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Proof. Any set open in the product topology which contains (@), 0)
must contain a set of the form G x H where () e G and 0 ¢ H and G and H
are open in the new interval topologies on L and M respectively. By
Lemma 1, & contains ¥(B,) for all but a finite number of n. Suppose
that @ contains ¥(B;). By Lemma 2, B; ~ H 5= . Let f; e By ~ H, then
P(fi)eG and (P(fy),f;) e GxH. Yet (¥(fy),f;) «F. Hence (GxH)n
~TF #@. Every open set containing ((0),0) must contain a member
of F, which implies that ((@),0) is in the closure of F.
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On the modular relation in atomistic lattices

by
M. F. Janowitz* (Amherst, Mass,)

1. Introduction. 8. Maeda [6] and [7] as well as R. Wille [9]
have recently investigated various types of atomistic lattices. Basically,
‘Wille was concerned with upper continuous atomistic lattices equipped
with some type of closure operator, while Maeda investigated modular
and dual moédular pairs in ‘atomistic lattices. Our goal here is to extend
and to some degree attempt to unify these two theories.

In an effort to make the paper fairly self-contained, we introduce

-our. basic terminology arid prove a few preliminary theorems in.§2.In § 3

we introduce the concept of a finite-statisch lattice and extend Wille’s
theory [9] to this class of lattice. In § 4 we discuss modularity in atomistic
lattices, and relate the work of §. Maeda to that of Wille. Finally, in § 5
we list a few open gquestions.

2. Basic terminology. As much as possible our terminology
and notation will follow that of Wille [9]. A noteable exception, however,
is that rather than using Wille’s symbolism, we will use the symbols v
and ~ to denote set union and set intersection.

DEFINITION 2.1. A lattice L with 0is called atomistic if every element-
of L is the join of a family of atoms. ‘

DEFINITION 2.2. A non-empty subset T of a lattice L is called
increasing (see [9], Definition 1.3, p. 5) if 4,y ¢ T' implies the existence
of an element z of T such that #Vy < 2. In symbols, the notation ]
will denote the fact that {x.} is an increasing subset with join «. If Z.|@
and w Ayloay for all y eI, then {w.} is called a continuous increasing
subset of L.

In a lattice with atoms, let o denote the set of atoms dominated
by #. The next lemama then provides a useful characterization of con-
tinuous increasing subsets of an atomistic lattice.

Levma 2.3. Let a]@ in an atomistic lattice L. Then {zg} s continuous
if and only if aw= | Jp(amp).

* Regearch supported in part by NSF Grant GP-9005.
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Prooif. Let {zz} be continuous and p an atom under x. Then wyn
Aplaap = p implies p < @ for some index f. It follows that aw = | (azp).
Suppose, conversely, that az = |_z(az;), and let y e L. Then xAy is an
upper bound for {#sAy}. If @ < xAy, then there exists an atom p such
that p < #Ay but p<ta. Now p <« implies p < #p for some index g,
50 p < wpny. It follows that @ is not an upper bound for {wmsAny}. We
conelude that zsAy|zAY, so {zg} is continuous.

A complete lattice L is called upper continwous if every increasing
subset of I is continuous. Following Wille [9], we agree to call an upper
continuous atomistic lattice a geometric lattice.

DErINITION 2.4. A set A of atoms of a lattice L with 0 is called
a linear set if p contained in the join of a finite number of elements of 4
implies p €« 4 for any atom p of L.

Given the lattice L, let (L) denote the set of linear subsets of L.
By [9], Satz 3.1, p. 16, G(L), when partially ordered by set inclusion,
forms a geometric lattice. If L is a complete atomistic lattice, the mapping
z->ag is a complete A-monomorphism of L into &(L).

DEFINITION 2.5. A geometric lattice & is called topological if &
possesses a closure operator a—a@ satisfying: (1) e <@ =a for all ae G-
(2) 0= 0. (3) If {ps} is a finite set of atoms then \Vips= Vi¢pi. (4) a < b
implies @< 5. If (4) is replaced by (4'), Gvb = avb, then G is called
a classical topological geometric lattice. Finally, if (4) is replaced by (4”"),
avp = aVyp for any atoms p, then @ is called a semiclassical topological
geomelric lattice. In any case, let (@) denote the set of closed elements
of G; ie., A(G) = {w e« @: T=x}. Notice that UA(F) is a complete lattice
with respect to the join and meet operations

TUG=2Vy and EM7=EAY.

By [9], Satz 3.2, p. 17, it L is a complete atomistic lattice, then

a closure operator A—>4 can be defined on (L) by the formula
A= (X: ACX eal)=a(\ 4).

Then G(L) becomes a topological geometric lattice with %[((5 (L)) = L.
By [9], Satz 3.3, p. 17, if @ is a topological geometric lattice, then G(QI(G)}
is a complete atomistic lattice with @ ((6)) = G-

DEFINITION 2.6. A lattice L with 0 is called a section-semicomple-
mented or an SSC-lattice if a < b implies the existence of an element x
such that 0 <& <<b and arw = 0.

In a lattice I with 0, let F(L) denote the set of elements that may
be expressed as the join of a finite (possibly empty) family of atoms.

icm
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We say that e covers f in L and write e f in case e>fand ez o> f
implies ® = ¢ or # = f. We introduce the covering property (C) as follows:

(C) If p is an atom and p < a, then pVa > a.

Following 8. Maeda [7], we call L an AC-lattice if it is an atomistic
lattice with the covering property (C). A mairoid laitice may then be
defined to be an upper continuous AC-lattice. It will prove illuminating
to show that in a fairly large class of lattices #'(L) is an ideal of L and G (L)
1is isomorphic to the lattice of ideals of F(L). First we need some additional
terminology.

DErFINITION 2.7. In a lattice L the pair (e, d) is called a modular
pair, denoted M (@, d), if ® <b=>zv(aAb) = (zVa)Ab. Dually, (a,b) is
called a dual modular pair, in symbols M*a,b), if 2=b = zA(avb)
= (zAa)vb. The lattice L is called M-symmeiric if M(a,d) = M (b, a)
for all a,bel, and M*-symmetric it M*(a, b) = M*(b, a). A lattice L
with 0 is called weakly modular it anb £ 0 = M(a, b).

Lemma 2.8. Let L be a weakly modular SSC-lattice with 1 in which
the covering property (C) holds. If 1 is the join of a finite number of atoms,
then every element of L is the join of a finite number of atoms.

Proof. Let 1= p,Vp,V..vp, where the {p;} are distinct atoms.
If a <1, then a & all p;, so way assume that ¢ &= p,. Then by (C), p,Vv
VPay D1V Pgy -ooy P1VPn are atoms in [py, 1= {# e L: @ > p,}. Since L is
weakly modular, [p,, 1] is modular and by [4], Hilfsatz 2.11, p. 78, [p4, 1]
is an atomic complemented modular lattice with height at most n—1.
I b<e<a and p, Vb = p,Ve, then b < e<<pvh. Since p; < a, clearly
py<th, 80 p,vh S b. Since p, < ¢, this forces c=1"b, so b<ec<a =pV
vb < pve. Enow a = by > by > ... > by, then p,vh > p Vb > ... > 93 Vb
in [p,, 1]. But this contradicts the fact that the height of [p,, 1] is at
most n—1. It follows that [0, a] has no properly increasing or decreasing
chains of length > m, so [0, a] is atomic. By SSC, [0, a] is atomistic,
and since it has finite height, @ must be the join of a finite number
of atoms.

LeMmA 2.9. Let L be a lattice with 0O in which F (L) is an ideal. Then
®(L) =< I(F (L)), the lattice of ideals of F(L).

Proof. If A4 e®(L), let I(4) denote the ideal generated by the
elements of 4. If J is an ideal of F'(L), let aJ be the set of atoms of J.
Then I: 6(L)~>I(F(L) and a: I(F(L))—~G(L) are isotone.

Note that I(aJ) is the ideal generated by the atoms of J. Hence
T(aJ) < J. If © eJ then # is the join of a finite number of atoms of J and
2z eTI(aJ). Hence I(aJ)=J.

If Ae®(L), then ped =>pel(d) =peal(d). Thus ACal(4).
If p e al (A) then.p is an atom and p e I{4) = p is contained in the join
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of finitely many elements of 4, so p e A. Thus 4 = al(4), completing
the proof.

TaeorEM 2.10. If L is an AC-lattice or a weakly modular SSC-lattice
in which the covering property (C) holds, then ®&(L) ~1I (F (L)).

Proof. In view of Lemma 2.9 we need only show F(L) to be an
ideal of L. If L is an AC-lattice, the assertion is contained in [6], Lemma 3,
p. 167, If L is a weakly modular SSC-lattice in which (C) holds, apply
Lemma 2.8.

Remark 2.11. Since the properties of being distributive, modular,
or weakly modular are inherited from I, first by F(L), and then by
I (F (L)) » [9], Satz 3.5 and 3.6, pp. 18-19 (except for the assertion regarding
semimodularity) now follow immediately.

3. Statisch and finite-statisch lattices.

DerivrrioN 3.1, If {z,;: a<l,} and {ys: B € I,} are increasing subsets
of a lattice L, then their “join”, {w,Vys: ael, B el,}, is again an in-
creasing subset of L. Following Wille [9], Definition 3.3, p. 20, we agree
to call a complete lattice I statisch if the join of every pair of continuous
increasing subsets is again continuous. We further agree to call a complete
atomistic lattice finile-statisch if for any continuous increasing subset
{a: a eI}, {mvp: ael} is continuous for any atom p of I.

As a direct analogue of [9], Satz 3.8, p. 21, we have

THEOREM 3.2. A complete atomistic laitice is finite-statisch if and
only if p,q atoms with p < qva implies the existence of a finite number
of atoms {pe} < a such that p < qv(\/1ps).

Proof. Let L be finite-statisch. Given @ eL, let €(a) denote the
seti of all finite sets of atoms under a. Given B € E(a), let ag = \/ {r: r ¢ H}.
In view of Lemma 2.3 {ag: F ¢ &(a)} is a continuous increasing family,
80 {ogVq: Be€(a)} is continuous. But now agvgtavg>=p, so by
Lemma 2.3, there exists E € E(a) such that p < agvq as claimed.

Suppose conversely that p, g atoms with p < ¢ve implies p < av
V(Vps) for some finite set {p:} of atoms under a. Let {ws: 8 « I} be a con-
tinnous increasing subset with join #. Let g be an atom. If p < gv& then
there exist finitely many atoms {p;} <& such that p < gV (V¢ ps). Since
{zg: B eI} is increasing, there must exist an: index p’ eI such that
Vipi< @p. Then p < qVap. It is immediate that a(zvg) = | [a(z5ve)]
so {wsvq: B eI} is continuous.

We now attempt to relate semi-classical topological geometric latitices
with finite-statisch lattices in & manner analogous to [9], Satz 3.4, p. 18.
A key item is provided by ‘ ‘

Levma 3.3. Let G be a topological geomeiric lattice. An increasing
subset {Zg} of W(G) is continuous if and only if \/pEs = lpt;s.
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Proof. If {%;} is continuous, then by Lemma 2.3, a(| lp %) = | |s a%s.
It is immediate that (p an atom) p < | % implies p << \/p% 50 |_Ip%s
< V;p%s. The reverse inequality always attains. If, on the other hand,
| 6% = V.%p since G iz upper continuous, it is clear that a(l_ls%p)
= |_Jp(aZp), 80 by Lemma 2.3, {Zs} is continuous.

TeHEOREM 3.4. If L 4s o finite-statisch lattice then & (L) is a semi-
dlassical topological geometric lattice. If G is a semi-classical topological
geometric laitice, then (@) is finite-statisch.

Proof. Let L be a finite-statisch lattice. By [9], Satz 3.2, p. 17,
(L) is a topological geometric lattice and L = W(® (L)). Since L is finite-
statisch, this forces (G (L)) to be finite-statisch. Letting “11” and “r”
represent the lattice operations in (G (L)), we see that if {po} < 4 L {Bl,
there must exist finitely many atoms {g;} such that {g7} < 4 and

o} < (U {geh) 2 {B} = (Vi {@s}) L {2}

= {reL: r an atom, » << (V:q)Vp}.

Hence po < (Vig) VP, {Po} < AV{P}, and consequently 4 L1 {B} = Av{F}.
It follows that A L {p} = Av{p}, so G (L) is semi-classical.

Suppose now that @ is a semi-classical topological geometric lattice.
It {z.} is a continuous increasing subset of A(G), then by Lemma 3.3,
VaZa=|_ls Z. It follows that for any atom p,

L,Ja (:'ia o ﬁ) = (L‘la Ta) LI P = (Va To) L D= (\/ﬂ Eu)v_ﬁ -
Foranatom & << | ! (Za U D) = (\Va %) VD, by upper continuity of @, there
exists an index a such that & << % Vv7p. It follows from Lemma 2.3 that
{%, 1 P} is continuous in A(G).

TurOREM 3.5. If L 18 a finite-statisch AC-lattice then ® (L) 48 o semi-
classical topological matroid lattice. If G is a sems-classical topological
matroid lattice, then W(Q) is a finite-statisch AC-latltice.

Proof. If follows easily from [1], Lemma 3, p. 197, that if L is a finite-
statisch. AC-lattice, then F(L) is an ideal such that a e F(L) = [0, a] is
of finite height. It is easy to show that this forces I (F (L)) to be a matroid
lattice, 80 by Theorem 2.10, G(L) is a matroid lattice.

If @ is a semi-classical topological matroid lattice, then (@) is finite-
statisch by Theorem 3.4. If 5 <@ in A(GF), then PLIG = PVaE covers @
in @, hence in A(G).

Combining these two theorems we have:

THEOREM 3.6. With respect to the funciions & and W one can identify
the following classes of lattices:

(1) finite-statisch lattices with semi-classical topological geometric
Lattices,
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(i) finste-statisch AC-lattices with semi-classical topological matroid
lattices.

4, Modularity in AC-lattices. Following S. Maeda [7], p. 108,
let us call a lattice L with 0 finite-modular it a e F'(L) implies M (b, a)
for every b e L. This condition turns out to be intimately related to the
lower covering property .

(LC) If avd S a then b > anb.

LEnmA 4.1. Let L be an AC-lattice in which the lower coverimg property
(LC) holds. Then M*(a, q) holds for all & <L and all aloms g of L.

Proof. Let ¢ be an atom under b. Then for arbitrary a e L, bA(avg)
= (bra)vg. We must establish ba(ave) < (bre)vg. If g< a, there is
nothing to prove, so assume g < a. Set d=>bA(avg). Then a<avd
<avqg If avd=a, then ¢ <d < a, a contradiction. Thus avd = avy,
50 avd & a. By (LO), d &> and = anba(avg) = andb. Since ¢<fa and
¢ < d, it follows that gv(aab) = (gva)Ab.

THEOREM 4.2. For an AC-lattice L, TARE:

(i) L 4s finite-modular.

(iiy L 48 M*-symmetric.

(iii) M*(a, q) holds for oll @ e L and all atoms ¢ of L.

(iv) The lower covering property (LC) holds.

Proof. (i) = (ii). [6], Lemma 4, p. 168.

(ii) = (iii). In an AC-lattice it is easy to show that M™(g, a) holds
for all a €L and all atoms g.

(iii)y = (iv). This is Lemma 4.1.

(iv) = (i). See [6], Theorem 1, p. 167.

Since the next theorem merely restates [7], Theorems 5.1 and 5.2
in the context of Wille [9], its proof will be omitted.

THEOREM 4.3. If L is a complete finite-modular AC-lattice, then ® (L)
is a semi-classical topological modular matroid lattice. If @ is o semi-classical
topological modular matroid lattice, then W(G) is o finite-modular AC-lattice.

In view of the above theorem, it seems natural to ask if every finite-
modular AC-lattice may be embedded in a complete finite-modular
AC-lattice. We will answer this question in the affirmative by showing
that the completion by cuts of a finite-modular AC-lattice is itself a finite-
modular AC-lattice.

Given a subset S of a lattice L, let §* denote the set of upper bounds
of 8, and 8% its set of lower bounds. Following Birkhoff [1], p. 127, let us
call an ideal I of L closed if I = (I*)*. The completion by cuts of L is then
defined to be the set of closed ideals of I, partially ordered by set inclusion;
it will be denoted by L. Notice that L is a complete lattice and z->J,
={yeL: y <} embeds L as a sublattice of L, 50 as to preserve any
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existing suprema or infima of subsets of Z. We shall make use of the
fact that if I, J are closed ideals of L, then I = J if and only if I* = J*.
The interested reader is referred to [1], pp. 126-127, for further details.

Levwma 4.4. Let L be a lattice with 0. Then M(x,y) in L implies
M (Jgydy) tn L.

Proof. Let I<dJ,. We must prove that (Ivdy) ~ y = IVdyny
We will do this by showing that & is an upper bound for (Ivdy) n oy it
and only if it is an upper bound for I vdy.,. Any upper bound for (Ivdy)
ndJy is evidently an upper bound for Ivd,,.,. On the other hand, let a
be an upper bound for IVde.,. Then a = way and a < I*. Since yel®,
any eI*. Hence (any)vwe(IVdy,)* and [(an YIVEIAY € [(TVdg) ~ JyT.
But using M(x,y) in L, we have

Hery)velry = (ary)v(EAy) = ary,

since @ > wAy. Hence a > apy e[(Ivds) n J,]*, as desired.

TemorEm 4.5. If L is a finite-modular AC-lattice, so is L.

Pro_of. (1) We first establish that I is an AOC-lattice. Note first
that I e L is an atom if and only if T = J, for some atom potL.Ifd, <J
in I, then M(Jy,J) is clear. I J, <t J then Jp ~J = (0). Itfollows that p
is not eontained in all upper bounds of J. Hence there exists an o e J*
such that pA2 = 0. Now M(p,#) in L implies M(Jp,Jz) in I, and since
J < Jg, it is immediate that M (J,,J) in L. Since L is clearly atomistic,
it follows from [6], Lemma 1, p. 166, that L is an AC-lattice.

(2) We now establish that I is finite-modular. In view of [7,
Lemma 2.2, p. 108, it suffices to show that M (I, Jpwg) holds in L for
all atoms p, ¢ of L. We must therefore show that (0) < K < Jpuq implies
(EVI) ndJpog= EV(I A Jpoy). Now (0) < E < Jpvq implies that K = J,
i;r some atom 7 < pVq. Hence we must show that if r < pV¢ is an atom,

en
(%) (IrVI) N dpug=Je V(I A Tpoy) -

Case 1: pvgeI. Then both sides of () equal Jpuq.
Case 2: I ndyeq = Jy for some atom ¢ <pveg Ir=t, then r e I, so
(IeVI) ndpug=I ndpog=dr=J,v(I A dpig) .
If r#14, then rvi=pvg in I, and
Ipvg Z (e VI) A dpoy 2 TV (I A dpog) = Jpvdy = o,

Case 3: I nJpoq=0. Then there exists an upper bound » of I
such that (pvg)aw <pvg I (pvg)Aw =0, stop here. If not, then
(pV@)Aw = s for some atom s. Now s < all upper bounds of I would
imply s e I, a contradiction, so there is a y e I* such that sAY = 0. Then
Fundamenta Mathematicae, T. LXVI 23

p~qg -
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Ay eI* and (pvg)A(wAy)= 0. In any event, I has an upper bound &
such that (pvg)Az= 0. Then M (2, pVvq) in L implies M(J,, Jp,) in L.
Since I <J, and J, n Jpug = (0), this clearly implies M (I, Jp,) in L.

Following the terminology of Gritzer and Schmidt [2], p. 30, we call
an ideal 8 of a lattice L standard if (IVS)nd = (I ~nJ)v(8 ndJ) for all
ideals I, J of L. By [2], Theorem 2, p. 30, the ideal § is standard if and
only if Svd,= {svay: s €8, 2, < o} for any w ¢ L. Interestingly enough,
we now prove:

THEOREM 4.6. If L is a finite-modular AC-lattice, then F (L) i8 a stan-
dard ideal.

Proof. In view of [2], Theorem 2, p. 30, it suffices to show that
b < avs with a e F(L) implies b = (bAx)Vva, for some o, e F(L).

(1) Suppose that b<wvp, p an atom. If b<o we may write
b= (bA®)v0 with 0 e F(L), so assume b <. Then bAs < b and if ¢ is
an atom such that ¢<<b, g <LxAb, then ¢ <o s0 wvg=avp. Then
b=>bA(mvp)=>bA(wvg) = (bAaz)vg with ¢ eF(L).

(2) Eb<oVpV...VPy with # > 1 and each p; an atom, set y = xv
IPLViVPyo1. Then by (1), b <yvp, implies b= (bay)vr for some
atom r. By induction we may assume that since bAy < #VPV...VPyoi,
there exists an element « of F(L) such that

bAy = (bayax)Va = (bAz)Va .

Hence b = (bAy)vr = (bAx)Vavr with avr e F(L).

In a survey paper on the lattice-theoretic approach to geometry,
B. Jénsson has shown ([3], Theorem 4.4, p. 193) that a geometry is strongly
planar ([3], Definition 4.2, p. 193) if and only if its lattice of subspa,ces L
is a matroid lattice satisfying

(SP) For any atoms p, q, r of L and any element a of L, the conditions

< gVa and r < a jonlly imply the ewistence of an atom 8 < @ such that
p< qurvs.

In view of this, an atomistic lattice is often called strongly planar
if it satisfies (SP). We are now able to state

TaEoREM 4.7. If L 48 a complete, sirongly planar AC-lattice, then
& (L) is a semi-classical topological weakly modular matroid lattice. If G is
a semi-classical topological weakly modular matroid lattice, then W(G) ix
a strongly planar AC-lattice.

Proof. Let L be a complete strongly planar AC-lattice. Then if
a < F(L), [0, a] is a strongly planar matroid lattice. By [5], Theorem 2.19,
p. 105, [0, a] is weakly modular. Hence F(L) is weakly modular. Since
this ‘clearly implies that I(F(L)) is weakly modular, we may apply
Theorem 2.10 to conclude that G(L) is weakly modular.
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Let @ be a semi-classical topological weakly modular matroid lattice.
Let p,g,r be points with P<guia@, r<a. Since ¢ is semi-classical,
p<gqvain @ I p=ror g=r, take s = p. Then p < gVrvs with s <@
a8 desired. If p # » and ¢ # r, then pvr, gvr are atoms in [r,1] and
rvp < (qvr)Va. Since [r,1] is modular, there exists an element ! such
that I > ¢ and p < qvrvl (see [9], Satz 3.11, p. 22). Since [ > 7, if s is
an atom such that s <1 but s % r, then I=rvs. But then p < gvrvs
with s < a. This shows (@) to be strongly planar. By Theorem 8.5,
it is an AC-lattice.

Combining Theorems 4.3 and 4.7, we have

THEOREM 4.8. With respect to the functions G and U one can identify
the following classes of lattices:

(1) complete finite-modular AC-lattices with semi-classical topological
modular matroid lattices.

(2) complete strongly planar AC-lattices with semi-classical topological
weakly modular matroid lattices.

Remark 4.9. Making use of Theorem 4.3 and 4.7, the following
unpublished result of S. Maeda may be obtained: “An AC-lattice L is
strongly planar if and only if for every atom p of L, [p, 1] is a finite-modular
AC-lattice.” It then follows from Theorem 4.2 that an AC-lattice L is
gtrongly planar if and only if anb 5 0, M*(a,b) = M*(b,a). It also
follows from this and Theorem 4.5 that the completion by cuts of a strongly
planar AC-lattice is strongly planar.

Finally, we have a quick look at modularity in a statisch AC-lattice.

TEEOREM 4.10. A statisch AQ-lattice is M*-symmetric if and only
if 4t is modular, it is strongly plamar if and only if 4t is weakly modular.

Proof. In view of Theorem 2.10 and [9], Satz 3.9, p. 21, .L may be
regarded as a sublattice of I(F'(L)). The theorem now follows immediately
from Theorems 4.3 and 4.7.

Lemua 4.11. Let G be a semi-classical topological matroid lattice.
Then M (@, D) in AW(G) implies M (T, ) in G

Proof. Let ce @, ¢<b. Then ¢v(@Ab) < (cva)ab. If p is an atom
and p < (ev@)Ab, then by upper continuity, there is a finite element
¢ < ¢ such that p < (6,va@)Ab. Thus ¢, = &, and using M (@, b) in AW(H),

(e,VE)AD = (6,1 @) m b =& LI (@AD) = e,V(@AD) ,
80 p< o V(@AD) in G Thus p<< o v(@rb) < cev(@ab). I follows that
(eva)Ab = ¢v(anb), so M(a,b) holds in &
THEOREM 4.12. Bvery statisch AC-lattice is M-symmetric.

Proof. In view of [9], Satz 3.10, p. 22, we may regard L as the
lattice of cloged elements of a classical topologmal matroid lattice. Let

23*
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a, b ¢ L with M (3, b). By Lemma 4.11, M(a, b)in @, and by [8], Theorem 1,
M(5,a) holds in @ It follows that M(b,d) in L.

Remark 4.13. By an obvious modification of the _above lemma
one can show that in any finite-statisch AC-lattice, if @ or & is finite then
M(@,b) = M(b,a).

5. Some open gquestions. We close by listing a few open ques-
tions that have suggested themselves during the writing of this paper.

1. Is every finite-modular AC-lattice M-symmetric?

9. In [7], S. Maeda calls a lattice I a DAC-lathwce in case both L
and its dual are AC-lattices, and shows ([7], Theorem 2.1, p. 108) that
every DAC-lattice is a finite-modular AC-lattice. Can every M-symmetric,
finite-modular AC-lattice be embedded in a DAC-lattice?

3. Is Remark 4.13 valid for an arbitrary AC-lattice?

4. Is F'(L) a standard ideal for L an arbitrary AC-lattice? What
if I is a matroid lattice?

5. In a finite-modular AC-lattice, by [6], Lemma 4, p. 168, M*(a, b)
is equivalent to the assertion that p an atom, p < @ vb implies the existence
of atoms ¢ <Ca, r<b such that p<gqvr. In an arbitrary AC-lattice,
what does it mean to say that p < avb, p an atom, implies the existence
of finite elements @, < a, b < b such that p < a,vbd,?
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a-adic completions of Noetherian lattice modules*
by
J. A, Johnson (Houston, Tex.)

§ 1. Introduction. Several years ago R. P. Dilworth [1] began
 study of the ideal theory of commutative rings in an abstract setting.
Since the investigation was to be purely ideal-theoretic, he chose to study
a lattice with a commutative multiplication. Many of Dilworth’s ideas
have since been extended and several new concepts have been introduced
([2], [8]). In particular, E. W. Johnson [3] has introduced the notions
of a Noetherian lattice module and a completion of a Noetherian lattice
module. The purpose of this paper is to generalize the methods used
in [3] and to extend some of the results. For undefined terms concerning
Noetherian lattices, the reader is referred to [1] and [3].

The basic concepts are introduced in § 2. In § 3 the a-adic pseudo-
metrie is introduced. If M is an L-module, then, for each element a of L,
a distance function, d,, can be defined on M. This distance function dg
is called the a-adic pseudometric on M. Theorem 3.10 gives necessary
and sufficient conditions for d, to be a metric. Assuming that d, is a metrie,
the set of all Cauchy sequences is divided into classes by an equivalence
relation, and M* is used to denote this set. The concepts of a regular
Cauchy sequence and a completely regular Cauchy sequence are given
in § 4. It is shown (Theorem 4.14) that each element of M* has a unique
completely regular representative. In § 5 the extension of elements from 3
to M* is defined. For 4 in M, the extension of 4 to M* is denoted by 4.M*.
A lattice structure is developed for M* and in § 6 it is shown that M*
satisfies the ascending chain condition (Theorem 6.3) under the hypoth-
esis that L is a Noetherian lattice and M is a Noetherian L-module.
The a-adic completion of M is defined (Definition 6.5). A .contraction
of elements-of M* to M is introduced (Definition 7.1) in § 7. For 4 in M,
its eontraction to M is denoted by 4 ~ M. It is shown that 4 = AM* ~ M
for all 4 in M (Proposition 7.2). )

The remainder of the paper is concerned with the particular case
where L is a loeal Noetherian lattice and M is a Noetherian L-module.
In § 8 a connection between the different metrics on M™* is determined
(Theorem 8.12 and Corollary 8.13). In § 9 p-adic completions of lattice

* This research was supported by the National Science Foundation.
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