neq B$ subsets of $\{a_i\}$. Now suppose that $(g_z, Z_z; y \in Y)$ is a chain of metric compactifications of X with sup $(g_z, Z_z) = \beta X$. Then let $P_z = \{ f \circ g_z; f \in C^*(Z_z) \}$. Then P_z is the closed regular subring of $C^*(X)$ associated with g_z, Z_z. Since (g_z, Z_z) is a chain, so is (P_z) with $\bigcup_{z \in Z} P_z = C^*(X)$. By transfinite induction define a function $k: \{ a < \omega_1 \} \to (P_z)$ such that for $a < b < \omega_1, k(a) \subseteq k(b)$ and $k(a) \neq k(b)$. Then it can be shown that $\bigcup_{a \in a} k(a) = C^*(X)$. Consider the map $F: \{ A \subset \{ a_i \} \} \to \{ a < \omega_1 \}$ defined by $F(A) = \min\{ a; f_A \in k(a) \}$. Then F is at most countable to one and onto a cofinal subset of $\{ a < \omega_1 \}$. This implies that $\omega_1 = 2^\omega$.

Theorem 2. If X is discrete and $|X| = \omega_1$, then $\omega_{\omega+1} = 2^\omega$ if and only if βX is the supremum of a chain of compactifications of X each of which has weight ω_1.

The proof of Theorem 2 is similar to that of Theorem 1 and so is omitted.

References

Some properties of the induced map

by K. R. Gentry (Greensboro)

1. **Introduction.** We use the notation and terminology of Eilenberg and Steenrod [1] for inverse limit sequences (the index set I is the positive integers) of topological spaces and continuous functions. If (X, f) is an inverse limit sequence, then we have the bonding maps $f_n^I: X_n \to X_n$ (n \leq m) and the continuous projections $f_n: X_n \to X_n$. By a map ψ from the inverse limit sequence (X, f) to the inverse limit sequence (X, g) we mean a sequence of continuous functions $\psi_n: X_n \to Y_n$ such that $\psi_n f_n^I = f_n^I \psi_{n+1}$ for all $n \in I$. The inverse limit of ψ is the function ψ_∞ from X_∞ into Y_∞ such that if $x \in X_\infty$, $x = (x_0, x_1, x_2, \ldots)$, then $\psi_\infty(x) = (\psi_0(x_0), \psi_1(x_1), \psi_2(x_2), \ldots)$.

Eilenberg and Steenrod have shown that (1) ψ_∞ is a continuous function from X_∞ into Y_∞ (Theorem 3.13), and (2) if each ψ_n is a 1-1 function of X_n onto Y_n, then ψ_∞ is a 1-1 function of X_∞ onto Y_∞ (Theorem 3.15). In this note we investigate further the relationship between properties of the ψ_n and properties of ψ_∞.

2. **Periodicity.** A continuous function f from X into itself is said to be periodic provided there exists a positive integer n such that $f^n(x) = x$ for all $x \in X$. The least such integer n is called the period of f. Assuming X to be metric, f is said to be almost periodic provided that for any $\epsilon > 0$ there exists a positive integer n such that $d(f^n(x), x) < \epsilon$ for all $x \in X$.

Let \mathcal{V} be a map of (X, f) into itself, where each X_n is metric. The following example shows that φ_n may fail to be periodic even though each φ_n is periodic. For each $n \in I$, let (1) $X_0 = \{ x \in E^n; |x| = 1 \}$, (2) $f_n^{I^+} = X_0$, $f_n^{I^{-}} = X_0$ be defined by $f_n^{I^+}(x) = x$, and (3) $\varphi_n: X_0 \to X_0$ be defined by $\varphi_n = \exp(2\pi i/2^n)$. Then $\mathcal{V} = (\varphi_n)$ is a map of (X, f) into itself such that each φ_n is periodic but φ_∞ is not. However, noting φ_n is almost periodic does suggest the following:

Theorem 1. If each φ_n is periodic, then φ_∞ is almost periodic.
Proof. Let the metric for X_m be denoted by d_m and choose the metric d for X_m such that if $x, y \in X_m$, $x = (a_1, x_1, y_1, 1, \ldots), y = (y_1, y_2, y_3, \ldots)$, then

$$d(x, y) = \sum_{n=1}^{\infty} \frac{d_m(a_n, x_n)}{2^n(1 + d_m(a_n, y_n))}.$$

Let $\varepsilon > 0$ be given. There exists a positive integer m such that

$$\sum_{n=m+1}^{\infty} \frac{1}{2^n} < \varepsilon.$$

Since for any $x_n, y_n \in X_n$,

$$\frac{d_m(x_n, y_n)}{2^n(1 + d_m(x_n, y_n))} \leq \frac{1}{2^n},$$

we have that for any $x, y \in X_m$,

$$\sum_{n=m+1}^{\infty} \frac{d_m(x_n, y_n)}{2^n(1 + d_m(x_n, y_n))} < \varepsilon.$$

Let k_1 denote the period of y_m and let $k = k_1 k_2 \ldots k_m$. If $x \in X_m$, then

$$d(x, y(x)) = \sum_{n=1}^{m} \frac{d_m(x_n, y_n)}{2^n(1 + d_m(x_n, y_n))} + \sum_{n=m+1}^{\infty} \frac{d_m(x_n, y_n)}{2^n(1 + d_m(x_n, y_n))} < \varepsilon = \varepsilon.$$

That the first sum is zero follows from the way k was chosen.

It is not known to me whether each y_m being almost periodic implies x_m is almost periodic. However, assuming the X_m are compact, we do get that the property of being almost periodic is preserved.

Theorem 2. If each X_m is compact and each y_m is almost periodic, then x_m is almost periodic.

Proof. Let $\varepsilon > 0$ be given. There exists a positive integer m such that for any $x_n, y_n \in X_m$,

$$\sum_{n=m+1}^{\infty} \frac{d_m(x_n, y_n)}{2^n(1 + d_m(x_n, y_n))} < \varepsilon.$$

Since each X_m is compact, the bonding maps are uniformly continuous. Using this fact, we get the following positive real numbers: a δ_{m-1} such that if $d_m(x_m, y_m) < \delta_{m-1}$, then $d_m(-f_{m-1}(x_m), -f_{m-1}(y_m)) < \varepsilon$; a δ_{m-1} such that if $d_m(x_m, y_m) < \delta_{m-1}$, then $d_m(-f_{m-1}(x_m), -f_{m-1}(y_m)) < \varepsilon$; and δ_{m-1} such that if $d_m(x_m, y_m) < \delta_{m-1}$, then $d_m(-f_{m-1}(x_m), -f_{m-1}(y_m)) < \varepsilon$.
Theorem 3. Suppose that (1) each \(y_i \) is interior and (2) for each \(n \in I, \)

\[
y_i^n(y_{i+1}) = y_{i+1}
\]

implies \((f_{i+1}^{n+1})^{-1}(a_i) \cap \psi_i^{c_i}(y_{i+1}) \neq \emptyset\). Then \(y_i \) is interior.

Proof. Let \(U_i \) be an open subset of \(X_i \). We can assume there exists a positive integer \(n \) and open subset \(U_n \) of \(X_n \) such that \(U_n = f_{i-n}^{n}(U_i) \). It follows that \(\psi_i f_{i-n}^{n}(U_n) = \psi_i f_{i-n}^{n}(U_i) \). For let \(y = (y_1, y_2, y_3, \ldots) \in \psi_i f_{i-n}^{n}(U_i) \). Then \(y = \psi_i(x_1, x_2, x_3, \ldots) \in \psi_i f_{i-n}^{n}(U_i) \) and so \(x = (x_1, x_2, x_3, \ldots) \in \psi_i f_{i-n}^{n}(U_i) \).

Now let \(y = (y_1, y_2, y_3, \ldots) \in \psi_i f_{i-n}^{n}(U_i) \). Then \(y \in \psi_i f_{i-n}^{n}(U_i) \) and so there is an \(x \in U_n \) such that \(\psi_i(x) = y \). Consider \(\varphi \) as \((f_{i-n}^{n}(x_1), f_{i-n}^{n}(x_2), \ldots) \in \psi_i f_{i-n}^{n}(U_i) \) and so \(\psi_i(x) \in \psi_i f_{i-n}^{n}(U_i) \).

4. Monotone, light and compact maps. A continuous function \(f : X \to Y \) is said to be monotone provided that, for each point \(y \in Y \), the inverse image \(f^{-1}(y) \) is connected.

Lemma 1. The inverse limit of compact connected spaces is connected.

Theorem 5. Let \(\Psi \) be a map of \((X, f) \) into \((Y, g) \). Suppose each \(X_n \) is compact Hausdorff and each \(y_i \) is monotone. Then \(y_i \) is monotone.

Proof. Let \(y = (y_1, y_2, y_3, \ldots) \in X_\infty \). For each \(n \in I, \psi_{i-n}^{c_i}(y) \) is a compact, connected subset of \(X_n \). This follows since the \(y_i \) are monotone. If \(h_{i-n}^{c_i} \) is \(f_{i-n}^{c_i} \) restricted to \(\psi_{i-n}^{c_i}(y_{i+1}) \), then \(h_{i-n}^{c_i} \) is a continuous function from \(\psi_{i-n}^{c_i}(y_{i+1}) \) into \(\psi_{i-n}^{c_i}(y) \). Let \(C_m \) be the inverse limit of the inverse sequence \(\psi_{i-n}^{c_i}(y), h_{i-n}^{c_i} \). Since each \(\psi_{i-n}^{c_i}(y) \) is compact and connected, lemma 1 implies that \(C_m \) is connected. The proof of the theorem then follows since \(C_m \) is \(\psi_{i-n}^{c_i}(y) \).

A continuous function \(f : X \to Y \) is said to be light provided that, for each \(y \in Y \), the inverse image \(f^{-1}(y) \) is totally disconnected.

Lemma 2. The inverse limit of totally disconnected spaces is totally disconnected.