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let (X4, d’) denote the (metric) quotient space oblained by identifying

points which are zero distance apart. D has the obvious partial order

induced by the quasi-order <. The canonical map fup is the one induced

by Id: (X, d)) (X, da), where of course de<ds. Then the natural maps

(X, D)_;]zj (X, d) —>ﬂ D(Xd, d') give the obvious M - Lipschitz isomorphism
€ €

onto limproj(Xga, d’).

For (X,D) an M-Lipschitz structure, define Lip(X, D) to be
[f: X—R| fis a bounded, M -Lipschitz function]. (We use the customary
metrie for R.) For any pseudometric d on X, seti Lip (X, d) == {f+ X .- 1|
1f(@)—F)| < kd(z, y) for some k> 0}. Lip(X, d) iy o Banach space [8).
In [2] it is shown that d <e iff Id: Lip(X, d)->Lip(X, ¢) is a continuouy
imbedding. Hence {Lip(Xz, d'| d ¢ D} is an inductive family of Banaeh
spaces. We topologize Lip(X, D) with the inductive limit topology.

As was mentioned before, from the fact that I is countably generated,
we cannot conclude that D is generated by a single pseudometric. ITowever,
we do have

6.6. TusorEM. Let D be countably generated. Then Lip(X, D) is
a Frechet space iff D is generated by a single pseudometrie,

Proof. If D is generated by d, then Lip(X,.D) ~ Lip(X, d) by the
identity map. :

Now suppose Lip(X,.D) is a Frechet space and D iy gencrated by
{di}, i=1,2,... We assume without logs of generality that d;< dq., for
each 4. The inductive limit topology is the strongest locally convex
topology making all of the injection majps Lip(X , d) -Lip(X , D) continuous,
- By a theorem of Grothendieck [5], Lip (X, D) is isomorphic to Lip (X, d)
for some » via the injection map. Then since Lip(X, dy)-»Lip (X, doz)
must be an isom'orphism for each %, dy, ~ dny. Thus D is generated by d,.
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Topologies uniquely determined by their
continuous self map

by
Joseph C. Warndof (Arkansas)

The major content of this paper is the search for topologies which
are unique among the topologies for a given set with respect to their
continuous self maps. Several classes of such spaces shall be given. Among
them are the locally Huclidean, T,-spaces; the separable metric, locally
connected continua; all spaces of CW-complexes; and the non-discrete,
eofinite spaces.

Tor notation let a pair (X, U) denote a topological space if X is the
set of points in the space, and U is the collection of all closed subsets of
the space. This variation from standard is a convenience to this study.
If (X, U) is a topological space, let C¢(U) denote the collection of all fune-
tions from X into X which are continuous with respect to U. A space
(X, U) is special if and only if the only topology 7V on X such that C(U)
= (V) is the topology ¥V = U. If  is a class of spaces, then a space (X, U)
in Q is Q- special if and only if the only topology ¥ on X such that (X,V)is
in @, and C(V)= C(U) is the topology V= U. A space (X, U) is
T,-special it and only if it is @-special when @ denotes the class of all
T, spaces.

Now the problem may be described as the search for special spaces.
The method will involve the study of spaces which are both maximal
and minimal in the lattice of 7T,-spaces with respect to their continuous
self maps. Then conditions shall be given under which a T;-special space
is special. In the process a class of spaces which are absolutely minimal
T, -spaces with respect to their self maps shall be studied. There is a close
relationship between this study and the study of S -admissibility [3].
This relationship shall be clearified, and several theorems on the con-
struction of S-admissible classes shall be given.

Additional notation. If (X, U) and (¥, V) are spaces, let C(U, ¥)
denote the set of continuous functions from (X, U) into (¥, V). Let b
denote the set of all functions from X into Y. Let 2% denote the set of
all subsets of X. If f and g are two functions such that the composite
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funetion f of g is defined, then let feog denote that composite. If X ig
a set, let 1x denobe the identity map on X.

1. Generated spaces.

DerFINITION 1.1, A T,-space (X, U) is generated if and only if for
every T, topology V on X such that O(U)CO(V), UCV.

I F C X~, then an F-fiber is the inverse of a point under a map
in F. It is simple to establish that a space (X, U) is generated if and
only if the set of all O(U)-fibers ig a subbasis for U (recall thati U is the
collection of closed sets). In fact we have

TueorEM 1.1. If F C X%, then there is a coarsest Ty-topology U on X
such that T C O(U). Also this topology is gemerated.

Proof. Let I’ denote the smallest subset of X~ which iy closed wnder
composition and contains F, 1x and all constant maps of X into X.
Let U be the topology for which the F’-fibers are a subbasis. Since 1y ¢ 1,
(X, U) is T,. Since F" i closed under composition, the inverse of an
F'-fiber under a map in F' is still an F'-fiber. Thus F C 7' C O(U). Since
the F'-fibers are cloged in any T, space on X for which the members
of 0(U) are continuous, (X, U) is a generated space.

It should be mentioned that the clags of S*-spaces (spaces (X, U)
such that the O(U)-fibers form a basis for U) differs little from the
class of generated spaces [4]. We shall construct an example to show thut
they are not identical. Let C denote the Cantor set on the unit interval
of the real axis in the complex plane. Let A denote the unit interval on the
imaginary axis. We shall construct a topology on (v A u {—i}. Let
C v A inherit its topology from the plane. A basic open set for —4 ghall
be any set which containg —4 and all but a finite number of non-zero
points in . This is a generated space. Let X consist of —4, 4 and all members
of ¢ which are greater than }. Any continuous self map which takes I
to a point must also take 0 to the same point. Thug this is not an §*-gpace.

DermnrTiow 1.2, If X is an infinite set, and 4 is an infinite cardinal
number, therf let Xja = {K CX: K = X or cardinal of I ig less than a}.

If o is the cardinal of the integers, then (X, X/a) is the cofinite space.
For every infinite cardinal a, (X, X/a) it a T,-space. If a is greater than
the cardinal of X, then (X, X/a) is the discrete space.

THeOREM 1.2. If X is an infinite sel, and o is an infinite cardinal
number, then O(X|a) = {f ¢ X*: f is constant or for every w ¢ X, the cardinal
of f ) s less than a}. ’

Px_wl)of. It fe C(Xa), then since (X, X/a) is Ty, f is constant or
each [ (w) is closed and has cardinal less than 4. Now suppose ge XX
and each g~'(x) has cardinal less than a. If K is a non-trivial n‘rlem‘ber,
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of X/a, then K has cardinal less than a. Thus g~4(K) = U gx) (z e K)
has cardinal less than a. Hence g e 0(X/a).

TeeoreM 1.3. If X is infinite, and a is an infinite cardinal, then
(X, X/a) is generated.

In fact, by Theorem 1.2 every closed set in (X, X/a) is a C'(X/a)-fiber.

COROLLARY 1.3. All cofinite spaces and all discrete spaces are generated.

DErFINITION 1.3. If M is a collection of 7,-spaces, and (X, U) is
a T,-space, then (X, U) is related to M if and only if for every topology V'
on X such thatforeach (¥, W)e M, C(U, W)C C(V, W), UCV. AT,-space
(X, U) is related to a Ty-space (¥, V) it and only if (X, U) is related
to the singleton collection {(¥, V)}.

This is just a partieular situation involving projective limits in Ty-
spaces. It is not difficult to verify the following two equivalences:

DEFINITION 1.3(A). If (X, U) is a T,-space, and M is a collection
of T,-spaces, then a U-M-block is the inverse of a closed set in some
space (Y, V) in M under a function in (U, V). Then (X, U) is related
to M if and only if the collection of all U-M -blocks is 2 subbasis for U.

DerNrtioN 1.3(B). If (X, U) is a T,-space, and M is a collection
of T,-spaces, then (X, U) is related o M if and only it (X, U) can be
embedded in some product of copies of members of M (not necessarily
finite — no restriction on the number of copies of each member of ).

It is interesting to note the similarity between the next theorem and
the fact that a compact, T,-space can be embedded in a product of copies
of members of a seb M of T,-spaces provided the continuous maps of the
space into the members of M form a point separating collection. (A eollec-
tion of maps on a common domain X is point separating if and only if
for each pair of distinct points in X there is a map in the collection which
takes this pair to a pair of distinet points.)

Tt will be helpful to note that it (X, U) is a space and ¢ C U, then &
is a subbasis for U if and only if for each Le U and p e X—1I, a finite
subset of G covers L but not p.

THEOREM 1.4. If (X, U) is generoted, M is a set of T'-spaces, and
P={CU,V): (X,V)eM} is point separating, then (X, U) is related
to M.

Proof. et @ £ LeU and peX—L. Since (X, U) is generated,
the set of C(U)-fibers is a subbasis for U. Thus there exist C(U)-fibers
Ky, K,, ..., Ku such that LZC|J Ky, and p ¢ | K;. Now K, = “x) for
some feC(U) and zeX. Since f(p) # @, there exists (Y,V)e M and
geC(U,V) such that g{f(p)) # g(»). Now K, C(g=f)g(w), and
pélg of)*l(g(m)). Similarly each K; is a subset of some F-fiber which does
not contain p. Thus L_is covered by a finite set of F'-fibers which does

Fundamenta Mathematicae, T. LXVI 3


GUEST


28 J. 0. Warndof im©

not cover p. Since each F'-fiber is a U-M-Dlock, the set of U-M -blocks
is a subbasis for U, and (X, U) is related to M.

TueoreM L.5. If (X, U)is related to M, and cach space in M is genera-

ted, and for every (Y,V)e M, C(V, U) is point separating; then (X, U)
is generated.
Proof. Let@ # Le U, and p e X— L. Since (X, U) iy related to M,
there exist U-M-blocks Ky, Iy, ..., Ky such that L C | ) Ky, and p ¢ | ) Iy,
Thus K, = fH) for some (¥, V)elM, feU(U,V) and V. Since
(Y, V) is generated, and f(p)¢ H, there oxist ¢, gy «voy gm ¢ O(V) and
Ys Yoy oy e T such that I C LJgT (g, and f(p)¢ L) gi'(yo). Thus
K CU(giof) ™y, and pe U (gse ) () Lot 200 | ({0, W):
(Z, W)e M}. Then each ¢;of e, and I{; is a subset of a finite union
of F-fibers which does not contain p. Similarly, each J; is & subset of such
and p ¢ | Ji. Now for some (Z, W) e M, he C(U, W)and g ¢ Z,J, :-:nlb"’l(z).
Thus h{p) # #. Since O(W, U) is point separating, there exists ¢ ¢ ¢(W, U)
such that t{(p)) # t(e). Hence JyC (¢ <h)(i()), and p ¢ (to h)(i(z).
Sl{mlarly, each J; is a subset of some CO(U)-fiber which does not con-
tain p. Thus L i3 covered by a finite number of ¢(U)-fibers which do not
cover p. Hence the set of ¢(U)-fibers is a subbasis for U, and (X, U)
is generated. ‘
Due to Theorem 1.4, Theorem 1.5 may be stated as follows:
T%IEOREM 15(A). If M is a set of generated spaces, (X, U) is homeo-
m?rphm to a sabs_’paae of & product of copies of members of M, wnd for every
(Y,V)e M, (X,V) is homeomorphic to a subspace of a product of copies
of (X, U), then (X, U) is generated.
Trmormm 1.6. If for every a e A, Xu is a generated space, then []Xa
(@A) is generated.
Proof. Since each X, can be embedded in [[X,, Theorem 1.5 is
applicable.
THEOR»EM.LT .If (4,V) is a subspace of a generated space (X, U),
and C(U, V) ds poini seperating, then (A,V) is generated.
Proof. See Theorem 1.5.
TrrorEM 1.8. If (X, U) is generated, (X, V) is Ty, and V C U, th
: 2 is T en

(X, U) is related to (X, V). B Y =0
. Proof. Since VC U, 1x ¢ C(U, V). Thus C(U, V) is point separating.

Then by Theorem 1.4, (X, U) is related to (X, 7).

£ gmomm 1.9 (Magill). If (X, U) is completely regular and Ty, and
(X, T) contains a copy of the wunit interval, then (X , U) ds generated [4].
HEOREM 1.10. If (X, U) 4s T, and compl ¥y
pletely regular, (X, V) is

generated, and U CV, then (X,V) 4s completely regular and _’i‘g.( i
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Proof. By Theorem 1.8, (X, V) is related to (X, U). Hence (X, V)
can be embedded in a product of copies of (X, U). Hence (X, V) is T, and
completely regular.

TaeoREM 1.11. If (X, U) is generated and T,, then (X, U) is Ts.

Proof.Let K ¢ U and p ¢ X — K. Since (X, U) is generated, there exists
a finite union of the form | ) fi '(ps) where each f; ¢ C(U), and each p; e X,
and such that K C \Jfi'(py), and p ¢ |7 (p:). For each i, fi(p) # ps,
and there are disjoint open sets u(¢) and v(7) such that fi(p) e v(4), and
pi e 4(d). Thus {Jf7 (u(s) covers K, and [ f7'(v(i)) covers p. Hence K
and p ave separated, and (X, U) is regular,

TaEOREM 1.12. Assume (X, U) is compact, Ty, and for every p,qe X
with p # g, there ewist C(U)-fibers Ky, Koy ...y Ky such that | J Ki= X,
and no I; contains both p and q. Then (X, U) is generated.

Proof. By Theorem 1.1 there is a coarsest Z;-topology ¥ on X such
that ¢(T)C ¢(V), and (X,V) is generated. Thus ¥ C U. To show that
(X, V)is Tyletp, ¢ e X with p 5 g. There exist C(U)-fibers K, Ky, ..., En
such that | Ky = X, and no K; contains both p and ¢. Since C(U) C C(V),
and (X, V) is Ty, each Ky e V. Let Ly = | J {Ks: p e Ky}, and Ly = | {E:
p ¢ Ki}. Then Lp,LyeV,Lp v Lo=X, pelp, qelq, q¢Lp and p ¢ Lq.
Thus X —Lg and X —Lp separate p and ¢ in (X, V). Thus (X, V) is T,.
But (X, U) is minimal T, because (X, U) is compact ([7], Theorem 16.21,
p. 126). Thus V C U implies that V= U. Hence (X, U) is generated.

In closing this section it is worthy of mention that K. D. Magill,
Jr. has given an example of a non-degenerate continuum by H. Cook
which is not generated ([4] and [1]).

2. Upper special spaces.

DErFINITION 2.1. A space (X, U) is upper special if and only if the
only topology ¥ on X such that UCV, and O(U) = C(V) is the topology
V="U. )

TamorEM 2.1. If (X, U) is generated and upper special, then (X, U)
is T,-special.

Proof. Trivial.

DEFINITION 2.2. A space (X, U) is fidl if and only it (X, U) is
a T,-space with no isolated points, and the only topology ¥ on X with
no isolated points and such that U CV and C(U)C C(V) is the topology
V="U.

THEOREM 2.2. If (X, U) is full, then (X, U) is upper special.

Proof. This is a result of the fact that a point p “of a T,-space is
isolated if and only if some function which takes the complement of p
to a point in the complement of p and leaves p fixed is continuous.

3%
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DeerNtroN 2.3. If ¢ X and f e X%, then f is @—a if and only it
o) = . i

Dermvron 2.4, If s X, ACX, and FCXY, then A is o-large
over ' if and only if ACX—w and there exist fi, fas vy Ju € I such that
for 1 <4<, fi is o—au, and X—g= Uf[’(fl) (L =<4 =<n).

DErNmIoN 2.5. Let X be an infinite set, and FC X . Define con-
dition F-1, condition F-2, and condition F-3 as follows:

CoxprrionN F-1. The map 1x T, and for every fygel, fogel

CoxprmioN F-2. If {Ky, Ky, ry Kn} 48 @ finite sel of H'-fibers, then
either X = | Ki or X— \J Ku 4s infindte.

Cowprron F-3. If weX and AC X—w, then either A 18 w-large
over B or [(X—u)—A4] is w-large over .

DEFINTIION 2.6. Tf 7 C X~, then the F'-collection is tho sel {K C.X:
if fiy fay ooy fo € F, then UfifK)=X or X~ UK is infinite},

THmoREM 2.3. Suppose X is an infinite sot, F'C X¥, T satisfies B-1,
-2 and F-3, and U is the F'-collection. Then (X, U) is @ full topological
space, F'C O(U), C(U) satisfies 0(U)1, O(U)-2 and O(U)-3, and U s
the C(T)-collection.

Proof. (The proof it lengthy and will be pregented ag a sequence
of lemmas.)

LEMMA 1. The set X e U, and each finite subset of X is in U.

Proof. If K is a finite, non-empty subset of X, let fi, fo, ooy fu e F.
Since K is finite, each fi*(K) is a finite union of F'-fibers. Thus (Jfi(K)
is a finite union of F'-fibers. By condition F-2, K e U. That X ¢ U, and
@ e U is obvious.

IevmmA 2. If e X, ACBCX—a and A s x-large over T, then B
s w-large over F.

Proof. Since A is z-large over I, there exist o — o functions fi , fuo; ...y I
in F such that X—o= {Jfi"(4)C UF(B). For each 4, file)= ¢DB.
Hence # ¢ |JfiYB), and X —w = Jf7(B). Thus B is x-large over F.

LevmA 3. Ifwe X and X —w= Ay v 4y v ... An, then there eaisls 4

such that 1 <t < m, and A; is @-large over I'.

Proof. For m =1, the result follows from the fach that 1y eI
If m = 2, and 4, is not w-large over I, then since .4, ¢ontains the com-
plement of 4, 4, is z-large over I by condition F-3 and Lemma 2. Now
suppose the lemma holds for m =k = 2. If X—w= (4, v d,) v dyv
U v Axu Ay, then either some 4; is x-laxge over X' or 4, v 4, is
x-large over F. Tf A; o A, is @-large over I, then there exist @—o func-
tions fi, fay ..., fu in I such that

X—w= Uf;l(-Al v Az) = (Uf;l(-Al)) w (Uf;l(A2>) (1 gj <n).
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As in the case m = 2 we have sufficient conditions to assume without
loss of generality that {Jf; (4,) is z-large over F. Thus there exist z—w
functions gy, gas «».y §s SUCh that

X—o=Ug UM @<i<n)] @<i<9)
=U{fiem 4 A<<isn, 1<IKs).

Since each fj o g¢ is ®—m, A, is #-large over F.

Tevia 4. If K ¢ U, then there emist s ¢ X and fi, fos ey Jn € B such
that X—z= Jfi (K) L <i<n)

Proof. Since K ¢ U, there exist gy, gay .oy gm ¢ F' such that the set
X— Jgi'F) (1 <4< m) is non-empty and finite. Now let the set
XU g (E) = @, @y, 0o .o, Bp}. Thus X — = {8, Ty .o, Tp} (UgTHE)).
NOW {#,, %3, -, #p} is DOt -large over F' because {@y, sy vy Dp} 18 finite
and is & member of U by Lemma 1. Thus by Lemma 3, Uygi YK) is
g-large over F. Hence there exist z—a functions hy, hoy ..y hs € F' suCh
that

URUGHE) A<i<m)] (<j<s)=X—w.
This implies that
Ulgieb) (E) 1<i<m, 1<j<s)=X—w.

This completes the proof.

Tmmua 5. If Ky, Kye U then Ky v Ky e U

Proof. Suppose not. By Lemma 4 there exist# ¢ X and fi, foy ey fo € T
such that X—a = (U7 (&) v (Ufi'(Xe). Using Lemma 3 we assume
without loss of generality that (U fi Y(K,) is @-large over F. This implies
that K, ¢ U. This is a contradiction. ‘

LemmA 6. If {Ky: beBIC U, then [\ Kp(b eB)y=KeU.

Proof. Suppose K ¢ U. By Lemma 4 there exist » e X and fi, foy -
s faeF such that X—o= Ui (K) 1<i<n). For 1<i<n there
exists 4’ ¢ B such that fy(z) ¢ K because fi(#) ¢ K. Now U fi (K)CU fii(Ey)
hecause K C Ky. Since o ¢ |Jfi (Kv), X—o = Ufi(Ey). By Lemma 3
there exists s such that f; (Ky) is @-large over F. Thus there exist 2—a
functions gi, gz, -y gm in F such that X —o = U g T E ) (L <j < m).
This implies that X—xz= |J(fse g H(Es) (1 <j<m) Hence Ky ¢ U.
This is a contradiction.

LEnMA 7. The space (X, U) is a Ty-space, and FCCO(U).

Proof. By Lemma 1, Lemma 5 and Lemma 6, (X, U)is a T,-space.
Suppose there exists f ¢ F such that f¢ 0(U). Then there exists Ke U
such that f'(K) ¢ U. By Lemma 4 there exist » eX and fi, fay s fn el
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such that X —z = U fi (f 7 (F) @ <4
This is & contradiction.

TumuA 8. The space (X, U) has no isolated points.

Proof. Suppose p is an isolated point of (X, U). Then X—pe U.
But 13X —p) = X—p, and X— (X —p) is finite. Thus X—p ¢ U. This
is a contradiction.

LEMvA 9. If {Ky, Koy oy Kn} @5 @ finite set of C(U)
either | JK;=X or X— UK{ s infinite.

Proof. Since (X, U) is Ty, each Ky ig closed and ) Iy i3 cloged.
Since (X, U) has no isolated points, X — {J K, is infinite or empty.
Tmarca 10. The collestion C(U) satisfies O(U)-1, C(U)-2

¢(0)-3.

Proof. That O(U)-1 is satistied is obvious, and C(U)-2 follows from
Lemma 9. Now C(U)-3 holds because by Lemma 7, F'C O(U).

LEmmA 11. The collection U 4s the O(U)-colleetion.

Proof. Let U’ denote the €(U)-collection. By Lemma 7, I'C C(U).
Thus U’ C U. Suppose there ex1sts K e U—U’. Then there exist fi, fy, ...

<n)= U (f o f)H(X). Thus K ¢ U.

-fibers, then

and

wey fu € O(U) such that X ;é Ufix , and X - |Jfi*(X) is finite. Since
KeU, and each fie C(U), Ufi(E)e U. This contradicts Lemma 8.
Thus U' = U.

LEMMA 12. The space (X, U) s full.

Proof. Suppose not. Then there exists a topology ¥V on X such
that UCV, U=V, C(U)CC(V), and (X,V) has no isolated points.
Let v e V— U. Then there exist # ¢ X and fi,fy, .., fo € O(U) such that
X —2 = |Jfi'(v) by Lemma 4. Since v ¢ V, and each f; e C(V )y Uf () e V.
Thus X—a « V. Thus # is an isolated point of (X, V). ELhm is a contra-
diction.

Now Theorem
and Lemma 12.

TaEOREM 2.4, Suppose (X, U) is a Ti-space which has no isolated
points, and for every © ¢ X and for every A C X—w such that » is a limil
point of A with respect to U, A is x-large over O(U). Then O(U) satisfies
G(-1, C(U)-2 and O(U)-3, and U is the C(U)-collection. Thus (X, U)
is full.

Proof. It is clear that O(U)-1, C(U)-2 and O(U)-3 hold. Let U’
denote the ((U)-collection. Suppose u e U. I fy, fu, .., fu € C(U), then
\UfiYw)e U. Since (X, U) has no isolated points, |Jfi(u)=X or
X— Jfi'(w) is infinite. Thus %« U’, and U C U'. Suppose K C X, and
K ¢ U. Then there exists p ¢ X — K such that p is a limit point of K with
respect to U. Thus K is p-large over C(U). Hence K ¢ U'. Thug U = U’,
and U is the C(U)-collection.

2.3 follows from Lemma 7, Lemma 10, Lemma 11

icm
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3, More about upper special spaces.

DeFmITION 3.1. A space (4,V) is an h-retract of (X, U) if and
only if (4,7V) is a subspace of (X, U), he 0(U, V) and the restriction,
hld, of b to A is La.

TrorEM 3.1. Suppose (X, U) s Ty, and (4,V) is an h-retract
of (X, U).

(@) If (4,V) is upper special, then for every topology W on X such
that UCW and O(U)= O(W), (4,7V) is a subspace of (X, W).

(IT) If (4, 7V) is special, then for cvery topology W on X such that
o(U)= C(W), (A V) is a subspace of (X, W).

Proof. (I) Let (4,V’) be the subspace of (X, W). Since ke C(U)
= (W), (4, V") is a retract of (X, W). Thus C(V) is the collection of
restrictions to A4 of funetions in C(T, V), and C(V’) is the collection of
restrictions to A of functions in C(W,V’). Hence O(U)= C(W) implies
that €(V)= C(V'). Now UC W implies that ¥ CV’. Thus since (4,7)
is upper special, V= V".

(IT) As in (I) we conclude that C(V)= C(V'). Thus V =¥’ because
(L, V) is special.

DerFNrTION 3.2. (I) If W is a collection of spaces, and (X, U) is
a space, then (X, U) is anti-related to W if and only if U is the finest
topology on X such that for every (¥, V) e W each element of C(V, D)
is continuous from (¥, V) into X.

(IL) If (X, U) and (¥,V) are spaces, then (X, U) is anti-related
o (Y, V) if and only if (X, U) is anti-related to the singleton collection
{(¥, M)}

Tt is clear that if f is an identification map of (X, U) onto (Y, V),
then (¥, V) is anti-related to (X, U). Also if (X, U) is coherent with
respect to a collection W of subspaces of (X, U), then (X, U) is anti-
related to W. (The space (X, U) is coherent with respeet to W if for each
K C X such that K ~ 4 is closed in A4 for every 4« W, K e U [6].) (Some-
times called the weak topology.)

THEOREM 3.2. Suppose W and Z are collections of subspaces of (X, U),
and (X, U) is coherent with respect to Z. If each member of Z is the image
under an identification map of some member of W, then (X, U) is anti-
related to W.

Proof. Suppose not. Then there exists a topology V on X such
that V is strictly finer than U, and for each (4, T) « W, C(T, U)C O(T, V).
There is a K ¢ V such that for some (B, 8) ¢ Z, K ~ B ¢ 8. Thus if (B, &)
is the subspace of (X,7V), then § # 8. Since UCV, SC&'. For some
(4,T) W, (B, 8) is the image under an identification map fof(4,T).
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Now f¢ C(T, 8"). Hence fe C(L, U), and f¢ C(T,V). This conlradicts
the fact that (T, U)C O(T,7).

TamorEM 3.3. If (X, U) is amti-related to a collection W of upper
special retracts of (X, U), then (X, U) is upper special.

Proof. Suppose V is a topology on X such that UCV and C(U)
= ((V). By Theorem 3.1 (I) each space in W is a subspace of (X, V).
T4, T) is an h-retract of (X, U) in W, and f « C(T', U), then f o h e C(U)
= O(V). Hence f = (f o h| 4)  C(T,V). Thus for each (4,T) ¢ W, C(1, U)
C 0(T, V). Now since (X, U) is anti-related to W, V == U, Ience (X, U)
is upper special.

We now seek sufficient conditions under which a finite product of
copies of a space (X, U) is coherent with respect to the collection of all
copies of (X, U) in the product space.

DEFINITION 3.3. A space (X, U) is sequentiol if and only if (X, U)
is Ty, and for every A C X and for every limit point p of A there exists
a sequence of distinet points of 4 which converges to p. A space (X, U)
is homosequential if and only if (X, U) is sequential, and if x, 2y, ... is
a sequence of distinet points converging to a point #, and f is a function
from {&, z;, @,, ...} into X such that f(®,), f(2.), .. converges to f(x),
then there exists g e C(U) such that g agrees with f at » and on some
subsequence of @y, &y, ...

) It should be mentioned here that T, and first countable imply se-
quential, but the converse is not true. A. cofinite space provides an example,

It is also clear that convergence of a sequence does not imply unique
convergence.

THEOREM 3.4. If for 1 <<i<cm, Xi 45 a copy of a homosequentinl
space (X, U), and T1X: (1 <i<n) is sequential, then [[ Xy is coherent
with respect to the collection of all copies of (X, U) in [] X,.

We need the following

Levma. If @, @, @, ... 98 a sequence of distinct points of X which
converges to », and f is a function from {&, &, @y, ..} into [[ Xi (1 <425 m)
such that f(a,), f(#:), ... converges to f(x), then there ewists @ conlinuous

map ¢ from (X, U) into [] X such that g agrees with f at ® and on some
subsequence of @y, @y, ...

Proof. The case n=1 is a result of the fact that (X, U) is homo-
§equentia1. Assume the result for # <%, and assume that f(w,), f(a,)
is a sequence of points of [JX; (1 < i< k1) which eonverges, “to f(yn)
Let P, and P, denote the projection maps of []X; (1 <4 < k-+1) onto X,
and OliltO T1X: (2 <i<<h41) respectively. By the inductive hypothesi;
there is a continuous map ¢ of (X, U) into X, which agrees W.ﬂ":h Pyof
at @ and on some subsequence Q; of x,, @, ... Similarly, there is a mafp h
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of (X, U) into J]X; (2 <4< k-+1) which agrees with P, o f at » and on
some subsequence @ of ¢;. Now the product map gXh is continuous
from (X, U) into [1X: (1 <i<%k-1) and agrees with f at # and on @.

Proof of Theorem. Now for the case n = 1, the theorem is trivial.
Assume n> 1, and [[X; (1 <4< n) is not coherent with respect to the
copies of (X, U) in T1X: (1 <i<m). There exists a subset K of [1x;
such that K is not closed, and for every copy A of (X, U) in [1Xi, A~ E
is closed in A. There is a sequence @, of distinct points of K converging
to & point # not in K. Since @, forms an infinite set, there is a projection
map P; of []X; onto X;such that Py{Q,) is infinite. Now for some sub-
sequence @, of Q,, @ U @, is the graph of a function f from Pj(z) v Pi(@.)
into [] X: (1 <4 < n, i #j). By Lemma there exists a continnous map g
from X; into [[ Xy (1 <4< n, % j)such that g agrees with f ab Pi(w)
and on some subsequence of P;(@,). Now the graph G of g in Mx.a<ign)
is a copy of (X, U), but & ~ K is not closed in &. This is a contradiction.

COROLLARY 3.4.1. If for 1 < i< n, X: s a copy of an upper special,
homosequential space (X, U), and [1X: 1 <i<n) is sequential, then
[1X; is upper special.

Proof. Let A be a copy of (X, U) which is an h-retract of [1Xx;.
Let Z be the collection of homeomorphic images of 4 in [[X;. By Theo-
rem 3.4, [[ X is coherent with respect to Z. Since every homeomorphism
is an identification map, [] X; is anti-related to 4 by Theorem 3.2. By
Theorem 3.3, [ [ X; is upper special.

THEOREM 3.5. Let L denote the class of all sequeniial spaces. If (X, U)
is generated and homosequentiol, then (X, U) 4s L-special.

Proof. Suppose not. There exists (X, V) e L such that U #7V, and
0(T) = 0(V). Since (X, U) is generated, U C V. Thus there exist K ¢V — U
and a sequence %, @, ... of distinet points of K converging to a point @
of X — K with respect to U. If (X, V) is discrete, then (X, V) is T;-special
(a trivial result). Thus U s V implies that C(U) # O(V) which is a con-
tradiction. Thus (X, V) is not discrete, and there exists a sequence
Y1, Ya, .. OF distinet points of X converging to a point y with respect
to V. Since UCV, ¥y, ¥a, ...-converges to y with respect to T. Define f
from {y, 4., Ya, --} into X by f(y) = @, and for each i, f(y:) = =i Since
(X, U) is homosequential, there exists g « C(U) = O(V)such that g(y) = =,
and g agrees with f on some subsequence of ¥y, ¥y, ... Since KeV, and
» ¢ K, f fails to preserve a limit point with respect to V. This is & con-
tradiction.

4. Special spaces.

TaEorEM 4.1. Assume. The space (X, U) is Ty-special and is not
diserete. If p, q, 7, § € X such that p 5 q and 7 < s, then there exists f ¢(0)
such that f(p)=r, and f(g)=s. Then (X, U) is special.
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Proof. Suppose not. There exists a topology ¥V on X such thag
V £ U and O(V)= C(U). Since (X, U) is T, -special, (X, V) is not T,,
and some point « is a limit point of a point b with respect to V. Fix » ¢ X,
For each yeX there is an fy e C(U)= C(V) such that f(a)=w, and
f{b) = . Then @ is a limit point of each y di@tinch from @, and (X, V)
i the indiserete space. Thus C(V) is the set X~. Hence C(U) = X%, and
(X, U) is discrete. This is a contradiction.

THEOREM 4.2. Assume. The space (X, U) is Ty-special. The space
(4, W) is an h-retract of (X, U). The space (A, W) is special. The set
C(U, W) is point separating.

Then (X, U) is special.

Proof. Suppose not. There exists (X, V) such that U £V, O(U)
= ((V) and some point ¢ is a limit point of a point b with respect to V.
By Theorem 3.1 (IT), (4, W) is a subspace of (X, V). Then there exists
a function f in O(U, W)= 0(V, W) such that f(a) s f(b). Thus f(a)
is a limib point of f(b) in (4, W). This contradiets the fact that (4, W)
is T,.

THEOREM 4.3. If X is an infinite set, a is an-infinile cordinal number
and (X, X|a) is not discrete, then (X, X/a) is special.

Proof. Assume (X, U) is T4, and O(U) = O(X/a).

Levma 1. X/aC U.

Proof. (X, X/a) is generated.

Levma 2. If A e U~X/|a and BC A, then B e U.

Proof. Tet pe X— 4. For every » e A—B define fu(y) ==y if y # =,
and fo(z) = p. By Theorem 1.2 for every z ¢ 4—B, f, e C(X/a)= O(U).
Thus f; (X — 4) is open in (X, U). Now X—B = | Jf; (X —A4) (v ¢ A—B)
is open in (X, U), and Be U. .

Lemwa 3. If A e U—Xfa, BC X~ A, and cordinal of B < cardinal
of A, then Be U.

Proof. Let h be a bijection of a subset ¢ of A onto B. Define flw)
= hizw) it 2¢0, flz)= h”l(w) it #eB and f(@)=w if weX--(Buv ().
By Theorem 1.2, feC(Xfa)= O(U). By Lemma %, CeU. Thus
B=fY0)eT.

Leuma 4. If A « U—XJa and B C X such that cardinal of B < cardinal
of A, then BeU.

5 ;’roof. B=(4B)u[(X—A4)~ Bl By Lemma 2 and Lemma 3,
€ .
~ Now if U=2% then (X, U) is T,-special, Xja = U, and (X, X/a)
is diserete. This is a contradiction. Thus there is a least cardinal number b
such that for some A4 C X, cardinal of 4 = b, and 4 ¢ U. By Lemma 1,
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a < b. By definition, X/b C U.If A ¢ U and cardinal of 4 > b, by Lemma 4
every subset of X with eardinal b is in U. This contradicts the definition
of b. Hence 4 ¢ U implies that 4 ¢ X/b, and U = X/b.

Assume there exists 4 e U—X/a, and let p < A. Define f(z)=p
it zed, and f(o) =2 if 2 ¢ X—A. By Theorem 1.2, f < C(X/b) = C(U)
= ((X/a). Hence A = f (p) ¢ X/a. This is a contradiction, and U C Xja.
Thus by Lemma 1, U = XJ/a, and (X, X/a) is T,-special. Due to Theo-
rem 1.2 and Theorem 4.1 it is clear that (X, X/a) is special.

THEOREM 4.4. If (X, U) is a non-discrete, cofinite space, and for
1<i<n, Xiis a copy of (X, U), then [[X; (1 <i<n) is special.

Proof. It is clear from Theorem 1.2 that (X, U) is homosequential.
By Theorem 1.6, [[X; is generated. Thus by Corollary 3.4.1 to show
that [] X; is T,-special it is sufficient to show that []X; is sequential.
The case n =1 is trivial. Assume [/ X; (1 <4 < k) is sequential. For
1 <j < k-+1, let P; denote the projection map of [[X; (1 <4 <k+1)
onto X;. Foreach @e [[X; (1 <i<h+1) let Kp= UPTHPim) @<
<k+1),and let Ry = [[ X; (1 <i < k-+1)— K. Then for every # ¢ [[ X
(1 <4< k+1), K, is closed and R, is open. Now suppose A C [] X, (1 <4
< k+1) and y is a limit point of A in the complement of 4. If ¥ is a limit
point of 4 ~ K, then there exists j such that y is a limit point of P7*(P;(y))
~ A. Since P;‘(Pi(-y)) is a copy of HXi (1 <7 < k), there exists a sequence
of distinet points of 4 ~ P; ,I(P,-(y)) which converges to . Now suppose ¥
is not a limit point of 4 ~ K,. Then y is a limit point of 4 ~ R,. Let
y1e A~ Ry. Since y, ¢ Ky, y e Ry,. Thus there exists y,e 4 n Ry n Ry,.
Similarly, ¥ e Ry ~ Ry, and there exists y;e A~ By n Ry, n Ry,. In-
ductively there exists i, ¥,, ... such that for every 7,#;1e4d ~ By
~ Ry, ~ ... n Ry,. Since each y; ¢ Ry,, ¥y, ¥a, ... 18 @ sequence of disbinct
points of 4. Also for every 4, y:11 ¢ Ky, v Ky, v ... v Ky, Thus for 1 <j
S kL, Py} ¢ {Pi(¥1)s Pilya) s - s Pi{y)}. Thus Py(yy), Pi(ys), .. is a se-
quence of distinet points of X;. Since each X; is cofinite, each Py;(y),
Pi(9s), ... converges to P;(y). Hence ¥y, ¢s, ... converges to y. Thus [] X;
(L <1< k+1) is sequential.

Now [[X; (1 <i<m)is T,-special. Since X, is a special retract
of [[X:;(1<i<n) and the continuous functions from [[X; to X,
are point separating (because X; is a copy of (X, U), and the projec-
tion maps to (X, U) are point separating), []X; is special by Theo-
rem 4.2.

Notation. Let (I, F) denote the closed unit interval with the standard
topology. ‘

By simple application of the Tietze Extension Theorem we have
that (I, B) is generated and homosequential [2].
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TarorEM 4.5. The space (I, B) 48 full and special.

Proof. By Theorem 2.4 to show that (I, B) is full it iy sulficient to
show that for every z ¢ I and for every A C I--a such that o is a limit
point of 4, A is #-large over (Z). There is a monotone sequence w,, a,, ...
of distinet points of A converging to x. Without loss of generality suppose
@y, @y, ..o 18 increasing. Lebt ay, by, aa, by, ... be an increasing sequence of
distinet points of I converging to x. Define fi: I-I by f([as, by]) = o
for each i, f([0, a1]) = @y, f(#) = &, f(1) = 1, f is linear in [w, 1], f is lincar
in each [bs, @its]. Then fe O(B), fis a—a, and fH (@, ay, ...) it the set
([0, By]  [@a, bs] ¥ [@g, byl © ...). Thus f7(A4) containg this sef. Similaly
thereis a g e 0(H) such that ¢ is @—a and g™ (4) contaivs the set ([0, a,] v
U [by, @] © [Bay @] © o). Thus F7H(A) © gAY = [0, @), IE w = 1, £7A) v
v g~Y(A) = I—a. Otherwise # < 1, and there exists & homeomorphism h
of I onto I such that 27([0,a)) = (¥,1]. Then [ *(4)w .{];—1(11.) w
U(foh)HA) U (g o BHA) = I—a. Thus 4 is z-large over gy, and
(I, ) is full. Thus (I, B) is upper special. Since (I, ) is generated, (I, 1)
is T,-special. By Theorem 4.1, (I, ) is special.

It is interesting to note that with the help of Corollary 3.4.1 a proof
that n-cells are special could be constructed. Then this result would e
similar to that of Theorem 4.4. However, we have the following morve
general result: )

ToEOREM 4.6. Every locally comnected, separable melric convinuum is
special.

‘ Proof. Let (X, U) be a locally connected, separable metric con-
tinuum. If X is singleton, then (X', U) is special. Assume X i not singleton.
Then (X, U) contains a retract copy (I’, H') of (I, H) ([8], 5.1, 1. 36).
f.[‘here is a continuous map f of (I’, E') onto (X, T) ([8], f.L.i, p. 33). Now f
Is an identification map because (I',I) is compact ([2], 1.4, p.121).
Thug (X, U) is anti-related to (I', B'). By Theorem 3.3, (X, U) is upper
special. By Theorem 1.9, (X, U) is generated. Thus (X, U) is 7T, - special.
By Theorem 4.2, (X, U) is special.

. TeeorEM 4.7. If (X, U) is locally Buclidean and Ty, then (X, U)
“is special. 7 7

Proof. By Theorem 1.9, (X, U) is generated., Let (I', I') denote
a retrach copy of (I, H) in (X, U). By Theorem 3.3 to show that (X, U)
Is T;-special it is sufficient to show that (X, U) is anti-related to (I 7]&")
Let Z denote the collection of all continuous images of (I’ E; ) in (.X"7 U).
Eor e:a‘_ch (A »T) e Z every continuous map of (I', B') ontzo (A. T i’q ‘111..
}dent]filc'atlon map because (I', B') iy compact. Thus by Theor’em 3‘2(vit
i SUﬂlFlent to show.that (X, U) is coherent with respect to Z. Buf e;fery
g]-ace]l in (X, 7) igin Z, 2.md (X, U) is coherent with respect to its 7 - cells.

us (X, U) is T,-special. Now ¢ (U, B') i3 point separating because
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(X, U) is completely regular and T,. Thus by Theorem 4.2, (X, U) is
gpecial.

TamorEM 4.8. If (X, U) is the space of a OW -complez, then (X, U)
is special.

Proof. The space (X, U) is T,, normal, and coherent with respect
to the set of all copies of m-cells in (X, U) ([5], pp. 215-216). Thus by
Theorem 1.9, (X, U) is generated. Bach n-cell 4 in (X, U) is a retract
of (X, U) because 4 is AR (normal) ([2], 5.2, p. 151). Also each n-cell
is special by Theorem 4.6. Now by Theorem 3.3, (X, U) is T, -special.
Tet B be a retract are in (X, U). The continuous maps of (X, U) into B
are point separating because (X, U) is T, and completely regular. Thus
by Theorem 4.2, (X, U) is special.

TrmorREM 4.9. If (X, U) is a sero dimensional metric space, then (X, U)
is special or discrete.

Proof. The space (X, U) is generated [4]. Suppose (X, U) is not
discrete, (X, V) is Ty, and O(U) = C(V). Then U CV. Assume KeV—-T.
Sinee K ¢ U, there exists a sequence @, &, ... of distinct points of K
converging o a point # in X —K with respect to U. Let N, be an open
and closed set in (X, U) with diameter less than 1 and which contains @
but not @;. Let N, be an open and closed set in (X, U) with diameter
less than % and which contains z and such that N,C XNy, and N,—N,
contains a point y, of &, £, ... Continning inductively we have Ny, Ny ..
such that for each 4, ; is open and closed in (X, U) with diameter less
than 1/i, N4 C Ny, and N;— Ny, containg a point y; of @, @, ... Define
fle)=m i 2eX—N,, fle)=9: if 2 e Ni—Niw, and f(z) =2 Now
FeC(U)= O(V), and f (@, @a, .} 2 {#1; Y2y -} = X—a. Thus FHE)
= X—u, and (X—a) e V. Hence & is an isolated point of (X,7V). Define
g(z) = # for each » ¢ X —z, and g(z) = @, # &. Then g e C(V), but g ¢ C(U).
This is a contradiction. Thus U =V, and (X, U) is T;-special. To show
that (X, U) is special if it is not discrete let p, g, 7,5 ¢ X such that p # ¢,
and 7 £ 5. Let N be an open and closed set in (X, U) which contains p
but not ¢. Define f(z) = rif ¢ N and f(2) = s if 2 e X—N. Then fe C(U),
f(p)=r and f(g) = s. By Theorem 4.1, (X, U) is special.

TaEOREM 4.10. If (X, U) is a subspace of the real line, then (X, U)
is special or discrete.

Proof. If (X, U) contains an are, (X, U) is generated by Theorem 1.9.
If (X, U) does not contain an arc, then (X, U) is generated because it
is zero dimensional [4]. Let W denote the collection of all arcs and all
non-discrete, zero dimensional retracts of (X, U). Then every member
of W is a special retract of (X, U). To show that (X, U) is T,-special
it is sufficient to show that (X, U) is coherent with repsect to W. Suppose
not. There exists K C X such that K ¢ U and for each A ¢ W, K~ A is
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closed in A. Let p be a limit point of K not in K. Assume without logs
of generality that @, @, ... is an increasing sequence of distinet points
of K converging to p. If for some real number r << p, the cloged interval
[r, p] is in X, then K ~[r, p] contains every number in @y, @, ... larger
than r. Thus K ~[r,p] is not closed in [r, p]. This is a contradiction
because [r, p] is in W, Hence there i a real number ¥y, such that o, <y, << p
and 4, ¢ X. Also there is a real 7, such that o, << & <9y <p for some
2 € {yy Ly, n}y AN Yy ¢ X. Induetively, there exist real numbers gy, y,, ...
such that for each 4, ¥i << Y441, SOME member g of @y, @y, ... I8 Detween gy
and i, ¥s < 9, and y; ¢ X. Define f(2) = if we X and w <y, f(v) =2
e X and yi < #< Y, f(@0) = pite « X anda = p. Then {p, @, 2, &,...}
is o member of W. But (K ~ {p, &y, 21, 22y ) 2 {1, %y 82y ) and not p,
Thus (K~ {p, &, 21, %y 1) 35 00t closed in {p, @y, &, 2, v} This s
a contradietion. Hence (X, U) is coherent with respect to W, and (X, U)
js T,-special. To show that (X, U) is special i it is not diserete, note
that either (X, U) contains a retract arc and Theorem 4.2 applies, or
(X, U) is zero dimensional and Theorem 4.9 applies.

We now seek sufficient conditions on a subset ' of X* that there
exists one and only one topology U on X such that ¢(U) = I'. Assume X
is infinite, and consider the following five propertics:

(I) The collection I containg 1y and all constant maps in x¥,
and if f,g e, then fogeF.

(II) No finite union of F-fibers has a finite, non-empty complement
in X.

(ITT) If K C X, and p ¢ X— I such that every finite covering of I
by F-fibers covers p, then there exist fy, fo, ..., fu € I' such that | fi YK
has a finite, non-empty complement in X.

(IV) It p, q,7,s e X, p # ¢, and r = &, then there exists fe I such
that f(p)=r, and f(g)=s.

(V) If p,geX with p 5 ¢, thé&n X iy covered by some finite seb
of F-fibers no one of which contains both p and g¢.

Now I is type I if and only if (I), (II), (IXI) and (IV) hold; and F
is type IT if and only if ¥ is type I, and (V) holds. It iy easy to check that
if F is type I (ox type II), then ¥ is contained in a maximal typoe I (or
type II) subset of b.a

TeroreEM 4.11. If T is o mawimal type I subset of X5 (where X 48
infinite), then there exists a topology U on X such that (X, U) is special,
and B = C(U).

Proof. Let U denote the topology on X for which the set of I'-fibers
is a subbasis. By Theorem 1.1, (X, U) is generated. Suppose (for contradic-
tion) p is an isolated point in (X, U). Since X — p is closed, X — inite
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union of F-fibers. This contradicts (II). Thus (X, U) has no isolated
points. To show that (X, U) is full suppose (X, V) is a space such that
UCYV,and O(U)C O(V). If veV— U, then there exists # ¢ X such that »
is a limit point of v with respect to U, and x ¢ v. Then every finite cover
of v by F-fibers covers . By (ILI) there exist fi, fs, ..., fn e FC 0(U)
C 0(V) such that ) fi'(v) has a finite, non-empty complement in X.
Sinee {J f{l(ﬂ) is closed in (X, V), (X, V) has isolated points. Thus (X, U)
is full. Thus (X, U) is upper special and, hence, T,-special. By (IV) and
Theorem 4.1, (X, U) is special. That C(U) satisfies (I) is trivial, and (IT)
results from the fact that (X, U) has no isolated points. Since ¥ C O(U),
Condition (IV) holds for G(U). Sinee (X, U) is generated, and the C(U)-
fibers form a subbasis for U, (IIX) holds for C(U). Now F C C(U), and
¢(U) is type I implies that F = C(U) because F is maximal type I.

TaeorEM 4.12. If F' is a maximal type II subset of XX, then there
exists a topology U on X such that (X, U) is special, F = C(U), and (X, U)
is T, and regular.

Proof. The proef that (X, U) is special and F = ((U) is similar to
the one for the previous theorem. The proof that (X, U) is Ty is simi-
lar to one given for Theorem 1.12. By Theorem 1.11, (X, U) is regular.

5, S-admissible elasses. If 1 is a Dbijection of X onto ¥,
then for each f e X~ define 1'(f) to be & o f e A" Then % induces the bijec-
tion &' of X~ onto ¥Y¥. If (X, U) is a space, then C(U) is a semigroup
with respect to the operation of composition. An §-admissible class of
topological spaces is a class @ of spaces such that if (X, U), (¥, V) €@,
then a bijection k of X onto ¥ is a homeomorphism of (X, U) onto (¥, V)
it and only if 4’ restricted to €(U) is an isomorphism of C(T) onto G(V) [3].
It is known [3] that a class @ of spaces is §-admissible if and only if for
every pair (X, U) and (I, V) of spaces in  with a bijeetion % of X onto ¥
such that 4'(C(U)) = C(V), h is a homeomorphism of (X, U) onto (¥, V).

TamorEM 5.1. Let Q be o class of spaces containing all homeomorphic
images of members of Q. Then Q is 8- admissible if and only if every member
of @ is Q-special.

Proof. Assume @ is S-admissible. Suppose (X, U)e@, and let
(X, V)e@ such that C(U)= C(V). Then (1X)’(0(U)) = C(V). Thus 1x is
a homeomorphism of (X, U) onto (X, V). Hence V = U. It follows that
(X, U) is Q-special.

Now assume that every member of @ is @-special. Let (X, U),
(Y, V) e, and suppose % is a bijection of X onto ¥ such that h’(C(U))
= (/(V). Let V' be the topology on Y such that h is a homeomorphism
of (X, U) onto (¥,V’). Then (Y,V')eQ, and ¥'(C(U))= C(V’'). Thus
(V)= O(T"). Since every member of @ is @-special, V = T".
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COROLLARY 5.1.1. Let J be the class of all spaces (X, U) such that
0(U) satisfies C(U)-1, O(U)-2 and O(U)-3, and U is the C(U)-collec-
tion. Then J is §-admissible.

COROLIARY 5.1.2. If the class L contains all homeomorphic images of
its members, then the dlass of all L-special spaces 48 S-admissible.

COROLLARY 5.1.3. The class of all special spaces is S-admissible,
and the class of all T,-special spaces is 8-admissible.

TrEoREM 5.2. Let Q be any class of spaces which contains all homeo-
morphic images of members of Q. Let @' be the subclass of @ comsisting of
members (X, U) of Q such that if (X, V) <@ for which 0(U)C O(V), then
UCV. Then @' is §-admissible.

Proof. It is simple to show that @' containg all homeomorphic
images of its members. Now let (X, U)eQ’, and suppose (X,V)e@’
with 0(U) = O(V). By definition of @', UCV, and VC U. Thus U=,
and (X, U) is @'-special. Now by Theorem 5.1, @ is §-admissible.

THEOREM 5.3. If the class @ of Theorem 5.2 contains all products
of its members and all vetract subspaces of its members, then the class Q'
contains all products of its members.

Proof. For every beB let (Xp, Up) be a member of ¢'. Then the
product (X, U) of all members of {(X;, Uy): b e B} is in Q. To show that
(X, U) is in Q' let (X, V) e @ such that C(U)C C(V). We may consider
each (X3, Up) to be a subspace of (X, U) playing the role of an “axis”.
This requires embedding maps, but homeomorphic images of members
of Q' are in @'. For each b ¢ B let P, be the projection map of (X, U)
onto (Xp, Up). For each b let Uj be the topology that X inherits from V.
Sinee Py e C(U) C O(V), (X, Uj) is a retract of (X, V). Hence (Xy, Up) € Q.
To show that C(U;)C C(U}) we simply note that €(U)C C(V), and
the continuous maps of retract spaces are just the restrictions of the
continuous maps of their super spaces. Now U, C U}, because (X, Up) € Q.
The set of all inverses under projection maps of closed sets in the (Xy, Us)
spaces i3 a subbasis for the closed sets in (X, U). Since each Py e 0(V),
and each U, C Uj, this subbasis is contained in V., Thus UCV, and
(X, 0)eq".

It is clear that if @ in Theorem 5.3 is the class of all T, - spaces, then @
is the class of all generated spaces.

DEFINITION B.1. Tf  f, g e X%, let H(f,9) = {o ¢ X: f(u) = g(a)}.
A space (X, U) is an equalizer space if and only it (X, U) 1s !Z yy and
{B(f,9): f,9¢0(U)} is a sabbasis for U.

Barlier mention was made of §*-spaces. Now a space (X, U) is an
§-space if and only if the collection of fixed point sets for members of
0(T) is a basis for U, and (X, U) is T, [3]. Since the fixed pointi set for
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a function fin X¥is B (f,1x), and a ﬁberf‘ (1) is the set H(f, o) where &’
denotes the constant map of X into x, every S-space, every Ts, S*-space
and every T,, generated space is an equalizer space.

THEOREM 5.4, If @ in Theorem 5.3 is the dlass of all Tp-spaces, then
every equalizer space is in Q.

Proof. If (X, U)is Ty, and f, g « C(U), then B(f, g) ¢ U. The theorem
follows.

In conclusion, we might comment that it is painfully clear that the
topic of this paper is in need of further study. It is hoped that what is
here is sufficient to encourage investigation.

The author expresses his gratitude to Prof. Panl E. Long for his
encouragement and advice during the preparation of this paper.
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