Proof. Since \(f(x) \) is BV-\(\omega \) on \([a, b]\), we can express the interval as the union of a countable family of closed sets \(F_i, [a, b] = \sum_i F_i \), on each of which \(f(x) \) is BV-\(\omega \). Consider the set \(F_i \), where \(i \) is any positive integer. By Theorem 3.1, there is a function \(g_i(x) \) in calculus \(\mathcal{U} \) such that \(g_i(x) \) is BV-\(\omega \) on \([a, b]\) and \(g_i(x) = f(x) \) for all \(x \in F_i \). Denote by \(F_i^c \) the set of points of \(F_i \) where the \(\omega \)-derivative of \(g_i(x) \) exists finitely. Then by Theorem 1.2, \(|F_i^c - F_i^c_i| = 0 \). Let \(E_i \) denote the set of points of \(F_i \) where the \(\omega \)-density of \(F_i - F_i \) is zero. Clearly \(F_i^c \) and \(S - F_i \) are \(\omega \)-separated. So by Theorem 1.1, \(|F_i^c - E_i| = 0 \). We have \(F_i - E_i = (F_i - F_i^c) + (F_i^c - E_i) \). So \(|F_i - E_i| = 0 \). Let \(\alpha \) be any point of \(E_i \). Since \(g_i(x) = f(x) \) on \(S \), and the \(\omega \)-derivative of \(g_i(x) \) exists finitely at \(\alpha \), it follows that \((ap)_\omega f(x) \) exists finitely. Since \(\alpha \) is arbitrary, \((ap)_\omega f(x) \) exists finitely at each point of \(E_i \). Write \(E = \sum E_i \). Then, at each point of \(E_i \), \((ap)_\omega f(x) \) exists finitely. Now \([a, b] - E \subseteq \sum_i (F_i - E_i) \). So \(\omega^*(a, b] - E) \leq \sum_i \omega^*(F_i - E_i) = 0 \). This proves the Theorem.

I am grateful to Dr. P. C. Bhakta for his kind help and suggestions in the preparation of the paper.

References

Département de Mathématiques.
Kalyani University.
West Bengal, India

Reçu par la rédaction le 15. 7. 1968.

Structure spaces of lattices
by
J. R. Isbell and J. T. Morse (Cleveland, Ohio)

Introduction. This paper gives a simpler proof of the functoriality of the structure space of maximal \(L \)-ideals of an \(f \)-ring with unit. Like the previous proof [3], this one depends (when analyzed) on a different, visibly functorial construction that turns out to yield the maximal ideal space. Both constructions generalize to distributive lattices with base point. Hence the maximal ideal space of a unitary \(f \)-ring is determined by the underlying lattice. This was previously known for commutative semisimple unitary \(f \)-rings [6].

Kaplansky's original proof that the lattice of continuous functions \(C(X) \) on a compact Hausdorff space \(X \) determines \(X \) [4], and its generalizations until now, have used ad hoc constructions to bring the space from the lattice. After an ad hoc beginning (the quickest), we exhibit the following natural structure. A based distributive lattice \(L \) has a \(T_0 \) space \(\pi(L) \) of prime ideals containing 0. The present construction, and Kaplansky's, form the finest quotient space \(\pi(L) \) in which the closure of every point is collapsed to a point. The more radical treatment of \[3\] yields a compact Hausdorff space \(\beta(L) \), which, unlike \(\pi \) and \(\pi \), is functorial for a category of lattice homomorphisms containing the unitary \(f \)-ring homomorphisms. Obvious mappings run \(\pi(L) \rightarrow \pi(L) \rightarrow \beta(L) \). The easiest way to establish coincidence of \(\pi(L) \) and \(\beta(L) \) (and a space of prime ideals) is to find a subspace of \(\pi(L) \) continuously cross-sectioning \(\pi(L) \rightarrow \beta(L) \) and mapping surjectively to \(\pi(L) \); that is what the maximal ideal space of a unitary \(f \)-ring does, and also the maximal ideal space of an abelian \(L \)-group with strong order unit [3]. A continuous cross-section is not enough (for a vector lattice). We find a sufficient additional condition, for abelian \(L \)-groups, to the effect that group elements positive at a point are non-negative on a \(\beta(L) \)-neighborhood.

1. Maximal ideal spaces. Let \(\mathcal{M}(L) \) be the space of maximal \(L \)-ideals of a unitary \(f \)-ring. (It is compact Hausdorff [3]; compact by the usual maximality argument, Hausdorff by a simple argument due to Gillman [1] depending on the fact that for \(M \in \mathcal{M}(L) \), \(A/M \) is totally

...
ordered.) An l-ideal is primary if it is contained in a unique maximal l-ideal.

The only new results in this section are 1.2 and 1.5.

1.1. If $h: A \to B$ is a unitary homomorphism of unitary f-rings and $M \subseteq \mathcal{M}$, then $h^{-1}(M)$ is primary.

Proof. The image A' of A in B/M is totally ordered unitary. So of any two l-ideals in it, one contains the other; A' has a unique maximal l-ideal.

1.1. gives us a function $\mathcal{M}(h): \mathcal{M}(B) \to \mathcal{M}(A)$, taking M to the maximal ideal containing $h^{-1}(M)$.

For $M \subseteq \mathcal{M}(A)$, among the primary ideals contained in M (the largest is M, and there is a smallest, $G(M)$ [2]. Below we need its description from [2]).

1.2. In $\mathcal{M}(A)$, if M_a contains the intersection of $\{G(M_i) : \lambda \in A\}$ then it contains the intersection of $\{M_i\}$.

Proof. If M_a does not contain $\bigcap M_i$, then there is t in $\bigcap M_i$ such that $t > 0 (\mod M_a)$. Since A/M is a proper l-ideal, some multiple u of t exceeds $2 (\mod M_a)$. The positive part $u - 1 = (1 - u)$ is still not in M_a but since $1 - u > 0 (\mod M_a)$, $(1 - u) + G(M_i)$ [2], 5.8).

1.3. THEOREM. If $h: A \to B$ is a unitary homomorphism of unitary f-rings, then $\mathcal{M}(h): \mathcal{M}(B) \to \mathcal{M}(A)$ is continuous. \mathcal{M} is functorial.

Proof. If a set $\{M_i\}$ in $\mathcal{M}(B)$ has a limit point M_i, then $h^{-1}(M_i)$ contains $\bigcap h^{-1}(M_i) > \bigcap h^{-1}(M_i)$ by 1.2. $\mathcal{M}(h)(M_i)$ contains $\bigcap h^{-1}(M_i)$. Thus $\mathcal{M}(h)$ preserves limit points. For a composition h_g, $\mathcal{M}(g)h = \mathcal{M}(g)h = \mathcal{M}(g)$.

If g contains $h^{-1}(M)$, $\mathcal{M}(g)(M) = \mathcal{M}(g)(M)$.

So $\mathcal{M}(g)h$ is the M_a of $\mathcal{M}(B)$, $\mathcal{M}(g)h = \mathcal{M}(g)$.

To show that the lattice structure of A determines $\mathcal{M}(A)$, first, it suffices to consider the base lattice $(A, \leq, 0)$; for any other base lattice (A, \leq, u) is isomorphic by a translation (the introduction of 0 is a trivial departure from the basic argument of Kaplansky [1], intended rather for Section 2 than for the present problem.) Lattice ideals containing 0 will be called l-ideals; the ring l-ideals may be distinguished as l-ideals.

Prime l-ideals I are defined in the lattice sense ($x \leq y$ in I implies $x \leq y$ in I), and so are prime l-ideals J. Thus A/J is totally ordered, but may have proper zero divisors.

1.4. (Pierce) Every prime l-ideal of an f-ring contains a prime l-ideal.

Pierce stated the result for: a sublattice L consisting of non-negative non-zero elements, there is a homomorphism upon a totally ordered ring O taking L into $O - (0)$ [2].

In particular, a prime l-ideal of a unitary f-ring A contains a germinal (lr)-ideal. It cannot contain two distinct germinal ideals $G(M_1), G(M_2)$, for $G(M_1)$ is not contained in M_2, and hence $G(M_1)$ is contained in $G(M_2)$ and $G(M_2)$ is contained in $G(M_1)$.

For every l-ideal in an intersection of prime l-ideals, the germinal (lr)-ideal is contained in the quotient (lr)-ideal.

The intersection of the prime l-ideals containing germinal G is contained in the prime l-ideal $\mathcal{M} = \{x : \exists (\in G)\}$. The germinal ideals G_1, G_2 in two prime l-ideals P_1, P_2 are the same if and only if $P_1 \cap P_2$ is not all of A. For if $G_1 \neq G_2$, $G_1 \cap G_2$ is already all of A if $G_1 = G_2$; neither the image of P_1 nor the image of P_2 in A/G_1 is contained, so the image of $P_1 \cap P_2$ is not. Thus the ideals \mathcal{M} are the intersection of l-ideals containing germinal G.

One gets the correct topology on this set of intersections by defining G to be a limit point of (G_i) if $\bigcap G_i$ is contained in some prime l-ideal containing G_0.

1.5. THEOREM. The lattice structure of a unitary f-ring A determines $\mathcal{M}(A)$.

2. General lattices. For any base distributive lattice L, the prime l-ideals with the hull-kernel topology form a \mathcal{F}_0 space $\pi(L)$ (topologically, the ideals are prime). For $\pi(L)$ to define a $\pi(L)$, one may as well assume distributivity since in any case the distributive reflection of L would give the same space.) It is already clear from the proof of 1.5 that (there) $\pi(A)$ determined $\mathcal{M}(A)$; for the equivalence relation $P \cap P \neq A$ is non-disjointness of the closures in $\pi(A)$ and the topology is the quotient topology.

The construction generalizes as follows. Let the K-classes of prime ideals of a base lattice L be the equivalence classes for the smallest equivalence relation \sim such that $P \sim Q$ when $P \subset Q$. A is a K-class if has a kernel ideal k_o; define k_0 to be a limit point of $\{k_i\}$ if $\bigcap k_i$ is contained in some member of $\{k_i\}$. Then the K-classes form a topological space $k(L)$, the quotient space $k(L)$, by the finest partition into unions of closures of points. k is functorial for the narrow category of homeomorphisms upon cofinal subsets, as is π, the quotient mappings $\pi(L)$, $\pi(L)$ constitute a natural transformation.

The parallel construction of the first four pages of [3] generalizes as easily. The rest of this paper assumes knowledge of [3].

In distributive L with 0, the polar sets

$$J^* = \{x : \forall j \in J, x \cap j \leq 0\}$$
are \mathfrak{l}-ideals. For left segments S and T, we have
\[(S^{\perp \perp} \cap T^{\perp \perp}) \cup (S \cap T)^{\perp} \cap S \cap T \subset \{0\}^{\perp},\]
since $S \cap T \subset S \cap \{0\}$. Thus
\[(S^{\perp \perp} \cap T^{\perp \perp}) \cup (S \cap T)^{\perp} \cap S^{\perp \perp} \cap T^{\perp \perp} = \{0\}^{\perp},\]
so
\[(S^{\perp \perp} \cap T^{\perp \perp}) \cup (S \cap T)^{\perp} \cap S^{\perp \perp} \cap T^{\perp \perp} \subset \{0\}^{\perp},\]
whence $S^{\perp \perp} \cap T^{\perp \perp} = (S \cap T)^{\perp}$. In particular, the distributive law
\[I \cap (J \cup K)^{\perp} = (I \cap J) \cup (I \cap K)^{\perp}\]
holds for polar sets. It follows easily that the polar sets form a complete Boolean algebra. We conclude as in [3] that L has a uniform structure space $\beta(L)$, a compact Hausdorff space provided with a natural dense continuous mapping $\psi: L \rightarrow \beta(L)$. Then ψ must be constant on closures of points, and it induces a continuous $\beta: \psi(L) \rightarrow \beta(L)$ such that $\psi = \psi \circ \beta$. β is functorial for a larger category of homeomorphisms than ψ and β, for those $L: L \rightarrow L'$ such that $\psi(L)$ is not contained in the ideal join of two non-supplementary polar ideals (p. 67 of [3]). For example, on unitary f-rings, it suffices if ψ takes the value 1.

We say no more of general lattices. For an abelian 1-group G, there appear to be two or more other structure spaces present; $\beta(G)$ exactly as defined in [3], and the $
abla$ space $\hat{\mu}(G)$ of prime 1-group ideals. (In this setting, of zero f-rings, 1.4 can be sharpened; there is a largest 1-group ideal $r(I)$ contained in a prime \mathfrak{l}-ideal I, and it is prime. Largest, because $2|\{1\}$, $2|\{2\}$ in I implies $|\{1\} + |\{2\}$ in I, prime, clearly. Without difficulty one sees that for J in $\hat{\mu}(G)$, $G(J) = J$ is the smallest prime \mathfrak{l}-ideal J, and we have a contraction $\gamma: \hat{\mu}(\beta(G)) \rightarrow \beta(G)$, γ is still a quotient mapping, of the same description as ψ. Similarly (but for the simpler conclusion) the correspondences like r and γ between the two types of polar ideals are mutually inverse and identify the two uniform structure spaces of G. Let $\hat{\mu} = \hat{\mu}(G) \rightarrow \beta(G)$.

If one can find a continuous cross-section $f: \beta(G) \rightarrow \hat{\mu}(G)$ ($\forall y_1 = 1$ on $\beta(G)$), then $f(\beta(G))$ and $\hat{\mu}(\beta(G))$ are, of course, homeomorphic with $\beta(G)$. Theorem 4 and 5 of [3] establish such cross-sections by the space of maximal 1-group ideals, if G has a strong order unit, and by the space of maximal f-rings, if G is an abelian group. In the former case it is trivial that $f(\beta(G))$ is all of $\hat{\mu}(G)$; in the latter case the argument of 1.6 applies.

Recalling the nature of the uniform ideals $\mathfrak{l} \subset \beta(G)$ and the mapping Φ (viz. $\Phi(P) \subset 2^P$), we can supplement this information. Call a cross-section $f: \beta(G) \rightarrow \hat{\mu}(G)$ strong if $\forall y_0 > 0 (mod 2)$ implies that for some $J \in \mathfrak{l}$, $y_0 > 0 (mod J)$.

2.1. For an abelian 1-group G, if $\hat{\mu}$ has a continuous cross-section then $\hat{\mu}(G) \rightarrow \beta(G)$ is a homeomorphism.

Proof. Given a strong cross-section f, any prime \mathfrak{l}-ideal P must be bounded above modulo $\psi(P)$, for if P had elements $p > x (mod \psi(P))$ for arbitrary $x, p > x (mod J)$ and $J \subset P$ would yield $x \neq P$. Hence if $\psi(P) = \psi(Q)$, both P and Q are bounded modulo $\psi(P)$, and they are in the same X-class. So $\hat{\mu}$ is one-to-one. If there is a continuous cross-section of $\hat{\mu}$, $\hat{\mu}$ is homeomorphic.

These cross-section arguments apply over any subspace of $\beta(G)$ on which the cross-sections exist.

We conclude with four counterexamples.

2.2. In 2.1, "continuous" cannot be omitted.

Proof sketch. Let V be a lexicographically ordered real vector space on the basis $e_1 < e_2 < \ldots$. Let C consist of the non-negative rationals which have the form $m_0 + n_0 + \ldots, m_0$ and n_0 integral, with the natural topology and order. Among the V-valued functions on X note those f_1 which have the value e_1 outside the open $(1+1)^{-1}$ neighborhoods of integers and vanish inside; note that $f_1 \geq c f_1$ for all scalar c. Let G consist of those locally constant V-valued functions on X which are finally equal to a finite linear combination of the f_1.

$\beta(G)$ is just the one-point compactification of X. For, if $f_1 = g + h$, one of g and h is non-zero on all but a compact part of support of f_1; thus of two supplementary polar ideals, the common zeros of the members of one must form a bounded set. To construct a strong cross-section, take the ideals M of functions vanishing at z and M_0 of functions finally zero. So $\hat{\mu}$ is one-to-one. But in $\hat{\mu}(G)$, $\hat{\mu}$ is not a limit point of the integers; the kernel of the X-class at any integer contains each f_1, but each member of the X-class at ∞ is finally bounded.

2.3. The restriction $\psi:\beta(G) \rightarrow \hat{\mu}(G)$ need not be a quotient map.

Proof. Take the same G, and note that the minimal prime ideal at any point x of $X \cup \{\infty\}$ is unique and is M_x, f_1 is in every minimal prime ideal except those at $m + \downarrow$ and at ∞ in particular, the (inverse) set of all $m + \downarrow$ is closed in $\beta(G)$, but its image is not.

2.4. In 2.1, "strong" cannot be omitted.

The details are much as in 2.2. Use the same V, let $X = \{0, 1\}$, and take the functions $f = \sum f_i e_i$ with f_i real-valued continuous and constant on $[e_i, 1]$. There are no supplementary pairs of polar ideals, and $\beta(G)$ is a single point; but there are two K-classes, living at 0 and elsewhere.
2.5. The Kaplansky space $\kappa(G)$ of an abelian I-group G need not be a T_0 space.

Do 2.4 on two halves of a circle.

References

Lawvere's elementary theories and polyadic and cylindric algebras

by

Aubert Daigleault (Montréal)

À la mémoire de Leon Lefebvre
mes regretté ami et collègue

Contents

<table>
<thead>
<tr>
<th>Introduction</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>0. Preliminaries:</td>
<td>307</td>
</tr>
<tr>
<td>Elementary theories</td>
<td>308</td>
</tr>
<tr>
<td>Polyadic and cylindric algebras</td>
<td>309</td>
</tr>
<tr>
<td>I. The functor $\Theta^*: \mathfrak{F} \to \mathfrak{G}$</td>
<td>317</td>
</tr>
<tr>
<td>II. The functor $\Theta: \mathfrak{G} \to \mathfrak{F}$</td>
<td>319</td>
</tr>
<tr>
<td>III. Reciprocity of the constructions Θ and Θ^*</td>
<td>324</td>
</tr>
<tr>
<td>IV. The semantics functors on \mathfrak{F} and \mathfrak{G}</td>
<td>325</td>
</tr>
<tr>
<td>References</td>
<td>328</td>
</tr>
</tbody>
</table>

Introduction *

In his short papers [8], [9], [10] and some talks, Lawvere has presented a new approach to the problem of the algebraization of first order Logic in which elementary theories become categories. It is the purpose of this paper to describe the exact relationship that the new approach bears to the older one constituted by the theory of polyadic and cylindric algebras. We hope thus to call attention to Lawvere's important contribution to Algebraic Logic. (Throughout the paper, we shall mean by "polyadic algebras", locally finite polyadic algebra with equality and a fixed infinite set of variables. "Cylindric algebra" has a similarly restricted meaning).

(*) This paper is an amended version of a paper read at the conference on the Construction of Models for Axiomatic Systems in Warsaw, August 26-September 1, 1968.