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On functions of generalized bounded o-variation

by
M. C. Chakrabarty (West Bengal, India)

1. Introduction. Let w(x) be non-decreasing on the closed in-
terval [a, b]. Outside the interval it is defined by w(w)= w(a) for z< a
and w(@) = w(b) for £ > b. Let § denote the set of points of continuity
of w(z) and D = [a, b]— 8. Let W [5] denote the class of functions flz)
defined as follows: f(x) is defined on [a, b]-§ and is continuous at each
point of [a, ] 8 relative to the set S. If @, ¢ D, f(x) tends to a (finite)
Limit as » tends to x,+ and @,— over the points of the set . These limits
are denoted by f(we--) and f(z,—) respectively. When » < a, f(z) = fla+)
and f(z) = f(b—) when > b. f(x) may or may not be defined at the
points of D.

Let the function f(x) be defined on [a,b] and be in class UW. f(2) is
absolutely continuous [5] relative to o, AC-w, on B C [a, b] if given any
e> 0 there is a d > 0 such that for every set of pairwise digjoint open
ntervals (w:, #7) on [a,b] with @, 2} < B, we have

2 (@) ~fla—)| < e

whenever {w(@i+)—o(xi—)} < 6. f(2) is a generalized absolutely con-
i
tinuous function. [5] relative to w, ACG-w on [a, b] if the interval can be
expressed as the union of a countable family of closed sets on each of
which f(#) i3 AC-w. Any set of points a << @y << &, < << ... < By < b
With o(@i-1) < w(®m) (i=1,2,..,n) is an w-subdivision of [a, b]. f(2) is
of bounded variation ([1], [2]) relative to w, BV-0 on [a , b] if the least
n
upper bound V.(f; a,b) of the sums 3 |f(w:i—)—f ()| is finite for
=1
all possible -subdivisions @, &, s, ..., ¥n of [a, b].
Let A be a subset of [, b], # be any point and
v=[x,8+h] (>0, z+hel).
Define d(xz, h) as follows:

(@, h) = o¥(Av)/|vl, i v, %0 and d(z, k)= 0 if |v],=0 ,
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where w*(¥) denotes the outer w-measure [5] and |H|, denotes the
w-measure of the set E. The }.lnl d(x, h) (x+heS), whenever it exists,
—0

is the right w -density [3] of 4 at . Similarly the left - density is defined.
If the left and right o-densities of A at o are equal, the common value
is the w-density of 4 at .

Two sets A and B are w-separated [3] if for every & > 0 there are
open sets G, D A and G, D B such that |G, Glo < & A function f(z) defined
on [a, b] possesses the property (N.) [4] on B C[a,b] if mf(e)= 0 for
every set e C B with ||, = 0.

We now introduce the following definitions.

DerINIoN 1.1. Let f(x) be defined on [a,b] and be in class W.
f(z) is of bounded variation velative to ©, BV-w, on FC[a, b] if the least
upper bound V.(f; E) of the sums

w
2 ftat) —f(@ees =)

is finite for all possible w-subdivisions @, #;, @5, ..., #» of [a, b] with
el (1=0,1,2,..,n). f(r) is of generalized bounded variation relative
to w, BVG-w, on [a, b] if the interval can be expressed as the union of
a countable family of closed sets on each of which f(x) is BV-w.

DeriviTION 1.2. Let f(z) be defined on [a, b] and be in class W
and let # e[a,b]. For any point & (# 2) in § we define y(x, &) by the
relations:

[ F&)—f(w—) o

Iﬂ’(f)—-w(m—-)’ E>x, w(f)—o(@-)#0,
vz, 8= f(H—fl@t)

im7 <, o(f)—w@t) #0,

l 0, w(f)—w(rL)=0.

If y(w, &) tends to a limit as & tends to © over S except for a subset of §
of w-density zero at x, then the limit is the appromimate w-derivative
of f(») at x and is denoted by (ap)fi(z). (If w(z, &) tends to a limit as &
tends to @ over 8, then this limit iy the w-derivative [5] of f(#) at ». It is
denoted by fi(z).)

In the present paper we show that

(i) if f(z) is ACG-w on [a, b], then it possesses the property (N.)
on [a,b],

(i) if f(z) is BVG-w on [a, b] and possesses the property (N,) on
[a, b], then it is ACG-w on [a,b] and

(iii) if f(z) is BVG-» on [a,b], then (ap)fi(r) exists finitely at
w-almost all points of [a, b].
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We require the following known results.

TEEOREM 1.1 ([8], Th. 8.2). Let A and B two subseis of [#, b]. If they
are w-separated, then at w-almost all points of one set the w-density of the
other 18 zero.

THEEOREM 1.2. ([8], Th. 6.2). If f(#) is BV-w on (a, b], then fi(x)
exists finitely at o-almost all points of [a, b].

THEOREM 1.3. ([4], Th. 3.5). If f(z) is BV-0 on [a, b] and possesses
the property (Na) on [a,b], then it is AC-w on [a 5 0]

TEEOREM 1.4. ([4]. Th. 3.2). If f(x) is AC-w on [a, b], then it possesses
the property (N,) on [a, b].

2. Preliminary lemmas. Let F be a closed subset of [a,b] and

[ag, by] be the smallest closed interval containing the set F. Let f(z) be
BV-w on T.

LEMMA 2:1. If {{as, ba)} be any set of pairwise disjoint open intervals
on [ag, by] with ai,b;eF and increasing end-points (0, < @y << @y < ...)
such that w(b) < w(as41) (i=1,2,...), then each of the following is finite:

() ) ) ~f (el (i) ) If(a—)—f e,

(i) ) If (@) —fbi), (i) 3 If(a—) —fit) -

Proof: Since f(x) is BV-0 on F, f(x4) is bounded on F (cf. [1],
Th. 2). So there is a positive constant K such that |f(z+)| < K for all
weF. Let n be any positive integer. We have

If(a+)—f(b+)] < 2K,

1f (s ) = F ()l < 1 (ba—) ~F (a4)]+ | (b —) —F (bs+)1
If (@ +) —F (bs+)] < 1F(ba—) —F (as+) |+ 17 (B —) —F (b +)]
If(@a+) =F (ba+)] < 1F (Be—) —F (@ )|+ |f (bs—) —F (bs+)| ,

Bince ay < by < 4y < by < @y < o < by, Gy < by < g < by < 2 < .. < by and
Ay < by < by < by < ... < by < b, are w-subdivisions of [aq, bo], We obtain

g] If (@) —F(bi+)| < 8Valf; F)+ 2K.

Bince n iy arbitrary, result (i) follows.
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The proofs of (ii), (iii) and (iv) are analogous and each of the
quantities is << 3V,(f; F)-+2K.

Lamna 2.2, Leb {(ai, bi); eI} be any set of pairwise disjoint opeu
intervals on  [ay, by] with ai,bieF and increasing end-poinis, where
I={1,2,..,n} or I ={1,2,3,..} If o(a)< w(bir1)(iel), then each

of the following 1s finite:

() D 1fla—)—Fbe—)

i€l

@v) D) 1f(@a—) —F(bs+)] .
iel

@) D Iflat)—foa+)l,

iel

(i) D) If(a+)—f(bi-)l
i€l

Proof: We divide the set I into three parts A, B, C such that
A={1,4,7,..}, B={2,5,8,..} and C ={3,6,9,..}]. Then each of
the sets of intervals {(a:, bi); de A}, {(as, bi); ¢ e B} and {(a¢, b); i ¢ O}
satisfies the conditions of Lemma 2.1. We have

O 1fact)—f(bit)] = Z’ FlasH) —F o)+ 3+ )

1cI i€eB teC

it follows that

g |Flas+) —f(bs+)]

From Lemma 2.1,

< 3[3V.(f; F)+2K] .

The proofs of (ii), (iii) and (iv) are analogous and each of the quan-
tities is << 3[3V.(f; F)+2K].

Lemma 2.3, If f(x) 48 AC-0 on a set EC[a,b]-S, then given any
&> 0 there is a 6 > 0 such that for every set of pairwise disjoint open intervals
(a4, bs) on [a5 b]!

2 (—l) < &
i

where wi and 1 are respectively the supremum and the infimum of f(z) on
[as, bs] B (# void) and the summation is taken over all those i for whwh
{ai, bs]-E s non-void.

Proof. Since f(z) is AC-» on B, it is BV-w on  (cf. [1], Th. 5) and
therefore bounded on B (cf. [1], Th 2). Choose ¢ > 0 arbitrarily. Then
there is a ¢ > 0 such that for any set of pairwise disjoint open intervals
(s, ©3) on [a, b] with x;, w} ¢ B,

whenever 2 {o(bi—)—w(a+)} < 6,
4

2 |f (%) —f(#:)l < &  whenever Z {o(@) —o(w)} < 6.
i 1
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Let {(a:, bs)} be any set of pairwise disjoint open intervals on [a, b] with
%‘{w(b,—)—m(aﬁ—)} < 4. There are points &, n: on [as, be]-B (= void)
such that

|F(&0) el < &f2"* Fr)—t < 2" (i=1,2,..).
Denote by ui, f; the maximum and the minimum of & and n¢. Then
ai, fr e B and ;{w(ﬂ¢)~w(a¢)} < ;{m(b,—)—w(a,+)}< 8. Therefore

and

2 =19 < 3 Q€0 —Fn0)| -+ 17 (80—l + £ () — L}

< D If (@) —F(Bl e D 12 < efapef2 = .
i i

3. Results on BVG-o functions.

TreorEM 3.1. Let f(x) be defined on [a,b] and be in dlass W If it
i8 BV-w on a closed set F C[a,b], then there is a function g(m) in U such
that ¢(x) i¢ BV-w on [a,b] and g(z) = f(zx) on F.

Proof. Let [ay, b,] be the smallest closed interval containing the
set F. Then the set @ = [ay, b,]—F is open. Let G — Z' {at, f1) where

the intervals (ai, B:;) are pairwise disjoint. We define the function ¢(x)
ag follows:

(@) for all z e 7,
o(x) —w(ei+)

f(at'f-)'i-m {f(Be—)—flas+)}

for s << fs if w(fi—) # w(w+t),

9o = Has)+5=2 (F(pi—) @)}

for <o < fi if w(fi—~)= wl(a:d),
Flag—) for v < a,,
J(bo+) for 2> b, .

Then clearly ¢(#) belongs to the class W and g(@ &) = f(x+) for all x e H,
Let @< < @ < @< ..< @ <b, be any w-subdivision of [a,,be]

and let
V= lg(@i+)

fa=1

=g (@e-1—)| -

It @y, ,, @y, ..., &n € F, then we have

V= D)1 (@i-F) ~f@ema—)| < Valf; B) -

=1
20*
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Lot ey €F, Dpy Tpiry ooy Tr—1€(Gsy Ps)y Toy Tria e F and  Tpyy € (ar, fi)
where o(fi—) = @(x+). Then

k+3

D lg(@e+) —g (@i -]

i ot
= [f @ =) =g @)+ D) 9@s+)—g@er—)+
f=r+1

+f(@e+) —g(@r-1 =)+ 1w —) — g @ra +)| +
+ 19 (@rs1—) —f (@rs2t)|

< |f@r—1 =) —f(as+) |+ 4| f(@s+) —F(Bs =)+ |f (@) —F (wu+) +
+ f(we—) —fla+ )42 [flas+) —F(Be=) + I f(at+) ~F (@rre-)] -

These considerations show that
V< D Ifaa—)—flaa-Fl+ D 1flant) —fak+)+
% 1
+4 D f(as+) —flaks ),

where the sets {(ay,aiy); t=1,2,..} (j=1,2,3) of intervals are all
pairwise disjoint and satisfy the conditions of the Lemma 2.2. Therefore
by the same lemma,

(1) V<18[3V.(f; F)+2K],

Thus in any case relation (1) holds. Since @, #;, ..., ¥, is an arbitrary
w-gubdivision of [a,, b,] it follows that g(x) is BV-w on [a,, b,]. Since g(x)
is constant on {a, a,) and (b, b] it is BV-w on [a, a;] and [b,, b]. Hence
by Theorem 3 [1], g(x) is BV-0 on [a, b]. This proves the Theorem.

TaEOREM 3.2. Let f(x) be BV-0 on a closed set FCla, bl If f(x) is
constant on each open interval (a, f) complemeniary to F where w(x) is con-
stant and if f(w) possesses the property (No) on F, then f(x) is AC-w on F.

Proof. Let [a,, b,] be the smallest closed interval containing the
set ¥ and let [a,, b] —F = Z (a4, B1), where the intervals are pairwise

digjoint. Let g(z) be the function as defined in Theorem 3.1. Then g¢() is
constant on each [ar, fi] where w(fi—)= w(a;+). So g(z) is AC-w on
each such interval. Also from the definition of g(») we see that g(w) is
AC-o on each [as, fi] where w(fi—) # w(a:i-+). Therefore by Theorem 1.4,
g(z) possesses the property (N.) on each [a;, §;]. Sinee g(2) = f() on F,
g (%) possesses the property (¥,) on F. So g(») possesses the property (Ns)
on[a, b]. By Theorem 1.3, §(») i8s AC-» on [a, b]. Hence f(#) is AC-o on F.

where K = sup {|f(z+)|; weF}.
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THEOREM 3.3. If f() is BVG-w on [a, b] and possesses the property (N,)
on [a,b], then it is ACG-o on [a, b].
Proof. Since f(2) is BVG-w on [a, b] we can express the interval
a8 the union of a countable family of closed sets F, [a,d]= > F;, on
4

each of which f(z) is BV-w. Let (a, §) be any open interval on which w ()
is constant. Then f(r) is continuous on (a, ). Let ¢= [e, a]1C (a, B).
Then f(e) is either an interval or consists of a single point. Now |e|, = 0
and f(#) possesses the property (¥.) on [a, b]. So mf(e) = 0, which shows
that f(e) consists of a single point. This implies that f(#) is constant on
[¢, @] and therefore on (a, f). From Theorem 3.2, it follows that f(z)
ig AC-0 on each F:. Hence f(z) is ACG-» on [a, b].

TeEOREM 3.4. If f(v) is ACG-0 on [a,Dd], then f(x) possesses the
property (Ny).

Proof. Let B be any subset of [a, b] with | B, = 0. Then B Cla,b]-8.
Bince f(x) is ACG-w on [a,b] we can express the interval ag the union
of & countable family of closed sets Fy, [a,b]= 3 F', on each of which f(=)

]
is AC-w. Write Bi= BF: (i=1,2,3,..). Then B= Y B and f(&)
= ;’ F(B:). We show that mf(E:) = 0 for each ¢ which will give that
mf(B)= 0 and the proof of theorem will be complete.

Let ¢ be any positive integer. Consider the set H;. Write A — Ey(a, b).
Choose & > 0 arbitrarily. Since f(z) is AC-w on 4, by Lemma 2.3, thereis a

4> 0 such that for any set of pairwise disjoint open intervals {(ax, bx)}
on [a,b],

(2) Z (ur—Ix) < ¢  whenever 2 {wbr—)—wla+)}< 6,
k k

where u, I have meanings as in Lemma 2.3. Since |4|,= 0 there is
an open set 6D A and @ C (a,d) such that |G, < 8. Let G = Y (ax, be),
E

where the intervals are pairwise disjoint. Then ), {w (bx—)— o (ax-+)}<8.
k
Since 4 = % [ax, bx]- A, we have f(4)= %f([ak, bi]-4). So,

3)  mf(d) < D mf(lax, bl A) < Y (r—le)< e  (using (2)) .
k k

Since e > 0 is arbitrary, from (3) we obtain m*f(4)= 0. If B = {a, b},
then B;C.A+4+B and f(B)Cf(4)+Ff(B). So m*f(H) < m*f(4) +
+m*f(B) = 0.

TEEOREM 3.5. If f(xr) is BVG-w on [a, b], then (ap)filx) exists finitely
at w-almost all poinis of [a, b].
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Proof. Sinee f(x) is BVG-o on [a,b], we can express the interval
as the umion of a countable family of closed sets Ty, [a,b] = ;‘ Fy, on

each of which f(z) is BV-o. Congider the set F, where i is any positive
integer, By Theorem 3.1, there is a function gu(») in calss U such lthat;
gi(2) is BV-w on [a, b] and gi(z) = f(x) for all e F. .Deuo.te‘ by F; the
set of points of F; where the w-derivative of gi(z) exists flmi?ely. Then,
by Theorem 1.2, |F;—Fil,=0. Let B; denote the set of points of I
where the - density of § —F; is zero. Clearly F'; and 8 —T; are w-separat-
ed. So by Theorem 1.1, |Fi—ZEi,= 0. We have F,—-.Ei: (Fy—TF+
+(Fi—B). So |F;—FEi|, = 0. Let o be any point of H;. Since gi(x) = f()
on SF; and the w-derivative of gi(@) exists finitely at a, it follows that
(ap)fala) exists finitely. Since « is arbitrary, (ap)fe(#) exists finitely at
each point of E;. Write H = .ZEi' Then, at each point of H, (ap)fa(x)
exists finitely. Now [, b]—E C {Z(m—E;). So w*([a,b]—B) < ;a)*(Ff—
—E;) = 0. This proves the Theorem.

I am grateful to Dr. P. C. Bhakta for his kind help and suggestions
in the preparation of the paper.
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Structure spaces of lattices
by
J. R. Isbell and J. T. Morse (Cleveland, Ohio)

Introduction. This paper gives a simpler proof of the functoriality
of the structure space of maximal I-ideals of an f-ring with wunit. Like
the previous proof [3], this one depends (when analyzed) on a different,
visibly functorial construction that turns out to yield the maximal ideal
space. Both constructions generalize to distributive lattices with base
point. Hence the maximal ideal space of a unitary f-ring is determined
by the underlying lattice. This was previously known for commutative
semisimple unitary f-rings [6].

Kaplansky’s original proof that the lattice of continuous functions
C(X) on a compact Hausdorff space X determines X [4], and its generaliza-
tions until now, have used ad hoc constructions to wring the space from
the lattice. After an ad hoc beginning (the quickest), we exhibit the following
natural structure. A based distributive lattice I has a T, space =n(L) of
prime ideals containing. 0. The present construction, and Kaplansky’s,
form the finest quotient space (L) in which the closure of every point
is collapsed to a point. The more radical treatment of [3] yields a compact
Hausdortf space #(L), which, unlike & and x, is functorial for a category
of lattice homomorphisms containing the unitary f-ring homomorphisms.
Obvious mappings run (L) —x%(L)—B(L). The easiest way to establish
coincidence of #(L) and B(L) (and a space of prime ideals) is to find a sub-
space of m(L) continuously cross-sectioning (L) —p(L) and mapping
surjectively to x(L); that is what the maximal ideal space of a unitary
J-ring does, and also the maximal ideal space of an abelian l-group with
strong order unit [3]. A continuous cross-section is not enough (for a vector
lattice). We find a sufficient additional condition, for abelian l-groups,
to the effect that group elements positive at a point are non-negative
on a B(I)-neighborhood.

1. Maximal ideal spaces. Let J((4) be the space of maximal
i-ideals of a unitary f-ring. (It is compact Hausdortf [2]; compact by the
usual maximality argument, Hausdorff by a simple argnment due to
Gillman [1} depending on the fact that for M e M6(A), A/M is totally
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