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On the conjecture 25 ~1°

by
Neil R. Gray (Washington)

1. It is a conjecture of long standing [7] that if X is a Peano con-
tinuum, then its hyperspace 2% is homeomorphic with the Hilbert cube I°.
It is known that these spaces share several topological properties — for
example, both are absolute retracts [7]. The purpose of this paper is to
show that 2% and I” share another topological property: in each of these
spaces every point is unstable. This will be accomplished in two steps
(Theorem 1 and Theorem 2) in order to make the methods used more
understandable.

TeEOREM 1. If X is a polyhedron, then every point of 2% is unsiable.

(By a polyhedron we mean the geometric realization of a finite, con-
nected, simplicial complex.)

TEEOREM 2. If X is a Peano continuum, then every point of 2% is
unstable.

DerrnitioN. If (X, d) is & metric space, then 2% is the space of non-
empty closed subsets of X metrized by the Hausdorff metne, 0. We
define the Hausdortf metric as follows: for each # ¢ X and B 2%, ¢> 0
we define dist(z, B) = inf{d(z, y)| y <« B} and V(E) = {z ¢ X| dist(z, E)
<< ¢}. Then, if # and B are points of 2% we define o(H, B') = inf{e > 0]
ECV/(E) and E' CV(E)}.

DEFINITION. A point p in a space X is called unstable if for each
open neighborhood U of p there is a homotopy hy: X—X such that
ho=1, p ¢ hy(X), and for all ¢, ly|x\y =1 and h(U)C U. (Here 1 denotes
the identity mapping on X.) Thus a point » in a space X is unstable
provided that every neighborhood U of p admits a deformation which is
stationary on the boundary of U and which does not move any point
onto p. For example, if X is a closed interval, then its unstable points are
its endpoints. A point which is not unstable is called stable. It is clear that
the property of being stable or unstable is a topological property.

That each point of I° is unstable can be seen as follows: the point
whose every coordinate is zero is easily seen to be wnstable (in much
the same way as with the endpoint of an interval). Then, since we are
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dealing with a topological property and sinee I® is known to be homo-
geneous (see [4]), every point is unstable.

We will need the following results on unstable points and Peano
continua.

TrmorEM A [2]. If (X,d) is a compact ANR and p e X, then p is
unstable if and only if for each y > 0 there is a continuous y-map of X
which misses P.

(A y-map of X is a map f: ¥—X such that (@, f(#)) < p for each
#eX. We say f misses p if p ¢ f(X).)

TemorEM B [1]. If X s @ Peano continuum, then there ewists a convew
melric for X which is compactible with the topology on X.

(A metrie d on X is convex if for each pair of points a, b in X there
is a set ab C X which is isometric with the closed line intiexrval [0; d(a, b)]
under an isometry h such that h(0) = a and h(d(a, b)) ==}, There may
be more than one such set.)

TaroREM C [7]. If X is a Peano conténuum, then 2% is an AR.

Combining theorems A and € with the fact that 9% iy compaet, we
see that our work is somewhat simplified. To show that a point 4 e oF
is unstable we shall construct the y-map of Theorem A rather than the
homotopy of the definition.

In all that follows X is a Peano continuum and 4 is a convex metrie
on X. Lower case Roman letters @, b, ..., ¥, 2 denote points of X while
upper case letters 4, B, ..., ¥, Z denote points of the metric space 2*
with metric o. For example, B(z, y) = {y ¢ X| d(z, y) < y} and B(4,y)
= {Be2¥| o4, B) <y}

2. Some lemmas.

LEMMA 1}{ If g is a continuous y-map of X, then the function f defined
for each B 2% by f(B) = g(B) is a continuous y-map of 2~.

Lemma 2. If g: X—>2% ds continuous and el{a}, glo)) <y for all
% e X, then the function f defined on 2% by f(H) = U{g(x)| v ¢ B} is a con-
tinuous y-map of 2%.

LEWA 3. If 0< d< p, then the Junction f defined on 9% by (B
=Vﬁz(zE) is @ continuous y-map of 2%. Also, o(B, () < 6 for cach B
m 27 :

) The proofs of these lemmas (see [3]) are rather routine exercises
in the use of the Hausdorff metric. (Only Lemma 3 requires the convexity
of d.) The next lemma is rather complicated — it exists to handle an
especially awkward part of the theorem.

) LE@A 4. Suppose that A ezx, ged, B(q,0)CA, and B(q, a) s
isometric with a line interval of length 2a. Then A is unstable in 2%.
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Proof. We may as well assume that B(g, o) = (—¢; a), with ¢= 0.
(We can use the given isometry to do this.) We suppose that y >0 is
given, and we seek a y-map which misses 4. Our method is to map each
element B of 2% to its image in 2F by altering ¥ in a suitable fashion.
Since our only information about A is that it contains the open interval
(—a, o) it seems natural to map A to A\(—d; d) for some << a. The
operation of “removing intervals” (of varying sizes) will not be eon-
tinuous (essentially for the reason that one can find a sequence {En} in o
such that E,—~A but 0 ¢ By for each n). We shall remedy this situation
by adjoining the point 0 to all sets which are sufficiently close to A. In
order to make this ““adjoining map” (which we shall call g) continuous
we shall have to pave the way with & mapping k which has the property
of making each h(B) “nice” near 0. We shall define three maps: hy g,
and f so that 25 7(2%) % gh (2%) 5 fgh (2%), where & and g have the stated
properties, and f will be the map that “removes intervals”. When con-
venient we shall use the usual properties of the line and write <<y,
d(z,y) = ly—a=|, etc., for points in (—e; a).

DEFINITION 0F h. Choose any x> 0 so that p< min{je, iy} De-
fine % on 2~ by h(B)= Vu(E). Then since h(H) contains B(z, u) for
each @ in B, h(H) ~ [0; 2u] will consist of at most two intervals. More
precisely, for each He 9% such that h{E)~ [0; 2u] #0, h(E)~[0; 2u]
is of the form

(I) [0 ] w [e2; 24] With 0 < €< 6o < 2p OF
(II) [0; e,] with 0 < e, << 2p or

(I1L) [eo; 2u] with 0 < e, < 2p or

(IV) [0; e,] with e, = 2u.

These statements are immediate from the assumption that 4 is
a convex metric and that B(g, a) = (—a; @).

DEFINITION OF ¢g. We shall define g on h(QX). Our only requirements
for g (besides continuity) is that g ghould adjoin 0 to sets h(E) which
are sufficiently close to 4, and should not move any point very far.

Remark 1. Consider an open interval (a;b) C [—p; 2u]. I B € 2% and
E ~ (a; b) =@, then o(H, 4) > }(b—a). This is obvious from the equation

b b—
‘@”:ngﬂify

Remark 2. Suppose B 2% and » ¢ E. Suppose B’ € 2% i3 obtained
from E by adjoining some points of B(z, §) and omitting some points
of B ~ B(z, 8) in such a way that B ~ B(z, §) #=0. Then o(H, )< 26.
This is clear because Ves(H) D B v B(z, 8) D B’ and Vas(B') D [E\B (2, 6)] v
v Bz, 6)D E.
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We define g by showmg how to alter each R(E) in h(2%) to obtain
gh(E). We shall do 1t in such a way that 0 e gh(E) whenever o(gh(H), 4)
<} First, if W(E) A [0; 24] =@, then gh(B)= h(B). It h(E) ~ [0; 2u]
#@ and 2u ¢ h(H), b hen 1(B) is of type I or I and 0 is already in 1 (#),
so we again seb gh(H) = h(H). The only casc remaining is that where
2u € 1(B). Then h(E) is of type IIT or IV, and we focus our attention on e,.
Rirst define ¢=max{u, 6}, and note that e¢eh(B). Then define
¢ = ¢—dist(e, 2u) = ¢— (2u—0) = 2¢—2u. (Nobe thati ¢’ = 0 if e, < u, and
¢ = 2u if 6, = 2u.) Then ¢' is the point we adjoin to A (H). Thus we define

W jhE it 2u¢h(H),
PI=\ im0y it 2uen(m).

By examining each of the possible cases I through IV, we see that ¢
is continuous on h(2%), and that g(h(b) oh( ]f') < u for each set h(Z).
Finally, we want to show that 0 egh(B) if p(gh(B), 4) < p/3.

Suppose ¢(gh(H), 4) < p/3 and 0 ¢ gh(B). We shall arrive at a con-
tradiction. By Remark 1, gh(E) ~ [0; 2u] %@, so h(H) is of type ILL. Since
we are assuining o(gh(B), 4) < uf3 we canunot have (0; % u) ~ gh(B) = 0.
(Other wisefor some &> 0, (—&; §u) ~ gh(B) O and; (gh(H), 4) > u--¢/2.)
Thus either h(E) n (0; % ,u) #0 or ¢ € (0; §u). But both these statements
are incompatible with our hypotheses: If ¢’ ¢ (0; % u), thon e, is the mid-
point of the interval [e'; 24]. Since gh(B) ~ (6’5 ) =@ and §(e,—¢)
=1@2u—¢)>1(2u—%u) = uf3, we have g(gh(H), A) > uf3. It h(B) A
n{0; §u) # O, then, since & (F) is of type IIT, we have ¢, < §u < u. Thus
¢ =0 and 0 e gh(E).

DEFINITION OF f. The function f is going to remove the open set
(—u[3; u/3) from A. To make f continuous we need some method for
continuously varying the interval to he removed. To do this we define
a real-valued function 6 on 2% by 68 = max{0, u/3 - o{gh(B), A)}. Then 6
is continuous because g and % are continuous. Now we define fongh (Z‘X):

Foh(B) = {gh(E) it o(gh(E), A) = w3,
[gh(B\\(—68; 0B)] w {—0F; 6B} it olgh(H), A) < uf3.

From Remark 2 and the fact that 0egh(B) it o(gh(H), 4) = uf3,
fis a $u-map (from one subset of 2% into another), It iy clear from the
definition that f misses 4. We now show that f is continuous. It is clear
that f is continuous at any point gh(H) such that olgh(B), A) > p/3
because f is the identity on an open (in gh(2%)) neighbourhood of gh(H).

Now suppose o{gh(B), 4) = /3. Then since K = 0, 8F’ will be
small for points gh(E') near gh{H). For such points we have either foh(B')
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= gh(B') or fgh(E') is obtained from gh(E’') by altering gh(Z') in a small
neighborhood of 0 e gz (E'). It then follows from Remark 2 that f is con-
tinuous at gh(E).

Tinally we consider the case po{gh(E), 4) < uf3. Since B >0 we
can choose 7 > 0 so that 6B’ > 0 for any point gh(E’) such that g(gh(E),
gh(B")) < 7. Let B= gr(2%) A Blgh(B), 7). We can write f = fofy, Where
for each gh(E')eB, fi(gh(E')) = gh(B') v {—4E', 68’} and falfigh(B")
= f,gh(BE"\(— 6F’; 6B'). Since B is a neighborhood (in gh(2%)) of gh(H),
it will sufflce to prove that f; is continuous at gh(E) and f, is continuous ab
fogh(B). Since § is continuous and 6B’ > 0 for each gh(E’) e B, it is clear
that f1 is continuous at gh(H). We now show continuity of f, at f;gh(H).
Let & > 0 be given. Choose 8 € (0; &) so that [0B—dE'{ < ¢ when o(fugh(E),
flgh(E’)) < B. Let zefofigh(B). Since zefigh(H#) there is a point
2" ¢ figh(B') with d(z, ") < f. If @' ¢ (—0F'; 6F'), then o' ¢ f,figh(H'), so
dist(z, fofigh (B)) <d(@,2)<f. I &'« (—5E’; 0E'), then, - since
z ¢ (—8B; 6F), at least one of [z—0F'| and |o»— (SE')I is less than the
larger of |s—a'| and |$E—oF’|. Then dist{w faflgh ")) < min{|z— 88|,
|z—(— 6B} < max {|z—a'|, |68 — 0B'[}< e. Thus V,(fufs gh (B’ V) Dfafigh(B).
In a similar fashion we see V.(fofigh(E) )) D fofigh(B'), and so conclude that
olfe flgh ), fofigh(H')) < e. Thus f, is continuous ab fgh(H

Ve ll‘we therefore defined a continuous function fgh . This
fundmn misses A because f does. Also, it is a y-map: if He 2 we have
o(B, fgh(B)) < o(B, 1(B))+ o (ME), gh(E)) + ¢ (gh(B), fgh(B)) < p-+p+ip
< 4u < y. This completes the proof of Lemma 4.

3. Proof of Theorem 1 and Theorem 2.

TerorREM 1. If X is a polyhedron, then every point of 2% is unstable.

Proof. Let 4 2%, If int 4 =@, then we suppose d to be a eonvex
metric on X. Then, given &> 0, we let f: 9% 52% be defined by f(B)
= V,2(B). Then f is a continuous e-map and f misses 4 because each
f(E) has non-empty interior. If int.4 @, then there is a point ¢ eint A
with an open neighborhood which is a Euclidean n-ball lying in int4.
We consider two cases.

Case 1: n=1. Again we suppose d to be a convex metric on X.
Then some B(qg, c) is (isometric with) a line interval, so Lemma 4 ensures
that 4 is unstable.

Case 2: # > 2. For this we do not impose a convex metric on X.
Let ¢ > 0 be given. Let the open n-ball neighborhood of g be By, centered
at ¢, of radius & < ¢/2, and with boundary an (n—1)-sphere S;. Let B,
be an open n-ball centered at ¢ with radius less than é. Choose any point
p e 8;. Define g;: 8; v B,—2% by
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[{w} i zely,
\(p} it 2eB,.
Now 8; is a Peano continuum, so 2% is an AR. Furthermore, §, v B,
is a closed subset, so there is a continuouns extension g, of g to all of IT1 .
Now we define g: X—>2% by
{w} i w¢B,

IO = pe) i wel.

Then ¢ is continuous on X because it is continuous on both B, and
X\B,. As was remarked earlier, Temma 2 does not require that the metrie
on X be convex. Thus the map f(F)== U{g(w)| » < B} is a continuous
map of 2% into itself. Also, _sinee g(@) == {} il @ ¢ B, and ¢(B,)C By, we
have o({z}, ¢(»)) < diameter B; < & Thus f is an e-map. Finally, fmisses 4
because no f(H) contains q.

The proof for Theorem 2 will be similar to that for Theorem 1. The
crux of the matber in Case 2 of Theorem 1 ig the existence of a neighbor-
hood whose boundary is a Peano continuum. In the more general situation
we are able to get by with a neighborhood whose boundary is contuined
in a Peano continuum. For this we need another lemma. (Definitions of
terms here can be found in [5] and [6].)

LemmA 5. If q is mot o local separating point of X and V # X is
any open neighborhood of q, there ewists a neighborhood N of ¢ such that

(1) NV s closed and NCV,

(i) N=W v bW, wherec ge W, W s open, bW is a Peano continuwum
containing the boundary of N, and bW ~ W =@.

Proof. We assume that d is a convex metric on X. There is a neigh-
borhood P of q such that B(g, a) C P CV for some a> 0, and P is a Peano
continnum. Then, because ¢ is not a local separating point of X, ¢ is not
a cut point of P. Let F (g, o) denote the boundary of B(g, a). Then F(g, o)
is compact o by a result of Wilder ([6], p. 82), there is a § > 0 such that
every pair of points %,y of F(g, o) is conneeted by an are 4 (x, y) lying
in P\B(g, a). Fix a, eF(q, a) and let

F= U{A(%,y)l Yy eX(g, a) and A(x,y) CP\B(g, a)
Then F is connected and F(g, o) CF. Let # be a po'ﬂtwo nunber

such that g < min {8, dist(P, X\V)}. Define bW = T,(I). (See [5], p. 21
for this construction.) Note that:

1. g ¢ bW because < %4, and 6 < dist(g, I') because F C P\B(g, 0)
212;. bW is a Peano continuum because Ts(F) has property S ([5]
.

thatSTﬁl()ggTT; because < {dist(P, X\V) and FCP together ensure

gu(@) =
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Finally, we define W = B(g, e\bW and define N =T vbW.
Clearly W is open and W ~ bW =@. Note that by 1, g« W. Note also
that ¥ C V by 3 and the definition of N. Thus the only claims in (i) and (i)
that remain to be verified are:

(a) N is closed,

(b) the boundary of N CbHW.

Proof of (a). Because of the relations B(g, a) v F(g, a) = B(g, Blg, a)
and F(g, a) CbW we have N = B(q,a) v bW = B(g, o) v F(g, o) v bW
= B(q, @) v bW. Thus ¥ is the union of two closed sets.

Proof of (b). Suppose that # bolongs to the boundary of N. Because
N is closed, # ¢ N. Then ¢ W because W is an open subset of N. Thus
ze N\W =D0W.

THEOREM 2. If X is a Peano continuum, then every point of 2% is unstable.

Proof. Let 4 «2%. If int4 =@ we proceed exactly as in Theorem 1.
If int A 20 we consider two cases.

Case 1. Each point of 4 is a local separating point of X. Let y > 0
be given. YWe can find points a and b of A so that a line segment ab lies in
int A. Letus consider ab to be parameterized; take a and b to be real numbers
and take ab to be the closed interval [a; b]. If # and y are in ab we use
(z; y) to denote the open interval {s|zead and o<z< Yy}

The points of order 2 in X are dense in ab because all but a countable
number of the local separating points of X have order 2 ([5], p. 61), and
all of the points of ab are local separating points of X. Thus we can choose
q € ab, a < g < b, 5o that ¢ is of order 2. If, for some o > 0, we have B(qg, a)

= (g— a; ¢+ a), then we have an open subset of 4 which is a line interval.
Then by Lemma 4, 4 is unstable in 2%, Otherwise, every B(g, o) contains
points not on (¢—a; g-+a). Then choose a, 0 << a<Cp/2, and an open
seb W, ge WC W C B(q, o) so that the boundary of W consists of two
points of ab, say of point a’,b’, where a<C a’ < ¢<< b’ < b. This choice
is possible because every small neighborhood of ¢ must contain in its
boundary two points of ab, yet we can choose an arbitrarily small
neighborhood of ¢ so as to contain only two points on its boundary.

Now ab~ W is a closed interval (it is the subinterval of ab with
endpoints ¢’ and b’), so it is a retract of . We denote it by a’'b’. Note
that W\&'b’ #9. Let gq: W—a'b’ be a retraction map. Now define
g: XX as follows:

g(z) if meW,

g(m):{m £ meW.

Then g is well-defined because W ~ (X\W) = bdry W = {a', b}, and
gi(a’) = a’, g(b') = b'. Clearly, then, g is continuous on X. Also, smce
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g[W]C T and diam W < diamB(g, ) <y, ¢ i8 & y-map. Then Lemma 1
assures us that the function f, defined for each X e 2* by f(H) = g(I)
is a continuous y-map of 9%, Finally, f misses 4 because no image under f
contains WA\a'd’, which is a non-empty subset of A.

Cage 2. Some point ¢ of 4 is not a local separating point of X,
Let y>0 be given so that B(g,»/2) # X. Let N=WubW be the
closed neighborhood of ¢ of Lemma 5, where N C B(q, y/2). Choose any
closed neighborhood M of ¢ such that M CW. Then M v bW is a closed
subset of . Choose any p ¢ bW. Define g2 M w bW->2"" ag follows:

_"[{m} if webW,
GO=\0n i wed.

Then, because bW and M are closed and disjoint, ¢, is continuous.
Because bW is a Peano continuum, 2% iy an AR. Then we have a con-
tinuous extension g, of gy to all of N, go: N—2"". Noto that g ¢ g(e) for
every < N, because ¢ ¢ bW. Now define g: X~~2% as follows:

IR if weX\N,
g(m)ﬂ{gz(m) it meN.

subset of bW, and gu(») = gy(#) = {#} on dbW. Also, ¢ is continuous on
X and o({x}, (@) < y for all ¢ X. Hence the conditions of Lemma 2
are satisfied by g, and the function f: 2% -+2% defined by f(B) = U{g(w)]
# e B} is a continuous y-map. Finally, f misses A because g ¢ g(a) for
each » ¢ X.
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Compactification and the continuum hypothesis
by
James Keesling (Florida)

Introduetion. The purpose of this note is to show the equivalence
of the continuum hypothesis with a statement about the metrizable
compactifications of a non-compact separable metric space. Also we give
a necessary and sufficient condition that 2°¢ = wey; for any ordinal a.

Notation. We use the notation of [2] and [3]. In [3] there is a de-
seription of the well-known correspondence between the compactifications
of o completely regular space X and the closed subrings of ¢*(X) which
contain the constants and generate the topology of X. In this paper we
call a subring of C*(X) regular if it contains the constants and generates
the topology of X.

We denote a cardinal by « and consider the cardinals as a subclass
of the ordinals in the usual way. If « is an ordinal, then o, is the a-th
infinite cardinal.

Main results. The results of this paper are Theorem 1 and Theo-
rem 2.

TEEOREM 1. The continuum hypothesis holds if and only if for some
(resp. all) non-compact separable metric space X, the Stone-Cech compactifica-
tion, pX, of X is the supremum of a chain of metric compactifications of X.

Proof. Suppose that the continuum hypothesis holds, i.e., 2% = .
Then |C*(X)| = 2 and C*(X) can be subscripted C*(X)= {go: a << @}
by the countable ordinals. Let F e a closed regular separable subring of
C*(X). Then erfF corresponds to & metric compactification of X. Now
let y < w; and let I, be the smallest closed regular subring of C*(X) con-
taining F and {g: a < y}. Then F, is separable and {er,fF,: y < @} is
a chain of metric compactifications of X. 8ince | JF, = C*(X) we must

y<oL
have sup{es, fF,} = pX.

Now let us show the converse. Let {2:} be a countable closed discrete
subset of X which is non-compact separable metric. Let A C {;} and
associate with 4 the function f. where fu| {#;} = x4, the characteristic
function of 4 on {w;}. Then {fs: AC {w}} is a closed discrete subset of
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