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a, b ¢ L with M (3, b). By Lemma 4.11, M(a, b)in @, and by [8], Theorem 1,
M(5,a) holds in @ It follows that M(b,d) in L.

Remark 4.13. By an obvious modification of the _above lemma
one can show that in any finite-statisch AC-lattice, if @ or & is finite then
M(@,b) = M(b,a).

5. Some open gquestions. We close by listing a few open ques-
tions that have suggested themselves during the writing of this paper.

1. Is every finite-modular AC-lattice M-symmetric?

9. In [7], S. Maeda calls a lattice I a DAC-lathwce in case both L
and its dual are AC-lattices, and shows ([7], Theorem 2.1, p. 108) that
every DAC-lattice is a finite-modular AC-lattice. Can every M-symmetric,
finite-modular AC-lattice be embedded in a DAC-lattice?

3. Is Remark 4.13 valid for an arbitrary AC-lattice?

4. Is F'(L) a standard ideal for L an arbitrary AC-lattice? What
if I is a matroid lattice?

5. In a finite-modular AC-lattice, by [6], Lemma 4, p. 168, M*(a, b)
is equivalent to the assertion that p an atom, p < @ vb implies the existence
of atoms ¢ <Ca, r<b such that p<gqvr. In an arbitrary AC-lattice,
what does it mean to say that p < avb, p an atom, implies the existence
of finite elements @, < a, b < b such that p < a,vbd,?
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a-adic completions of Noetherian lattice modules*
by
J. A, Johnson (Houston, Tex.)

§ 1. Introduction. Several years ago R. P. Dilworth [1] began
 study of the ideal theory of commutative rings in an abstract setting.
Since the investigation was to be purely ideal-theoretic, he chose to study
a lattice with a commutative multiplication. Many of Dilworth’s ideas
have since been extended and several new concepts have been introduced
([2], [8]). In particular, E. W. Johnson [3] has introduced the notions
of a Noetherian lattice module and a completion of a Noetherian lattice
module. The purpose of this paper is to generalize the methods used
in [3] and to extend some of the results. For undefined terms concerning
Noetherian lattices, the reader is referred to [1] and [3].

The basic concepts are introduced in § 2. In § 3 the a-adic pseudo-
metrie is introduced. If M is an L-module, then, for each element a of L,
a distance function, d,, can be defined on M. This distance function dg
is called the a-adic pseudometric on M. Theorem 3.10 gives necessary
and sufficient conditions for d, to be a metric. Assuming that d, is a metrie,
the set of all Cauchy sequences is divided into classes by an equivalence
relation, and M* is used to denote this set. The concepts of a regular
Cauchy sequence and a completely regular Cauchy sequence are given
in § 4. It is shown (Theorem 4.14) that each element of M* has a unique
completely regular representative. In § 5 the extension of elements from 3
to M* is defined. For 4 in M, the extension of 4 to M* is denoted by 4.M*.
A lattice structure is developed for M* and in § 6 it is shown that M*
satisfies the ascending chain condition (Theorem 6.3) under the hypoth-
esis that L is a Noetherian lattice and M is a Noetherian L-module.
The a-adic completion of M is defined (Definition 6.5). A .contraction
of elements-of M* to M is introduced (Definition 7.1) in § 7. For 4 in M,
its eontraction to M is denoted by 4 ~ M. It is shown that 4 = AM* ~ M
for all 4 in M (Proposition 7.2). )

The remainder of the paper is concerned with the particular case
where L is a loeal Noetherian lattice and M is a Noetherian L-module.
In § 8 a connection between the different metrics on M™* is determined
(Theorem 8.12 and Corollary 8.13). In § 9 p-adic completions of lattice

* This research was supported by the National Science Foundation.
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intervals are investigated. It is shown that the L-module [AM*, BM*]
with the p-adie metric is the p-adiec completion of the Noetherian
L-module [4, B] (Theorem 9.5). In §10 residuals in L* are studied.
For A, B in M, Theorem 10.3 establishes that (AAB)M* = AM*ABM*
and Theorem 10.4 establishes that (4 : B)L* = AM* : BM*.

§ 2. Definitions and notations.

DermNITON 2.1. A lattice L is said to be multiplicative if L ig
a complete lattice and if there is defined on L a commutative, associative
multiplication which distributes over arbitrary joins such that the one
element of I is the identity for the multiplication.

DEFINITION 2.2. Let L be a multiplicative lattice. A leff lattice module
over L, or simply an L-module, is defined to be a complete lattice M
together with a function f: L x MM which satisfies the fo]lowmg four
conditions:

(2.1) f(ab7 4) = f(a'7f(b7 -A-))
for all a,b in L and A in M;

2.2)  f(V{sl aeD}, V{Bsl f €« E}) = V{f(t Bp)l e« D and §  E},
for all nonemply families {a,| a e D} CL and {Bs| B HE}C M,
where D and B are arbitrary indew sets;

(2.3) f(I,4A)=A for all A in M, where I is the one element of L;
(2.4) f(0,A)=0 for all A in M.

For each a in I and B in M, the element f(a, B) of M will be denoted
by aB. Elements of I will generally be denoted by small letters a, b, ¢, ...,
except that the least and greatest elements of L will be denoted by 0
and I, respectively. Elements of M will generally be denoted by capital
letters 4, B, C, ..., except that the least and greatest elements of M
will be denoted by 0 and A, respectively. When no-eonfusion is possible,
0 will be used in place of 057, In the remainder of this section, L is a multi-
plicative lattice and M is an L-module.

Just as in the case of modules over a commutative ring with a unit
element, there are natural residual operations associated with an L-mod-
ule M. The three residual operations used in.this: paper are defined
below. The existence .and uniqueness of these residual operations are
consequences of conditions (2.1)—(2.4) in Definition 2.2.

DEFINITION 2.3. For all ¢, b in L and 4, B in M,

(i) a : bis defined to be the greatest element ¢ in L such that ¢b < a;

(ii) A : b is defined to be the greatest element ¢ in M such that
b0 < 4; and,

(ili) 4 : B is defined to be the greatest element o in L such that
eB< A.
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Some of the more important properties of residuation and multiplica-
tion by scalars are listed below. The proofs are straightforward and will
be omitted. For all a,b,0,a; in T and 4, B, ¢ in M,

(2.5) If a<<b, then aB<bB.
(2.8) If A< B, then ad <

(2.7) If a<b and A < B, then ad <
(2.8) A< Bif and only if B: A=1.
(2.9) A<Ad:a.

(210) A<A:I.

(211) a<<ad:A.

(212) (A:a)V(B:a)<(AVB):

(2.13) (A:0)Vv(B:0)< (AVB) : C.
{(214) B:ab=(B:a):b.

(215) B:ad=(B:a): A

2.16) B:a):A=(B:4):a.

( (

(2.17) (BAC): A= (B: AA(C:4).

( (BAC):a= (B:a)A(C:a).
(219) A:(BvO)=(A:B)A(4:0).
(2.20) A:(avd)=(4A:a)A(4d:D).

(2.21) (AAB):B=A:B.

(2.22) A:(AvB)=A:B.

(2.23) If ave=bve=1I, then abve=1.
(2.24) If avo=1I, then (aAb)ve=bve.

P btk o\ ke . L
(2.25) (V ar) <\ ai*, where each k¢ i3 a positive integer.
1 1

(2.26) (anb)B<<aBAbB.
(2.27) ab<aAb.

(2.28) a(AAB)<<adnraB.
(2.29) ba:b)=(a:bd)b<a
(2.30) a(d:a)< 4

(231) (A:B)B< 4.

In {1] R. P. Dilworth introduced principal elements. This definition
was generalized by E. W. Johnson in [3].
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DEFINITION 2.4. Let 4 be an element of M. A is said to be meet
principal in case (b/\(B : A))A =bAAB, forall b in L and B in M. 4 ig
said to be join principal in case bV(B: A)= (bAVB): A, for all b in L
and B in M. A is said to be principal in case A is both meet principal
and join principal.

DEFINITION 2.5. M is said to be principally generated if each element
of M is the join (finite or infinite) of principal elements of M. M is gaid
to be Noetherian it M satisfies the ascending chain condition, is modular,
and is principally generated.

DerINITION 2.6. Let L be modular. Then, with respect to the multi-
plication in Z, I can be regarded as an L-module. If I i3 a Noetherian
L-module, then L will be called a Noetherian lattice.

This definition of a Noetherian lattice was given in [3]. It is equivalent,
however, to the definitions given in [1] and [2], and results from these
papers will be used without special comment.

DEFINITION 2.7. Let W be a lattice. Let 4 and B be elements of W
such that A < B. Then the set {D ¢ W| 4 < D < B} is a sublattice of W
and will be denoted by [4, B).

Remark 2.8. Let M be an L-module. Let 4 and B be elements
of M such that 4 < B. Then [A, B] is naturally an L-module.

Proof. Sinece M is an L-module, M is a complete lattice, and hence
it is easily seen that [4, B] is a complete lattice. For ¢ in L and Cin [4, B],
define a - 0 = aCvA. Since A < a o 0= alv4d < B, it follows that “o”
is & function from L x [4, B] into [4, B]. Properties (2.1) through (2.4)
of Definition 2.2 are easily verified and hence [4, B] is an I -module, q.e.d.

Remark 2.9. If M is a Noetherian L-module, it is easily verified
that [4, B] is a Noetherian L -module with the above multiplication where A
and B are elements of M such that A < B (see [1]).

§ 3. a-adic pseudometrie. Throughout this section M is an
L-module.

ProrosrrioN 3.1. For all A, B in M and a in L, if there ewists a non-
negative integer n such that Avardb = BVarde, then Avams = Bvam,
for all nonnegative integers m < n.

Proof. Assume that there exists a nonnegative integer » such that
Avaer#o = Bvard and let m be a nonnegative integer which is less
than n. Then a® < @™, and hence a"dt < anAb. It follows that

AVamr o = (A Varde)vam M
= (BVardb)vamio
= BvarA,

which completes the. proof.
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COROLLARY 3 2. For all 4, B in M and a in L, if there ewisis @ non-
negative integer n such that Avardo = Bvard, then AVamis = B v am M,
for all nonmegative integers m > n.

COROLLARY 3.3. For all A, B in M and a in L, there exists al most
one nonnegative integer n such that AvarMs = Bvards and

AVartid = Bvartif .

DEFINITION 3.4. Let a be an element of L. For (4,B) in M xM
define
(8.1)  fal4, B)=n if there exists a nonnegative integer m such that

AVards = BVards, and Avartifh 55 Bvartideg
(8.2) fald,B)= +oo if no such nonnegative integer n exists.

Notice that f, is well defined by Corollary 3.3 and that f, is in fact
defined on the Cartesian product M x M since it is always the case that
AVaOMo = Mo = BVad, for each pair (4, B) in M x M.

DEFINITION 3.5. Let ¢ be an element of L. For (4, B) in M x M,
define
(3.3) do( A, B) = 2774B it (A B) £ +oo;

(3.4) do(A, B) = if  fo(4,B)= +oo.

We now let “a’’ be an arbitrary (but fixed) element of L, and denote d,
from this point on simply by d.

Remark 3.6. For all 4, B in M, the following are equivalent for
any nonnegative integer n:

(8.5) d(4,B)< 27
(3.6) AvVardo = Bvards .

Proof. Assume first that (3.5) holds. Then f,(4,B) = n, and hence
Avards = Bvards. Conversely, if (3.6) holds, then f,(4,B).>n. It
follows that d(4, B) < 27", q.e.d.

ProrositioN 3.7. For all A, B in M, the following hold:

(8.7) a4, B)
(3.8) d(4,B)=d(B
(3.9) If A=B, then d(A B)— 0.

Proof. Clearly d(4, B) = 0. From the definition of f, it immediately
follows that fo(d, B) = fo(B, 4). Consequently d(4,B)= d(B, 4). To
prove (3.9), assume 4 = B. Then clearly 4 varM = Bvardt, for all non-
negative integers n. Hence, fo(4, B) = + oo and consequently d(4, B)
= 0, q.e.d.
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The following proposition shows that the function d satisfies the

strong triangle inequality.
ProPosSITION 3.8. For oll A, B and C in M,
d(4, B) <max{d(4, 0), d(C, B)}.
Proof. It may be assumed without loss of generality that
4(0, B) = max{d(4, C), d(C, B)}.
There are now two cases to consider. First, assume that d(C, B) = 0.
Then d(4, C)==0. It follows by Remark 3.6 that Avars = BvarM
= Qvardl, for all nonnegative integers n. This implies fo(4, B) = + oo,
and thus d(4, B)=0.

For the second case, assume d(C, B) # 0. Hence, there exists a non-
negative integer # such that d(C, B)= 27" It follows that d(4, C)
< d(0,B)=2"". This implies. Avari= Bvardo= 0varhs by Re-

- mark 3.6. ‘

Consequently, d(4, B) < 27", q.e.d.

TaEOREM 3.9. Let L be a multiplicative latiice, let M be an L-module,
and let a be an element of L. Then (M, ds) is a pseudometric space.

Proof. This follows from Propositions 3.7 and 3.8.

The pseudometric d, is called the a-adic pseudometric on M.

The following theorem gives a necessary and sufficient condition
for the a-adic pseudometric on M to be a metric.

TeEOREM 3.10. Let M be an L-module and let a be an element of L.
The a-adic pseudometric on M is a metric if and only if O = A (OVardo)
"

for each C in M.

Proof. To show that the a-adic pseudometric is a metric, it need
only be shown that du(4,B)= 0 implies A = B.
Assume 0 = A {Ovarut} for all ¢ in M. Let A and B be elements
n

9f M such that dy(4, B) = 0. Then A vards = Bvard for all nonnegative
integers n. Consequently, 4 = A (Avards)= A (Bvar#) =B and
n n

thus d; is a metric. Conversely, assume that d, is a metric and let A “be
an element of M. Since

A vakM [/i\ (AvVata]varat

<
< (AVardb)vari
<

for every nonnegative integer k, it follows that

AVakM = [/¢\ (A vats)]varss ,

icm®
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for every unonnegative integer k. Hence, d,,(A, A (Avatdt)) =0 and
%

thus 4 = /i\ (AvaiM), q.e.d.

COROLLARY 3.11. Let a be an elemeni of L and let A, B be elements
of M such that A < B. If the a-adic pseudometric on M i3 a meiric, then
the a-adic pseudometric on [4, B] is a melric.

§ 4. Completely regular representatives. Throughout this
section, M is an L-module, and “a” is an arbitrary (but fixed) element
of I such-that the a-adic pseudometric on M is a metric. As in § 3 the
single letter @ will be used to denote this distance function.

PrOPOSITION 4.1. The function (Y, Z)~>YVZ of M X M- is uni-
formly continuous.

Proof. Let d" denote the usual product metric on the product space
M x M. Let r be a positive real number and choose n to be the least non-
negative integer k such that 27 <.

Assume d'((4, B), (0, D)) <r. Then, d(4,0)< 2™ and d(B,D)
< 27" This implies Avard= Ovards and Bverd = Dvarss (Re-
mark 3.6). Thus (AvB)vards = (OvD)vards and hence d(4AvB, CvD)
<2< ged

Remark 4.2. If the a-adic pseudometric on L iz also a metric,
then, in a manner similar to that used in the proof of Proposition 4.1,
it may be shown that the function (#, ¥)>a¥ of L x MM is uniformly
continuous.

DEFINITION 4.3. Let O(M) denote the set of all Cauchy sequences
of elements of M. For (A, (Bi) in C(M), define (4> ~(By if and
only if ]iim d(A+, Bi) = 0. It is easy to establish that ~ is an equivalence

relation on C(M) and we let M* denote the set of all equivalence classes
of (M) determined by this equivalence relation.
The next theorem establishes a connection between the definition
of the equivalence relation ~ and the definition of the metric on M.
ToeEOREM 4.4. Let <A> and (Bi) be Cauchy sequences of elements
of M. Then the following three statements are equivalent:

(4.1) (A ~<B;
(4.2) lim @(Ay, By) = 0;
1->00

(4.3) For each nonnegative integer n,
Avardo = Bivard ,
for all sufficiently large positive integers i.

Proof. (41) and (4.2) are equivalent by the definition of ~, so it
is sufficient to show that (4.2) and (4.3) are equivalent. To prove that (4.2)
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implies (4.8), let » be a nonnegative integer. Since d(4q, Bi)+0 as 4— 4 co
there exists a positive integer m such. that d(4q, Bs) < 27", for all integers
i > m. Hence, it follows (Remark 3.6) that 4:va®dt = BivarAt for all
integers ¢ > m. Thus (4.3) holds.

Conversely, assume that (4.3) holds and let 7 be a positive real number.
Choose » to be the least nonnegative integer k such that 27 <, Hence,
27" < ¢, Now, by hypothesis, there is a positive integer m such that
Avards = Bivardb, for all integers ¢ >>m. Hence, it follows that
d(4Aq, By) < 27" < r for all integers % = m. Thus (4.2) holds, g.e.d.

COROLLARY 4.5. Let B be an element of M* and let the Cauchy se-
quence {B:> be a representative of B. Then any subsequence of (B> is
a representative of B.

COROLLARY 4.6. Let B be an element of M* and let the Cauchy se-
quence {Bi) bé a representative of B. Then {BiVa’A) is o Cauchy sequence
and s a representative of B.

Proof. It is a straightforward computation to show that (B:Vvaidl)
ig a Cauchy sequence. For the second part, let » be 9 nonnegative integer.
Then

BiVardt = BV (aidoVardt) = (BiVaidh)Vards
for all integers ¢ = n. Therefore, (B> ~{BiVaiM) by Theorem 4.4, q.e.d.

DerivtrioN 4.7. Let ¢Bi> be a Cauchy sequence of elements of M.
(B is said to be regular in case B;Vaidb = By, Vai for all positive
integers 4. (B> is said to be completely regular in case By = By Vaids
for all positive integers 4.

Remark 4.8. It follows immediately from Definition 4.7 that if (B;>
is completely regular, then B; > afAb, for all positive integers 4, and (B:)
is decreasing in the sense that Bs> B, for all positive integers 4. Further-
more, a completely regular sequence is a regular sequence.

THEOREM 4.9. Let (B:) be a Cauchy sequence in M. Then the following
three statements are equivalent:

(44) (Bo is a reqular Cauchy sequence;

(4.5)  For each positive integer n,
BuVardo = By vards  for all integers m > n;

(4.6)  For each positive inieger n,

@(Bn, Bn) < 27" for all integers m > n .

Proof. It is an immediate consequence of Remark 3.6 that (4.5)
is equivalent to (4.6). (4.5) obviously implies (4.4). To show that (4.4)
implies (4.5), it is sufficlent by induetion to show: If B, Vardt = B,V ard,

icm®
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then BnVardb = By Vardb. But this is an immediate eonsequence of
the following:
BpVards = ByyiVards
= (Bpi Vartifb) v ards
= (Bppigr Vaidb) vando
= Bpyip1 Vardl

since <(B:> is a regular Cauchy sequence, g.e.d.

For completely regular Cauchy sequences we have the following
theorem.

TEEOREM 4.10. Let (Bi) be a Cauchy sequence in M. Then, the following
three statements are equivalent:

(4.7) (B> s completely regular;
4.8)  For each positive integer n,
Bp= BpuvarMs for all integers m > n;

(4.9)  For each positive integer n,
B, = arMo and A(By, Bn) < 27",
Proof. Since (4.8) is equivalent to (4.9) by Remark 3.6, and since (4.8)
clearly implies (4.7), we need only show that (4.7) implies (4.8). To show
this, it is sufficient by induction to show: If By = Bpy;Vard, then
B, = By Vards. This is, however, an immediate consequence of the
following:

for all integers m > n.

Bp = BupiVardo
= (Bpyir1Vartidh) vard
= BpyitaVards

since <Bi) is a completely regular Cauchy sequence, q.e.d.

LeMMA 4.11. Let B be an element of M* and let {Bsy be a representative
of B. Then there exists a subsequence (By) of (Bi)> such that (B> is @ reqular
representative of B.

Proof. This is a straightforward computation, g.e.d.

LeMMA 4.192. Let (Bi) be a reqular Cauchy sequence in M. Then
{BivaiM)y is a completely regular Cauchy sequence.

Proof. Since ¢(B:> is a regular Cauchy sequence and since a*+'h
< A, it follows that

B;vaid = B,-+1Va»".M; = (Bi+1va"+1..M,) Vaid N

for all positive integers ¢, g.e.d.
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COROLLARY 4.13. Let B be an element of M* and let (By) be a regular
representative of B. Then {Bivaidb) is a completely regular represeniative
of B.

The following theorem establishes the existence and the uniqueness
of completely regular representatives of elements of M

TaEorEM 4.14. Let A be an clement of M*. Then A has a completely
regular representative. Furthermore, this completely regular represeniative
is uniquely determined by A.

Proof. The existence follows from Lemma 4.11 and Corollary 4.13.
Now, agsume that (4> and <Bi)> are two such completely regular rep-
resentatives of 4. Then {4:> ~{B:> and hence, for all positive integers n,

By = BiVards = A;vards = A,

for all positive integers 4 sufficiently large by Theorems 4.4 and 4.10.
In particular, A, = By for every natural number #. This shows the uni-
queness, q.e.d.

§ 5. Extensions. Throughout this section M is an L-module,
and e is an arbitrary (but fixed) element of I such that the a-adic pseudo-
metric on M is a metric. As before, d shall denote the a-adic pseudo-
metric on M, and M* shall denote the collection of equivalence classes
determined by 4. X

DEFINITION 5.1. Let 4 be an element of M. The equivalence class
in M* determined by the Cauchy sequence {4y, where A; = A for all
positive integers 4, is defined to be the extension of A to M*, or simply A
exvtended, and will be denoted by AM* For NCM, define NM*
= {AM*| A e N}.

Remark 5.2. Let A be an element of M. Then, it follows from
Definition 5.1 and results from § 4 that the Cauchy sequence (4 VaiAsy,
i=1,2,.., is the completely regular representative of .4.M*.

PROPOSITION 5.3. Let A and B be elements of M. AM™* = BM™ if
and only if A= B.

Proof. If A= B, then clearly AM*= BM®*. Conversely, assume
AM* = BM*. Then {A4:>~<{B:>, where 4i= 4 and Bi= B, for all
positive integers i. Hence,

0 = lim @ (s, By) = lim d(4, B) = d(4, B) .
4-»00 00

Consequently, A = B, g.e.d.

In view of the above proposition, it should be observed that the
extension mapping A->AM* of M—M* is one-to-one and hence M is
imbedded in M* (as a set).
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DerFINITION 5.4. Let A and B be elements of M. Define
AM*VBM* = (AVB)M* .

DarFINITION 5.5. Let A and B be elements of M*. Let {4y, (Bi-
be representatives of 4 and B, respectively. Define

(4, B) = lim d(4¢, By) .
100

The following are well known ([4], p. 196).

(1)  di is well defined;

(5.2)  di 48 a metric on M*;

(5.3) (M*,dr) is a complele metric space;

(6.4) MM* is dense in M*;

(5.5)  the ewtension map A-~AM* of M->M* is an isometry.

Combining these properties with Theorem 4.1 we obtain
(5.6) MM*x MM* is dense in M* x M*;

(5.7)  the map (AM*, BM*)->AM*VBM* of MM*xMM*->M* is
uniformly contimuous.

Consequently, there exists a uniformly continuous extension of this
function v to M* x M* ([5], p. 118). The image of (4, B) in M* x M~
under this extension will be denoted by Av.B. This extension function
is uniquely determined by the metric. One very important property of
this extension is given below for future reference:

(5.8) Let (4, B) be an element of M* x M*. Let {A¢> and (B> be repre-
sentatives of A and B, respectively. Then,

AVB = lim ((4;vB)M*> = lim (A M*VBM*> .
4—00 00

Note that these limits always exist since the sequence <{(4:vB¢)M™) is
a Cauchy sequence (because of the uniform continuity and the isometry)
and since M* is a complete metric space. Algo, note that if (D) and <E:)»
are arbitrary representatives of 4 and B, respectively, then <D:vE:)>
i8 a representative of AvB.

Following the procedure established earlier with respect to 4 and
da, d* will be denoted from this point on simply by a*.

PROPOSITION 5.6. Let A and B be elements of M*. Let <A¢) and (B¢
be representatives of A and B, respectively. Them:

(5.9) a4, B) = 0; or,
(5.10)  there ewists natural numbers n and j such that d*(A, B) = d(4+, Bq)
= 27" for dll integers i = j.
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Proof. Assume d*(4,B) # 0. Then 111_{1; d(As, Bs) % 0. Thus, there
exists a natural number m such that
0 # d(4s, By) = 27740
for all integers 4> m. Since lim d(A4;, B:) exists, it follows that there

1—>0

exists a natural number j > m such that
d(Aqs, By) = 2—fa(A7,B)
for all integers ¢ > j. Set fo(4j, B;) = n. Then
d*(4, B) = lim d(A44, Bi) = d(4s, Bi) = 27
00

for all integers ¢ > j, g.e.d.

PROPOSITION 5.7. Let A and B be elements of M*. Let <A¢> and (Bi)
be the completely regular representatives of A amd B, respectively. Then,
the sequence (AiVBi) 1is the completely regular representative of AvB.

Proof. We know that the sequence <{A4:;vB;) is a representative
of AvB (see (5.8)). Thus, by the uniqueness of the completely regular
representative (Theorem 4.14), it is sufficient to show that the Cauchy
sequence {A;V B;) is completely regular. Since the sequences (4> and {By}
are completely regular, it follows that

AiVB! = (Ai11V M) V(Bip1Vatd)
= (A;1VBi) Vaids,

for all nonnegative integers 4. Thus the sequence {A:vB:, is completely

regular, q.e.d.
DEFINITION 5.8. Let 4 and B be elements of M*. Define

A<B if and only if AvB=B.

It can be shown that this definition establishes a partial order on M*
relative to which the operation v in M™ is the least upper bound operation.

The following two propositions establish useful relations between
the order in M and the order in M*.

PROPOSITION 5.9. Let A and B be elemenis of M* such that A < B.
Let the sequences (Ai) and {Bi) be the completely reqular representatives
of A and B, respectively. Then, A; << B; for all positive integers 4.

Proof. Since 4 < B, it follows that AvB = B. By Proposition 5.7,
{4:VB;) is the completely regular representative of AvB. Hence,
AiVBi = By, for all positive integers i, by the uniqueness of completely
regular representatives (Theorem 4.14). Thus 4, < By, for all positive
integers i, q.e.d.

u-adic completions of Noetherian lattice modules 359

PROPOSITION 5.10. Let A and B be elements of M*. If theve emists
Uauchy sequences {Ag> and (B:)> such that:
(5.11) (A is a representative of A;
(6.12)  (Bi) is a representative of B; and,
(6.18)  A¢ << By, for all integers i which are sufficiently large;
then A < B in M*.

Proof. Assume that (4:, and (Bs> are representatives of 4 and B,
respectively, and that A; < By for all sufficiently large integers 4. Then,
it follows that 4;vB;= B; for all sufficiently large integers 4. This implies

that
AVB = 1HJ1 {(4ivBy)M*) = lim (B;M™*» = B
—00 -0

by (5.8). Hence, A < B by definition, g.e.d.

COROLLARY 5.11. Let A and B be elements of M such that A < B.
Then AM* < BM*.

COROLLARY B.12. OM™ is the least element of M* and MM* is the
greatest element of M™.

If, in addition to the conditions given at the beginning of this section,
it is further assumed that the a-adic pseudometric on L is a metrie, then
the following development is possible.

DerFINITION 5.13. For bL* in LL* and AM* in MM*, define
bL*-AM* = (bA)M* .
By combining Remark 4.2 with (5.1)-(5.5) we obtain
(5.14) LL* x MM* is dense in L* x M*;

(6.15)  the map (bL*, AM*)->bL*- AM* of LL* x M M*->M* is uniformly
continuous.

In a manner similar to that developed for *v?”, the function - has .
a unique extension to L* x M*. The image of (b, A) in L* x M* under
this extension will be denoted by b-4, or simply by bA. An important
property of this function is given below for future reference.

(5.16)  Let (b, A) be an element of L* x M*, Let <bs) and (A:)> be representa-
tives of b and A, respectively. Then,

bA = Hm ((bsA)M*> = lim <hL* A M™
100 00

Note that these limits always exist. Also, note, that if <{e;) and <{Hp
are arbitrary representatives of b and 4, respectively, then <{eH¢) is
a representative of bA.

Fundamenta Mathematicae, T. LXVI 24
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PROPOSITION B.14. Let b be an element of L* and let A be an element
of M*. Let <(bs> and (A) be the completely regular representatives of b and A,
yespectively. Then the sequence (biA> s a regular represeniative of bA.

Proof. We know that the sequence <bj4ds> is & representative of bA.
Hence, it need only be shown that the Cauchy sequence <biAg)y is regular.
Now, since <(bi» and {4 are completely regular Cauchy sequences, it
follows that b; = byavat and 4; = A vais for all positive integers i.
Therefore,

biA.i\/(ZidK) = (b¢+1\/ai) (-A»'i+1 Va"uﬂ))va‘.ﬁt = bi+1.A.¢+1 VaiMs
for all positive integers 4, g.e.d.

By applying Corollary 4.13 we obtain the following result.

COROLLARY 5.15. Let b be an element of L™ and let A be an element
of M*. Let <bs> and {Aq> be the completely regular representatives of b and A,
respectively. Then, the sequence <(biAivaids)y is the completely regular
representative of bA.

§ 6. a-adie completions. Throughout this section L is a Noetherian
lattice, M is a Noetherian L-module, a is an arbitrary (but fixed) element
of I such that the a-adic pseudometric on M is a metrie, and M* is the
collection of equivalence classes determined by the metric.

Lemua 6.1. ([3], Lemma 0.4). Let b be an element of L, let A be an
dlement of M, and let (Bi) be a sequence of elements of M satisfying

b*'A = By > By = bBy
for all positive integers i. Then there ewisits a positive integer m such that
Byyi= b'B, for all nonnegative integers i.

LeMMA 6.2. Let C(1) < C(2) < ... be an ascending chain of elements
of M* and let {C(n,§)d,j=1,2, ..., be the completely regular representative
of C(n), n==1,2,... Then, :

(6.1)  O(n, i+1)Aa*d = O(n, i+2) A a2l > a[ 0 (n, i+1)Aat ]
for all positive integers m and nonnegative integers i. -

Proof. Let n be a positive integer. Then

O(ny i-+1) = C(m, i-+2) vartis
for all nonnegative integers 4, sinee the Cauchy sequence <C(n,j)>,
j=1,2, .., is completely regular. Thns
O, i+1)Aaide = Cn, i42)Aa*His
for all nonnegative integers 7. Furthermore,
aC(n, i+1) = a[C(n, i+2)Vaitii)
= al0(n, i+2)Var+2A -
< C(n,i+2)

icm
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for all nonnegative integers 7. It follows that
al0(n, i4+1)Ad*M] < al(n, 1 -+1) A Gt
< C(n, i+ 2)Aai 1A
for all nonnegative integers 4, q.e.d.

THEOREM 6.3. M* satisfies the ascending chain condition.

Proof. We use a modification of an argument due to BE. W. John-
son [3]. Let ¢(1) < 0(2) < ... be an ascending chain of elements of M*
and let <O(n,j)), j=1,2, .., be the completely regular representative
of O(n), n=1,2, ... Since

CL, <02, 1)<.. <0, 1)< O(n+1,1) < ...

by Proposition 5.9, and since M satisfies the ascending chain eondition,
there exists a natural number ¥ such that

(6.2) Cln,1)= O(N,1)

for all natural numbers » > N. From Lemma 6.2 we obtain

= C(n, t+1)AatMs
= C(n,14+2)Aat1 A
= a[0(n, i4+1)AatMs)
for all positive integers n and nonnegative integers 4. COnse;;luenﬂy,
AN \”/ {O0(n, i+1)Aat M}
= Y.{O('n, i+ 2)AattiAb}
> \n/ {a[O(n, i+1) AasM]}
= a[\n/ {C(n, 1+1) AatM}]
for aJl nonnegative integers ¢ by Definition 2.2. Now, for each positive

integer 14, set
By =\ {O(n, i+1)ra’l} .
n
K follows from above that a’4b > B;= By, = aBg for all positive in-
tegers ¢. Thus, there exists a positive integer m (Lemma 6.1) such that
(6-3) Bm+i = a‘Bm

for all nonnegative integers ¢. It may clearly be assumed that m > N.
Now, fix the positive integer 4 and observe that

01, i+ AatM < ... < O(n, t-F1) A0’ M < ...
24+
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is an ascending chain of elements of M (Proposition 5.9). Hence, for
each 4, 1 << m, there exists a natural number n¢ such that

Bi = O(ng, i+1)Aai Mo .
Set k = max {fty, M, ..., tm; N} Then

— Ok, s-F1) A0

for all integers ¢ such that 1 <4< m. It follows that
(6.4) O(k+7, i-+1)Aabdo = O (k, i+1)Aath

for all integers 4 such that 1 <4< m and all nonnegative integers j.
Now, let ¢ be a nonnegative integer. Then,

Buii= B
= a0 (k, m~4-1)Aa™M)
< Ok, m-i+1)AamtiM
< Bn+‘
by (6.3). Hence
Ok, m-+3+1)Aa™idb = By
for all nonnegative integers 4. This implies
(6.5) Ok+j, m+i+1)Aamtido = Ok, m-+i+1)Aam i

for all nonnegative integers ¢+ and all nonnegative integers j. By com-

bining (6.4) and (6.5) we obtain
(6.6) O(k+7,i+1)Aa*M = Ok, i--1)Aatds

for all nonnegative integers ¢ and-all nonnegative integers j.
It shall now be shown that O(k+4i,n)= O(k,n) for all positive
integers n and all nonnegative integers 4. The proof shall be by induction

on n, First, consider the case where n = 1. Since k > N, we have 0(k-14,1),

= ((k, 1) for all nonnegative integers ¢ by (6.2). Hence, the cage where
n =1 has been established. Now, let j be a positive integer greater than 1
and assume that C(k-+4,j)= C(k,j) for all nonnegative integers i.
Let ¢ be a nonnegative integer. Then,

O(k+4,j+1) = O(k+4, j+1)AO(k+4, j)
= 0(k+‘i,j+1)/\0(k,j)
= CO(k+4, +1)A[O(k, j+1) valdi]
= C(k, j+L)V[C(k+12, j+1)AaiAG)
= Ok, j+1) VIO (k, j+1) AaT i)
= Ok, j+1)
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by the induction hypothesis, modularity in 3, and (6.6). Consequently,
€(k+i,j+1) = C(k,j-+1) for all nonnegative integers é. The induction
is now complete. It follows that C(k--i) = C(k) for all nonnegative
integers 4, q.e.d.

COROLLARY 6.4. M™ is a complete lattice.

Proof. Let ¢ be an arbitrary nonempty collection of elements
of M*. By Theorem 6.3, M* satisfies the ascending chain eondition. It
follows immediately from this that C has a least upper bound and a greatest
lower bound, q.e.d.

DEFINITION 6.5. Let I be a Noetherian lattice, let M be a Noetherian
L-module, let a be an element of I, let the a-adic pseudometric on M, dg,
be a metric, and let M* be the completion of M determined by the metric d,.
Now, M* may be made into an L-module by the following construction.
Let b be an element of L, let A be an element of M*, and let the sequence
{A¢) be the completely regular representative of 4; define b4 to be that
element of M* determined by the Cauchy sequence <bA;>. [Observe
that b(AM*) = (bA)M* for every 4 in M.] It is easily verified that
M* becomes an L-module under this defmmon of maultiplication. M™
now has the following properties:

(6.7) M* is an L-module;
(6.8) (M*, d%) 48 a complete metric space;
(6.9) MM* s dense in M*;

(6.10) If A and B are elements of M*, and if (As) and (B¢) are represenia-
tives of A and B, respectively, then

X4, B) = lim d(As, By);

(6.11) OM* is the least element of M™;

(6.12)  JMM* is the greatest element of M

(6.13)  M™ satisfies the ascending chain condition;
(6.14) M™ ig a complete laitice.

This L-module M* is defined to be the a-adic completion of the
Noetherian L-module M.

Remark 6.6. Itis clear that the a-adic completion of the Noetherian
L-module M is uniquely determined up to a lattice isomorphism.

§ 7. Contractions. Throughout this section, I iz a Noetherian
lattice, M is a Noetherian L-module, ¢ is an element of L such that the
a-adic pseudometric on M is a metric, and M* is the a-adic comple-
tion of M.
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DeriNrToN 7.1. Let A be an element of M* and let the sequence (4,
i=1,2,.., be the completely regular repregentative of A. A 4. is
n

defined to be the contraction of A to M, or simply A coniracied, and will
be denoted henceforth by 4 ~ M.

PRrOPOSITION 7.2. Let A be an element of M. Then A= AM*~ M.

Proof. From Remark 5.2 we know that the sequence {4 Va'Al),
i=1,2,.., is the completely regular representative of AM*. Hence,
A= A (Avais) = AM* ~ M by Theorem 3.10, q.e.d.

i

CoROLLARY 7.3. Let A be an element of M*. Then (A ~ M)M*~ M
=An M.

COROLLARY 7.4. Let A be an element of M. Then (AM* ~ M)M*
= AM*,

PROPOSITION 7.5. Let A be an element of M*. Then (A~ M)M* < A

Proof. Let the sequence {A:> be the completely regular represen-
tative of A. Since 4 ~ M = A A < Ay for all positive integers ¢, it
follows that (A ~ M)M* < A by Proposition 5.10, g.e.d.

PROPOSITION 7.6. Let A and B be elements of M* such that 4 < B.
Then A n M < B~ M.

Proof. Let the sequences. {4¢) and (Bi), +=1,2, ..., be the com-
pletely regular representatives of A and B, respectively. Then, A¢< Bq
for all positive integers ¢ (Proposition 5.9), This implies A ~ M = A Ay

" gy
< A\ Ba= B~ M, qed. :
ﬂCOBDLI.,ARY 7.7. Lét A and B be elements of M*. Then

(7.1) (A~ MV(B~AM)<AVB) M,
(7.2) (AAB)A M < (A ~n MA(B A~ M).

ProrosiTION 7.8. Let A be an element of M and let B be an element
of M*. If there ewists a Cauchy sequence {(Bi), i =1,2, ..., of elements
of M such that:

(7.3) {Bi) is a representative of B;
(7.4) A < By for all sufficiently large 1;

then A < B n M.

Proof. Assume that there exists a Cauchy sequence (B>, t = 1,2,...,
satisfying (7.3) and (7.4). It may clearly be assumed without loss of gener-
ality that <¢B:)> is a regular Cauchy sequence and that A < By, for all
positive integers i. Now, since ¢Bs) is a regular Cauchy sequence,
{Biva‘s) is the completely regular representative of B (Corollary 4.13).
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Bince 4 < B; < Bivaldb for all positive integers 4, it follows that
A< A (Bivaids) = B ~n M, g.e.d.
i

If, in addition to the conditions given at the beginning of this section,
it is further assumed that the a-adic pseudometric on I is a metric and
that L* is the a-adic completion of L, considered as an L-module, then
it is easily verified that M* is an L*-module and we have the following
result.

PROPOSITION 7.9. Let b be an element of L* and let B be an element
of M*. Then (b ~L)(B ~ M) < (bB) ~ M.

Proof. Let the sequences <b;p and ¢(Bi), i=1,2, .., be the com-
pletely regular representatives of b and B, respectively. Then the Cauchy
sequence <biBivalM), i=1,2, ..., is the completely regular representa-
tive of bB (Corollary 5.15). Smce /\ by < by and /\ By, < B for all positive

integers 4, it follows that ( /\ bu){ /\ Bp) <hiBi < b:BaVa‘.M, for all positive

integers 4. This implies (b nL)(Br\ M) = (/\ ba)( /\ By) < /\ (baBnV a™ M)
= (bB) ~n M, q.e.d.

Remark 7.10. Let b be an element of L. Since M* is an L-module
and M* is an L*-module, it is natural to ask what is the relation between
the b-adic pseudometric on M* and the bL*-adic pseudometric on M*.
It is a straightforward computation to show that these two pseudometrics
are in fact equal on M*. The proof will be omitted.

§ 8. The local case. Throughout the remainder of this paper,
(L, p) is a local Noetherian lattice; M is a Noetherian L-module; L* is
the p-adic completion of L; and M* is the p-adic completion of M.
If A, B are elements of M such that A < B, then it is easily verified that
{4, B] is a Noetherian L-module. The proof is omitted.

For convenience we state the following results. The reader is referred
to [3] for their proofs.

TEEOREM 8.1. ([3], Theorem 1.6). For each A in M, the lattice [pA , A]
is finite dimensional.

CoroLLARY 8.2 ([3], Corollary 1.7). Let {A:> be any sequence of elements
of M satisfying A < AeVpido for all positive integers i. Then the sequence
(A is Cauchy.

CoroLLARY 8.3 ([3], Corollary 1.8). Let B and C be elements of M*.
Let the sequences {Bs> and {C) be the completely reqular representatives
of B and C, respectively. Then the sequence {BinCi)y, 1= 1,2, .., is a rep-
resentative of BAC.

COROLLARY 8.4 ([3], Corollary 1.9). M* is modular.
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ProrosiTioN 8.5 ([3], Lemma 1.10). Let A and B be elements of M*.
Let the sequences (A and (B, t=1,2,..., be the completely regular
representatives of A and B, vespectively. Then the sequence (Aq: By,
i=1,2,.., ts Couchy and is o vepresentative of A : B.

TeeorEM 8.6 ([3], Theorem 1.11). Let (As> be a Cauchy sequence of
principal elements of M and let B in M* be the equivalence class determined
by (Ai>. Then B is a principal element of M* (considered as an L*-module).

TerorEM 8.7 ([3], Theorem 1.12). L* is a Noctherian lattice and M*
is a Noetherian L*-module.

It is easily verified that L* is in fact a local Noetherian lattice with
unique maximal prime element pL*. In the remainder of this paper, we
shall nge p* to denote pL*. '

The following is actually & corollary to Lemma 6.1.

ProrosiTION 8.8 ([3], Corollary 0.5). Let b = I be an element of L,
and let B be an clement of M. Then A "B = 0.

CoroLLARY 8.9. The p-adic pseudometric on M 48 a metric.

Proof. Let A be an element of M. Consider the Noetherian I - module
[4, ). Since 4= A (p" o M) = A (AVp*M) by Proposition 8.8, the
3 n

desired result follows by Theorem 3.10, g.e.d.

TeeorEM 8.10 ([3], Theorem 2.1). M is a complete L-module with
respect to the p-adic metric if and only if given any decreasing sequence {Bi),
i=1,2,.., of elemenis of M and any positive integer n, By < (/\ By)Vpr s
for all sufficiently large i. !

Prorosirion 8.11. Let A and B be elements of M*. Then (AAB) ~ M
= (4~ M)A(B ~ M).

Proof. We have (AAB) »n M < (4 ~» M)A(B ~ M) by (7.4). Hence,
we need only establish the reverse inequality. Let the sequences (A:
and (B, ¢=1,2,.., be the completely regular representatives of A4
and B, respectively. Then <4:AB:p, i=1,2,..., is a representative of
AAB (Corollary 8.3). ( /1} An)A(A Ba) < A¢ABy for all nonnegative

integers ¢ implies that (A~M)A(BAM)= (A Ax)A(A Bu) <(AAB)AM
n n

by Proposition 7.8, q.e.d.

Since M* is an L-module, the p-adic pseudometric, dp, is defined
on M*. Since (L*, p*) is a local Noetherian lattice and M* is a Noetherian
L*-module (Theorem 8.7), the p*-adic pseudometric on M* y dpe , s & metric
(Corollary 8.9). Since p* = pL*, it follows from the comments at the
end of section 7 that d, is a metric. The following result is essential to
the later development of this paper.
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TeEOREM 8.12. Let € and D be elements of M*. Then, d3C,D)
= d,(C, D).

Proof. Since MM* is dense in (M*, d}) by (6.8), it is sufficient
to show that these two metrics agree on M M*. This shall now be established.
Let A and B be elements of M. Hence A M* and BM™ are elements of M M*.
By using Proposition 7.2, a routine calculation shows that AM*v
/(™) (MM?) = BM*v(p") (S M*) if and only i AVP"M= Bvp"M for
each nonnegative integer n. Consequently, dy(4M*, BM™)= d,(4,B)
= Q(AM*, BM"). Tt follows that d(AM*, BM*)= aiAM*, BM*), for
all elements 4 and B of M, g.e.d.

COROLLARY 8.13. The three metrics a3, dp, and dp are equal on M*.

This corollary plays an important role in later theorems of this
paper. In particular, (6.8) and (6.9) of Definition 6.5 apply to M* with
the metric dy» or the metric d,.

§ 8. Completions of intervals.

DErFINITION 9.1. Let M be an L-module, let A, B be elements of M
such that 4 < B, and let @ be an element of L. Then, for all elements ¢
and D in [4, B], d(0, D, a, A, B) is defined to be the «-adic distance
between C and D considered as elements of the L-module [4, B].

THEOREM 9.2. Let 4 and B be elemenis of M such that 4 < B.

Then the L-module [AM*, BM*] is complete with vespect to the p-adic
metric.

Proof. It was previously noted that d, and dy- are equal on M*.
Similar remarks show that the corresponding metrics d, and dp+ are equal
on the module [AM*, BM*]. Consequently, in order to show that
(LAM*, BM*], d,) is a complete metric space, it iy sufficient to show
that ([4AM?*, BM*], dy-) is a complete metric space. This shall now be
established.

Since (M*, d%) is a complete metric space, it follows that (M, dps)
is a complete metric space (Corollary 8.13). Hence, M* iz a complete
L*-module with respect to the p*-adic metric. By Corollary 3.11 it follows
that ([AM*, BM*], d,) is a metric space. It will now be shown that
this metric space is complete. Let {Cs), i = 1, 2, ..., be a Cauchy sequence
of elements of (4 M*, BM*], dy). It will be shown that there exists an
element C in [AM*, BM*] such that C;— 0 as i+ oco. It may be assumed
that the sequence <0y is completely regular (in the L*-module [AM*, BM*]
with the p*-adic metric). Since each C: is an element of [AM*, BM*],
A 0y is an element of [AM*, BM"].

7

Now, consider the sequence {(p*){MIM*)ABM*), i=1,2,.. Since
this sequence satisfies the conditions of Lemma 6.1 (recall that M is
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a Noetherian L*-module by Theorem 8.7), there exists a natural number »
such that

(9.1) ()" (M) ABM* = (") [(p*)"(HoI*) A BM*]

for all nonnegative integers 4.

It will be shown that
(9.2) 0>\ O; as
i

i -too .,

Let ¢ be a poiitive real number. Choose m to be the least natural number &
such t.ha,t 27" < e. Bince M* is a complete L*-module with respect to the
p*-adic metric, and since the sequence (C;)> is decreasing (Remark 4.8),

it follows from Theorem 8.10 that there exists a natural number N such
that

0 < (/1\ Cy)v (p*" ™M)
for all nonnegative integers ¢ > N. Hence
Civ (P UH*) = (A OV (p* ™Sy
for all integers 4> N. Consequently ]
(98)  BMALON ("™ M*)] = BM*AL(A CHV(p*)" ™M),
for all integers 4> N. Since ’
BM*ALOW ()" ™(Mod*)] = 04V (0*)™[(p*)"(M*) A BM*)

and since

BM‘/\[(/’\ O v (") ™Mo I*)] = (/;\ GV (™) "[(p*)(AI*) A BM™]
by modularity in M* and (9.1), we have that

OV (2*)"[(P* (M M)A BU*] = ('/j\ 0DV (" (™) (M M*) A BM*)

'fl(‘);ezll integers i > N, by (9.3). Now, let ¢ be an integer such that 4> N.
Civ (p*Y™ o (BM*) = C':V(:D*)m[(P*)"(-M»M*)/\BM*]V(IJ*)""(BM')
= (/7,\ Ci)v (p*"[(p*)"(HoIL*) A B (p*\™(BM*)
= (A O)Vv(p*)" o (BM*).
Hence, !
OV (@)™ o (BM™) = ( A\ Op)v(p*™ o (BM*),
for all integers 4> N. It follows th;t
A, /} Ciyp*, AM*, BM*) < 27" < &,
for all integers ¢ > N. This establishes (9.2), q.e.d. |

icm®
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PROPOSITION 9.3. Let A and B be clements of M such that 4 < B.
Then the map O—CM* of [A, B] with the p-adic metric to [AM*, BM*]
with the p-adic metric is an isometry.

Proof. This is a straightforward computation and will be omitted.

THEOREM 9.4. Let A and B be elements of M such that A < B. Then,
the set [A, BJM* is dense in the L-module [AM*, BM*] with the p-adic
metric.

Proof. Since the metries d, and d,- are equal on [AM*, BM™), it
ig sufficient to prove that the set [4, B]M™* is dense in the metric space
(LAM*, BM*], dpe). This shall now be established.

Let C be an element of [AM*, BM*]. Now, considering C as an element
of M*, let the sequence {Ciy, i =1, 2, ..., of elements of M be the com-
pletely regular representative of ¢ determined by the p-adic metric on M.
Since the sequence <Cs) is completely regular, it is decreasing (Remark 4.8).
Hence, the sequence <{CiAB), 4 =1,2,..., is decreasing, and thus.is
a Cauchy sequence (Corollary 8.2). Since the sequence {Cy> is the com-
pletely regular representative of .0, and since the sequence.(BvVpidt),
$=1,2, .., is the completely regular representative of BM* (Remark 5.2),
the sequence (CiA(BVPiM)), ¢ = 1,2, ..., is a representative of CABM*
(= €) by Corollary 8.3. Since CiA (BVpiM) = (CiAB)vp M for all positive
integers 4, and since (CiAB) ~{(CiAB)Vp!M) by Corollary 4.6, it follows
that the Canchy sequence {(CiAB) is a representative of C. Hence

(9.4) (CiAB)M* (0 a8 4>+
with the d3 metric, and thus with the p*-adic metric by Theorem 8.12.
Now, since ¢ is an element of [AM*, BM*], AM* < C<BM".
Since <C;> is the completely regiilar representative of ¢, <(Avpid) is
the completely regular representative of AM*, and (Bvp'M) is the
completely regular representative of BM* (Remark 5.2), we obtain
A < AVPiM < O: < BvpiM for all positive integers ¢ (Proposition. 5.9).
Consequently 4 = AAB < OiAB < BA(BVp'Mb) = B for all integers ¢,
and thus CiAB is an element of [4, B] for all positive integers i.
Since the sequence {(p*)"(MM*)ABM*», i=1,2,.., satisfies the
conditions of Lemma 6.1, there exists a natural number n such that

(9.5) ()" (MM ABM* = (p*)(p*) (M M*) A BM*]

for all nonnegative integers i.

Now, let ¢ be a positive real number. Choose m to be the least natural
number k such that 27% < e. Since (CiAB)M*—>C as i—>+oo With the
p*-adic metrie, (9.4), there exists a natural number N such that

d((C’(/\B)M*, O,p*,OM*,‘M:M*)<2-(m+”)
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for all integers ¢ > N. Hence,
(CAB) MV (p*)" ™ (Mo I*) = OV (p*)"*™(So M)

for all integers ¢ > N. Consequently
(9.6)  BMA[(C:AB)M* v (p*)" ™Mo M*)] = BM*ALOV(p*)™ ™M M*)]
for all integers ¢ > N. Since
BHAUCA BV ()" ™ (M H*)] = (Con B)M* v (p*)"[(p*) (Mo M*) A BM*]
and since

BM*ALOV(p*)" " (MH*)] = OV (p*)"[(p*)"(MoM*) A BM*]
by modularity in M* and (9.5), we have
(9.7) (CenB)M*v (p*)"[(p*)(MoM*) A BM*] = OV (p*)"[(p*(SM*) A BI*]

for all integers i > N, by (9.6). Now, let ¢ be an integer such that ¢ > ¥.
Then,

(CnBYH* v (p*)™ o (BM*)
= (CinB)M™v(p*)"[(p*)( oI *) A BM*]V (p*)™(BM*)
= OV (") [(p*)(MHM*) \BM*]V (p*)"(BM*)
= Ov(p*)™ - (BM*)
by (9.7). Hence
(CiAB)M*V (p*)™ o (BM*) = Cv (p*)™ o (BM*)
for all integers ¢ > N. Consequently,
A((C:AB)M*, O, p*, AM*, BM*) <2™™ <
for all integers 7> N, q.e.d.

TeEroREM 9.5. Let A and B be elements of M such that A < B. Then
the L-module [AM*, BM*] with the p-adic metric is the Pp-adic completion
of the Noetherian L-module [A, B].

Proof. This result follows immediately from Theorem 9.2, Proposi-
tion 9.3, and Theorem 9.4, g.e.d.

§ 10. Residuation. The following theorem establishes the first
bagie fact about residuation in Z* The general cage will be proved later.

TEHEOREM 10.1. Leét A be an element of M and let B be a principal
element of M. Then (A : B)L* = A M*: BM™

Prpof. Since (A:B)B < A, we have (4:B)L* BM* — [(4:B)BlM*
< AM* (Corollary 5.11). Thus (4 : B)L* < AM*: BM*. Hence, it is
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gufficient to establish that (4 : B)L* > AM* : BM*. This shall now he
Proven.

Let n be a nonnegative integer. Since LL¥ is dense in L*, there exists
an element ® of I such that dp(wl*, AM* : BM*) < 27" Consequently
2L*v(p*)* = (AM* : BM*)V(p*)". Since (AM*: BM*)(BM*) < AM*, it
follows that

(#B)M* < [(=L*)Vv(p*)"|(BM*)
= [(AM* : BM*)V(p*)"|(BM*)
= (AM* : BM*)(BM*)v(p*)"(BM*)
< AM*v(p*)(BM*)
= (AvVp"B)M* .
Congequently, 2B = (¢B)M* n M < (Avp*B)M* ~ M = Avp"B by Pro-
positions 7.2 and 7.6. Hence, s < (Avp"B): B= (4 : B)vp™ since B
is a principal element of M by hypothesis. It follows that 2L* < [(4 : B)v
v p*]L* = (4 : B)L*v(p*)". Consequently,
(AJ* : BM*)V(p*)" = aLl*V(p™)" < (4 : B)L*V(p*)".
Since n was an arbitrary nonnegative integer, we have
(AM* : BM*)V(p*)* < (4 : B)L*v(p*)"
for all nonnegative integers #. Now, since (L*, p*) is a local Noetherian
lattice, we obtain :
AM*: BM*= /’} {(AM* : BM*)v(p*)"}
< A {4 : BIZ*v(p*)"}
»
= (4 : B)L*,
by Theorem 3.10, g.e.d.

COROLLARY 10.2. Let A be an element of M and let B be a principal
dement of M. Then (AAB)M* = AM*ABM".

Proof. Since B is a principal element of M, BM* is a-principal
eleiment of M* (Theorem 8.6). Hence AM*ABM* = (AM*: BM*)(BM*)
= [(4 : B)L*|{BM*) = [(4 : B)B]M* = (AAB)M* by Definition 2.4- and
Theorem 10.1, q.e.d.

THEOREM 10.3. For all dements A and B of M, (AAB)M* = AM*
ABM®.

Proof. Since M is a Noetherian L-module, there exists prineipal

elements Oy, Cy, ..., Cs such that B = (,v...vCyv(AAB). The theorem
ghall be proven by induetion on n.
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First, consider the case where »n =1. Hence B= O,V(4AAB). It
C, = 0, the result follows immediately. Since O, is a principal element
of M, C,vV(AAB)is a principal element of the L-module [AAB, 4] (see
comments at -the beginning of § 1 of [3] and [1], Lemma 4.1, p. 488).
Jonsequently,
(AAB)M* = (AN (C,V(4AB))) "

<> (4A(CLV(AAB))JIANB, H]*

= A[AANB, T*A (01v AAB)[AANB, S)*

= A[AANB, M]*ANB[AAB, M]*

<> AM*vBM*
by Corollary 10.2 and Theorem 9.5. Hence, (AAB)M* = AM*ANBM* and
the theorem holds when # == 1. Assume that the theorema holds for the
cage where n = k and let B = C, V...V Cry1 V(A AB). Set 0 = 041V .A. Then
AAB = (AAB)V(AACry1) = AAN((AAB)V Opya) = AN (BA(OrsaV A4))
= AA(BAC). Consequently, by modularity in M,

(10.1) ONB = OussV(AAB) = CaaV (A A(CA B)
and
(10.2) B = 0;V...V.0r41V(4AB)

= O;V...VOiV (Cr41V(4AB))
= O,V.. VOV (BA(CrsaVA4)) .

Now, consider 4 and CAB. Since CAB = Cry1V(AA(OAB)) by (10.1),
the case n =1 applies, and hence (AAB)M* = (AA(OAB))M* = AM*a
A(OAB)M*. Next, consider ¢ and B. Since B = (,V...v0;V(CAB)
by (10.2), we have (CAB)M* = CM*ABM* by the induction hypothesis.
Hence, (AAB)M* = AM*A(CAB)M* = AM*A(CM*ABM*) = AM*ABM*.
The induetion is now complete, g.e.d.
TEEOREM 10.4. For all elements A and B of M, (A: B)L*= AM*: BM*.
Proof. Let A and B be elements of M. Since M is a Noetherian
L-module, there exists principal elements 0, ..., 0y of M such that
B = (0,V..v0,. Consequently,
(4 :B)L* = (A : (OyV...v0n)L*
= ((4 : C)A..A(4 : Ca))I*
= (4 : O)I*A..A(A : Cn)I*
= AM*: (C,M*v...vC, M*)
= AM*: (O,V..vVC,)M*
= AM*: BM*
by (2.19), Theorems 10.1 and 10.3, q.e.d.
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Remark 10.5. In view of Definition 5.4 and Theorem 10.8, it follows
that the extension map A—-AM* of M->MM* is a lattice isomorphism,
i.e. M is lattice isornorphie to MM* congidered as a sublattice of M*.
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