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versally measurable set, for each e > 0, there exigt Borel subsets U and ¥
of @ such that UCECV and u(V)—u(U) < e Then f(U) and f(V) are
Borel sets satistying F(U) C f(B) Cf(V) and A(f(V))—A(f(U)) < e. Henee
f(B) is a universally measurable set.

Lemma 2, the analogous result for universal null sets, follows fron
the proof of Lemma 1.

LeMMA 2. If G is an element of B, B is a universal null subset of @.
and g 48 g one to one Borel measurable function on G, then g () is a universal
null set.

In the course of establishing Theorem 1, it will be convenient to
denote by J the set of irrational numbers.

TuEorEM 1. If E is a universally measurable subset of B and f is
a bimeasurable function on R, then f(E) is a universally measurable set.

Proof. Let B=R—(8; v 8, 8;) where §; is the set of rational
numbers, 8, = {f(«); #e8;}, and 8= {w; f_l(f(oa)) is uncountable}.
Then B is a Borel subset of J, f(B) is a Borel subset of J, and the restriction
g = f|B of f to B is semi-regular: for each % in R, g~(») is a countable set.
Hence it follows from page 243 of [2] that there is a sequence {B;} of
pairwise disjoint Borel subsets of B guch that | B; = B and the restrictions
g1 = g|B: are one to one Borel measurable functions. Lemma 1 tells us
that each g:(E ~ B;) is a universally measurable set. Thus, since f(R — B)
i3 a countable set,

f(B) = f(E ~ B) © f(E—B) = {{J g«(E ~ By)} v f(E—B)
is a universally measurable set.

Applying Lemma 2 instead of Lemma 1 yields Theorem 2.

THEOREM 2. If E is a universal null subset of R and f is @ continuous
bimeasurable function on R, then f(B) is o universal null set.

Banach’s characterization of CBV functions implies that the CBV
function kb constructed in [1] satisfies m({w; 2" (x)is uncountable}) = 0,
where m denotes the Lebesgue measure. An examination of the. con-

struction for % shows that there is a perfect set P such that h™'(x) is un-
countable if = e P.
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On discontinuous additive functions
by

Marcin E. Kuczma (Warszawa)

One of the classical problems of analysis is this:

Let T be = set on the real line R or, more generally, in the #-dimen-
sional Buclidean space R, and let f be a real-valued function which is
defined in R"™ and additive, i.e. satisties Cauchy’s functional equation:

(1) fle+y) = flo)+f(y)

for z,y e B". Suppose that f is upper-bounded on T. What conditions
upon the seti 7' imply the continuity of f?

The same problem may be stated for functions which are defined
in some convex domain 4 C R" and satisfy Jensen’s inequality (2) in-
stead of (1):
‘ (oty) _ J@) )

) 1F;J< g
for z, y € 4. Such functions will be referred to as @ -conver. This expression
is justified by the observation that they satisfy also the inequality

(3) fll—a)e+ ay) < (1—a)f(®)+af (y)

for ®,y e 4, o rational, 0 < a <<1; and the latter is an immediate con-
sequence of the generalized Jensen formula

f(w1+...+wq

(4) )<$ﬂm+m+ﬂm)

q
tor @y, .., @ped, ¢ =1,2,3,.., which may be found in any textbook
on convex functions, e.g. [2]. In oré(@y to obtain (3) for o= plq,
p=0,1,..,q it suffices to set in (4) ’vl = . = Dgp = Ly Tg—pi1 = ---
=Ly =Y.

R. Ger and M. Kuczma introduce in [1] the following set classes:

A set TC R"™ belongs to the class # iff every @-convex function
f: A>R, T'C AC R", upper-bounded on T, is continuous in 4.

A get TCR™ belongs to the class B iff every additive function
f: R"—R, upper-bounded on T, is confinuous.
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A set T'C R™belongs to the class Ciff every additive function f: "+ R,
(upper- and lower-) bounded on T, is continuous.
Obviously, we have the inclusions

(5) 4CBCEC.

The problems indicated may now be restated as follows: describe the
membres of the classes £ and 3.

As is well known (A. Ostrowski [6] and 8. Marcus [5]), the sets with
positive inner Lebesgue measure belong to #. For a set T'C R", let J(T)
be the smallest midpoint convex set containing T’ (a set 4 C R" is called
midpoint convex provided %(4-+A4)C A). Now, the condition

(6) mald (T)) > 0

is sufficient for a set T to belong to the class s& (M. Kuczma [3], R. Ger
and M. Kuezma [1]); here m. denotes as usual the inner Lebesgue measure.
A conjecture of S. Marcus (cf. [4]) says that condition (6) is also necessary
for the relation T e #. However, this turns. out to be inexact (see the
example after Theorem 3 below). ST

A natural question arises whether inclusions (5) are proper. 1t iy
easy to see that & 5= C. In fact, let f: B"— R be any discontinuous additive
function and let K = {z e R": f(2) < 0}. Clearly, K ¢ 3. On the other
hand, together with any point », the set K contains the sequence (kx),
k=1,2,3,.., and thus any nonzero additive function is unbounded
on K. It follows that K ¢ C. (Another example of a set belonging to C\$
may be found in [1].)

The authors of [1] conjecture that the inclusion 4 C & iy actually
an equality. It is so indeed and this fact is established in the present
paper (Theorem 4). This result reduces certain problems concerning the
boundedness and continuity of @-convex functions to the corresponding
ones for additive functions; and these are sometimes more convenient
to handle.

The method employed in the proof is that of an analysis of the
geometric structure of vector spaces over the field @ of rational numbers.
This seems reasonable in view of the fact that an additive function R"->R
is just a linear map between those sets, regarded as vector spaces over ¢.
In the sequel we shall make use of this fact without an explicit statement.

One of the tools most frequently used in the argunients concerning
convexity and separation in real vector spaces (and consequently in
several branches of analysis) is the famous theorem of Hahn and Banach;
one of its alternative formulations reads as follows:

Let B be a vector space over the field B of the reals and let € be a convex -

sul?set of B with the following property: for every x ¢ B a number ¢y > 0
ewists such that tx € C for 0 <t < cy. Then every linear functional f: X >R
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defined on a subspace X of B, upper-bounded on X ~ O, admits an extension
to a functional F: B R, upper-bounded on C.

An analogue of this theorem for vector spaces over @ would be of
mueh use for us. Two possible generalizations may be stated, for instead
of considering only functionals, i.e. linear maps into @, we may take
into account functions with values in the order-completion R of Q. Note
that linearity with respect to rational scalars is just additivity. We. thus
have two questions:

QuesTION 1. Let B be a vector space over @ and let ¢ be a subset
of B with the following properties:

(i) A—a)C+aCC 0 for ae@, 0 <a<<1;

(ii) for every » ¢ F a number ¢z> 0 exists such that aw < C for a e(),
0<a<Ce.

Further, let f: X—@ be an additive fﬁnct.ion defined on a sub-
space X of B, upper-bounded on X'~ C. Can it be extended to an additive
function F': E->Q, upper-bounded on O?

QuesTioN 2. Let B, ¢, X be as in Question 1 and let f: X—~R be
an additive function, upper-bounded on X ~ €. Can it be extended to
an additive function F: E—R, upper-bounded on C?

We cannot expect a positive answer to Question 1. For if #=R,
0=[—1,1}, X = @, f(&) = & for £ @, then the conditions of Question 1
are fulfilled, and yet f clearly admits no extension to an additive function
R-@, upper-bounded on (. However, whereas the answer to Question 1
is “no’, the answer to Question 2 is “yes” (Theorem 1), and this turns
out to be sufficient for our purposes.

The following terminology and notations will be used in the sequel:

A subset ¢ of a vector space E over @ will be called Q-conves iff

{7) 1—a)C+aCC 0

. holds for ae@, 0 <a<1.

Let #, ¢ A C E. We say that the set 4 is Q-radial at the point m, iff
for every @ ¢ B a number ¢; > 0 exists such that @,+ e e A whenever
ae@, 0 < a < 0 o

Intuitively speaking, a set A is @-radial at x, if it contains a “rational
segment” in each direction from the point @,. .

In the theory of convexity in real vector spaces, notions corresponding
to those defined above are well known. The preseript “@-" is employed
here to emphasize the fact that rational scalars only are involved.

The set-theoretic operations are denoted as usual v, »y, \, U >
whereas the symbols +, - (or absence of a dot) and D', applied to sets,
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stand for the algebraic operations on them. f|4 is the restriction of a fune-
tion f (defined in a larger domain) to the set 4.
Finally we make the following convention:
Greels letters always denote vational numbers.
*
* *

LvmmA. Let E be a vector space over @, X and Y subspaces of Il such
that X C'Y and X has codimension 1 in Y; let C be o Q-convex subset of B,
Q-radial at the point 0; finally, let f: X >R be an additive function such
that flxne < 1. Then there exists an additive function g: YR with the
properties glx =f, glrro < 1.

Proof. According to the supposition we may write
(8) Y=X+Qy,
where ¥ is a point in Y\X.

Consider the sets U,V CX x @, defined by

U=h@5ymex,5>o,“;yeq,
V:kmfymex,5>o,“¥WEQL

.The set ¢ ig Q-ra,dia,l at 0, thus, given an 4 ¢ X, the points (@4 y)/¢ are
in O for sufficiently large & It follows that the sets U and V are non-void.
Write

% =1lu.b. {f(z)—¢: (», &) U},

v=gLb. {§—Ff(2): (#, &) eV},
— o< UK +00, —ooL V< 4o, We are going to show that
(9) w <o
and thus % and v are proper real numbers.

Suppose, on the contrary, that %> ». Then there exists a pair
(#,a) e U such that f(#)—a > v; and there exists a pair (2, f) € V such
that f(#)—a> f—f(2) or, equivalently,

(10) fwte)>atp.
According to the definition of U and V, we have ,2¢ X, a,f >0,
z—
a

yeG’ and MEC’.
. o i
ence, in view of (7)
m+z= a gy p 24y
. e¥F T adf @ Tarp F <O
a ceontradiction to (10) since flx~e <1 and so f@+2) < at-f
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(onsequently (9) holds; let ¢ e [%, v]. Define the desired function g by
glx=1, gy =-¢

and extend it by @-linearity onto the whole of Y (see (8)). It remains
to verify that glyne < 1.
Let -+ ay e Y ~ (; we may assume a # 0. If a > 0, then

and
(11) g+ ay) = f(@)+ac <1 .
If a< 0 then

and (11) also holds.

The following theorem is the key to our further considerations and
gives a positive answer to Question 2 above. Its proof, as well as that
of the preceding lemma, is essentially the same as in the real case.

TeEOREM 1. Let B be a vector space over @, X a subspace of B, and ¢
a Q-conver subset of B, Q-radial at the point 0. If f: X—R is an additive
funetion such that flxne < 1, then there exisis an additive function F: E—>R
with the properties F|x =f, Fle < 1.

Proof. Consider the family 9 of all pairs (X', '), where X* is a sub-
space of ¥, f': X’'—R an additive function such that

XCX'CE, filx=Ff, flxno<l.
M is non-void since (X, f) € M. It is ordered by the relation <, defined by
(X, f) <X, X CX and fle =1

If 9, is any subfamily of 9, linearly ordered by <3, then the pair

(m W X, _77), f being defined in the obvious way, is again in 3. It follows,
o, e -

in virtue of Zorn's lemma, that 9t contains a pair (Xmax s fmax), Maximal

with respect to <. It suffices to show that Xmax =" T; fmax Will then be

the desired extengion A :

Suppose that there exists & ¥ ¢ P\Xmux. Then the space ¥ = Xpax+
+Qy satisfies the condifions of the preceding lemma with Xmex for X;
and the pair (¥, g), where ¢ is the function from the assertion of the
lemma, would be a proper extension of the pair (X'max s fmax), thus con-
tradicting the maximality of the latter.

We ghall now be concerned with the construction of certain discon-
tinuous additive functions.
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TrEorEM 2. Let O be a Q-convex subset of the real line R, Q-radia
at some point. Then either C is am interval or there ewists a discontinuous
additive function F: R->R, upper-bounded on C.

Proof. Assume at the moment that € is Q-radial at 0.
Suppose that ¢ is not an interval. Then there exist @ and y such that

(12) zéC, yeO,
(13) O<e<y or O0>w>y.
Consider the set S CQ x @, defined by

8 ={& 9 A+Eatnyel,n> 0},

8§ is non-void since

(14) (—1,1)ef.
Write
s = Lu.b. {% (&) eS};

we shall see that s < 4-cco. € is @-radial at 0; 50 —ay € C for sufficiently
small a, say, for 0 < a< ¢, where ¢ is a positive constant. Suppose
(€, 1) e 8; then &/y < 1/e since otherwise we would have &y > 1je, &> 0,
0 < /¢ < ¢, and

~Fel, (+fotmy el

(by the definition of §), whence, in view of (7),

1 £ ]
o= H—f((1+§>m+ny)+m(~;iy) <0,

contrary to (12). Consequently, the gquotient é/n is upper-bounded for
(§,9) € 8 and s is a real number; furthermore, s > —1 on account of (14).
Put

(15) fa)=1, flg=-s<1
an extend f by‘ Q-linearity to an additive function f: XK, where
X = Qu+Qy; this is possible since # and y are @-linearly independent

in view of (12) and (13) and the @-convexity of C.
We are going to show that

(16) flzne<1.

Suppose, on the contrary, that there exists o point aw+fy ¢ 0 with
flaz+By) > 1 or, equivalently,

Bs < a—1,
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nonsider three possible situations:

1. 8> 0. Then (a—1)/f > s, which is impossible since (a—1, f) e S.

2. B=0. Then a>1, ax ¢ whence, by the @-convexity of 0,
2 ¢ ¢, contrary to (12).

3. p< 0. Then s> (1—a)/(—p) and there exists, by the definition
of s, a pair (£, ) ¢ § sueh that &y > (1—a)/(—f), > 0, whence

an an > n-+pE .
Write
o =B+
n—p

then, by (17), £ > 1. The pair (£, %) is in 8; so (L+&a+ny € C. Hence,
in view of (7), the points

)

(A +&z+m)
and finally .

oy =P
SR R

u =Zl-(aw+ﬂ?/), "=

are in €. However, this is impossible, since 2= %, as is easy to verify.

Consequently (16) follows and f may be extended to an additive
function F: R—~Rsuch that F|e < 1, onaccount of Theorem 1. F'is discon-
tinuous in view of (13), (15) and the fact that every continuous additive
function R—R is a constant multiple of the identity.

The theorem is thus proved in the case where the set ¢ is @-radial
at 0. If is is Q-radial at some other point z,, then the set € —a, is @-radial
at 0 and the preceding case applies to the finding of a discontinuous
additive function F: R—R- such that Flg,, < 1, provided € is not an
interval. It follows that Fl¢ < 1-4F(2).

TuEoREM 3. Let C be a Q-convew subset of the m-dimensional Bu-
clidean space R", Q-radial at some point. Then either C contains a ball or
there emists a discontinuous additive function F': R*—R, upper-bounded on C.

Proof. We may assume that € is @-radial at the origin, replacing C,
if necessary, by an appropriate translate of it (see the last argument;
in the proof of Theorem 2). Assume further that there exists no discon-
tinuous additive function, upper-bounded on €. We are going to show
that the origin is then an interior point of C.

The proof will be by induction on . The case of n =1 is the con-
sequence of the preceding theorem since 0 is certainly an interior point
of any interval, @-radial at 0. .

Assume that the assertion is true for some # and suppose that 0C R™*".
Let ¢, ..., éx be the usual orthonormal basis for E™; thus R™ = Re,--
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-+ R", where R" stands for Re,+ ... + Re,. There exists neither a discon-
tinuous additive function f: Re,— R nor a discontinuous additive function
f: R"-> R, upper-bounded on Re, ~ ¢ resp. R” ~ O since otherwise such
a funetion might be extended to a discontinuous additive function
F: R*' R, upper-bounded on 0, according to Theorem 1 —and this is
a contradiction to our assumption. Thus the origin is in the (1-dimen-
sional resp. n-dimensional) interior of the two sets K¢, ~ ¢ and R* ~ q,
on account of Theorem 2 and the induction hypothesis. In orther words,
there exists an r > 0 such that

(18) {teo: 1t <1} {a eR™ || < r}C ¢

{I-Il is here the Euclidean norm.
We shall prove that the ball {z « R*™": |lz|| < #/y/2} is contained in (.
Suppose that # = a-®,6,, where a € B", 2, ¢ R, is a point in B™"" such that

(19) @l = llalP+ lmol* < 72/2;

the proof will be complete if we show that e C.

If [lafl = 0 or |z = 0, then the assertion follows from (18) and (19).
‘We may thus assume that both summands in (19) are positive. We have,
by (19), lla]l+ |2l < r and hence

0 < |wy| < r—Jal| < ».

So there exists an a e @ such that

(20) o<'“’”7°‘<a<1_“j‘__”<1.

Write s = 1/(1 —a), i = @/a. Then sa ¢ 0, e, « ' in view of (18) and (20),
‘whence
T = a+2o6y = (1—a)sa+ ate, e C .

T!ue follewing example indicates that the assumption that ¢ is
Q-radial at some point cannot be omitted in Theorems 2 and 3.

BExawere. There exwists a set K C R with the properties:

(i) K is Q-conves;

(i) mi(K) = 0;

(iii) f =0 4s the only additive function R->R, upper-bounded on K.
. Proof. Let {hi}_sz be a Hamel basis for the vector space R over ¢,
1gdexed by the ordinals smaller than the least ordinal I of power con-
tinuum. Every z e R, » 5 0, has a unique expansion

21) = ahot.tamhy,, h<.o<id, @ #E0, .. a0,
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‘We have
(22) R={J X,
i<I
where
Xi= D) Qh;.
i<i

K is defined as the set of those x’s for which the coefficient oy in the
expansion (21) is positive. In fact, K has the desired properties (i), (ii), (iii):

(i) Straightforward verification.

(ii) Suppose that my(K) > 0; then the set K+ K would contain an
interval of positive length, in virtue of the theorem of H. Steinhaus, [7].
However, this is impossible since K +K = K and K is disjoint with the
set Qh,—h,, dense in R.

(i) Let f: R—~R be an additive function such that flx < M. For
2 € X; we have @+ ki € K; 50 f(z) < M—f(hi). Thus f|x, is upper-bounded
and, consequently, flx, =0 since X; is a @-linear subspace of R. Now,
(iii) follows in view of (22).

Recall the definition of the classes 4 and 3.

The above example contradicts the conjeture of 8. Marcus, mentioned
in the introduction, that all sets which are in # enjoy the property (6);
for mi(J(K)) =0 by (i) and (ii), yet K e B by (iii) and thus also K e 4,
on account of the following

THEOREM 4. £ = 3.

In other words: Let T be a set in R"; suppose that there exists a Q - conves
funetion f: A—R, defined and discontinuous in a convew domain 4, T C 4
C R™ and that f is upper-bounded on T. Then there exists a disconttnuous
additive function R"—> R, upper-bounded on T.

Proof. Suppose flr< M and write O = {zwed: f(x) < M}. The
set C is Q- convex in view of (3). It is not difficult to see that C is @-radial
at each of its points. In fact, let @, € ¢ and @ <R"; 4 is open, so there exists
a y > 0 such that #,+yz 4. Now we have, by (3),

o a) = £ ({1 =) k2 +-y0)) < (1) o+ ot 72)

V4 e Y Y
for 0 <a<y; s0
limsupf(#,+ ax) < flwy) < M
and "
Fl@ot+aw) < M
for small a; but this means just that ¢ is @-radial at .

Qertainly ¢ contains no ball, for a Q- convex function, upper-bounded
on a ball, is necessarily continuous. Finally, observe that T C (.

The assertion follows in virtue of Theorem 3.
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Remarks on Anderson’s paper
“On topological infinite deficiency”

by
H. Torunczyk (Warszawa)

Suppose that the topological space X is the product of &, copies of
an interval J which is either closed or open. A closed subset 4 of X is
said to be of infinite deficiency (briefly: deficient) in X if there exists
a homeomorphism » of X onto itself such that, for infinitely many 3,
the natural projections =;h(4) are (at most) one-point sets in the in-
terior of J.

The sets of infinite deficiency have been systematically investigated
by R. D. Anderson in [1], [3]. The importance of these sets lies in their
topological negligibility property (see condition (g) of Theorem 1 in this
paper) and the property of extending homeomorphisms (here: Theorem 5);
both properties have been established in their final form by Anderson,
but the pioneer work in this respect was done by Klee ([9], [10]). For
other results concerning negligibility see also [5], [6], [7], {8]. The theory
of deficient sets can easily be transferred to the case of separable infinite-
dimensional Fréchet spaces.

The present paper is a contribution to the theory of infinite deficiency.
In Section 1 we establish some topological characterizations of sets of
infinite deficiency. One of them (condition (ii) in Theorem 2), applied
to F, sets rather than to closed sets, gives a characterization of
o-deficient sets, i.e. of countable unions of deficient sets. This class of
sets, being a natural generalization of deficient sets, is discussed in Sec-
tion 2 (*). Finally, in Section 3 we establish a theorem on extending homeo-
morphisms to the pair: Hilbert cube @ and its pseudointerior s, which
is an analogue of the above-mentioned theorem of Anderson, dealing
with a single space X which is either @ or s.

Our results are derived from two theorems of Anderson, which are
stated explicitly as Theorem 1 in Section 1 and Theorem 5 in Section 3.

(*) Added in proof. o-deficient sets (sets of type Z,) and their relations to
problems of negligibility have been studied by R. D. Anderson and his colaborators,
see, e.g. [5].
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