

On functions of generalized bounded w-variation

by

M. C. Chakrabarty (West Bengal, India)

1. Introduction. Let $\omega(x)$ be non-decreasing on the closed interval [a,b]. Outside the interval it is defined by $\omega(x)=\omega(a)$ for x< a and $\omega(x)=\omega(b)$ for x>b. Let $\mathcal B$ denote the set of points of continuity of $\omega(x)$ and $D=[a,b]-\mathcal B$. Let $\mathcal B=\{0,b\}$ denote the class of functions f(x) defined as follows: f(x) is defined on $[a,b]\cdot \mathcal B$ and is continuous at each point of $[a,b]\cdot \mathcal B$ relative to the set $\mathcal B$. If $x_0\in D$, f(x) tends to a (finite) limit as x tends to x_0+ and x_0- over the points of the set $\mathcal B$. These limits are denoted by $f(x_0+)$ and $f(x_0-)$ respectively. When x< a, f(x)=f(a+) and f(x)=f(b-) when x>b. f(x) may or may not be defined at the points of D.

Let the function f(x) be defined on [a, b] and be in class \mathfrak{A} . f(x) is absolutely continuous [5] relative to ω , $AC-\omega$, on $E\subseteq [a, b]$ if given any $\varepsilon>0$ there is a $\delta>0$ such that for every set of pairwise disjoint open intervals (x_t, x_t') on [a, b] with $x_t, x_t' \in E$, we have

$$\sum_{i} |f(x_i'+) - f(x_i-)| < \varepsilon$$

whenever $\sum_{i} \{\omega(x_i'+) - \omega(x_i-)\} < \delta$. f(x) is a generalized absolutely continuous function [5] relative to ω , ACG- ω on [a,b] if the interval can be expressed as the union of a countable family of closed sets on each of which f(x) is AC- ω . Any set of points $a \leq x_0 < x_1 < x_2 < \ldots < x_n \leq b$ with $\omega(x_{i-1}) < \omega(x_i)$ $(i=1,2,\ldots,n)$ is an ω -subdivision of [a,b]. f(x) is of bounded variation ([1], [2]) relative to ω , BV- ω on [a,b] if the least upper bound $V_{\omega}(f;a,b)$ of the sums $\sum_{i=1}^{n} |f(x_i+) - f(x_{i-1}-)|$ is finite for all possible ω -subdivisions $x_0, x_1, x_2, \ldots, x_n$ of [a,b].

Let A be a subset of [a, b], x be any point and

$$v = [x, x+h]$$
 $(h > 0, x+h \in S)$.

Define d(x, h) as follows:

$$d(x, h) = \omega^*(Av)/|v|_{\omega}$$
 if $|v|_{\omega} \neq 0$ and $d(x, h) = 0$ if $|v|_{\omega} = 0$,

where $\omega^*(E)$ denotes the outer ω -measure [5] and $|E|_{\omega}$ denotes the ω -measure of the set E. The $\lim d(x,h)$ $(x+h \in S)$, whenever it exists,

is the right ω -density [3] of A at x. Similarly the left ω -density is defined. If the left and right ω -densities of A at x are equal, the common value is the ω -density of A at x.

Two sets A and B are ω -separated [3] if for every $\varepsilon > 0$ there are open sets $G_1 \supset A$ and $G_2 \supseteq B$ such that $|G_1 G_2|_{\omega} < \varepsilon$. A function f(x) defined on [a, b] possesses the property (N_{ω}) [4] on $E \subset [a, b]$ if mf(e) = 0 for every set $e \subset E$ with $|e|_{\omega} = 0$.

We now introduce the following definitions.

DEFINITION 1.1. Let f(x) be defined on [a, b] and be in class \mathfrak{A} . f(x) is of bounded variation relative to ω , BV- ω , on $E \subset [a, b]$ if the least upper bound $V_{\omega}(f; E)$ of the sums

$$\sum_{i=1}^{n} |f(x_i+) - f(x_{i-1}-)|$$

is finite for all possible ω -subdivisions $x_0, x_1, x_2, ..., x_n$ of [a, b] with $x_i \in E$ (i = 0, 1, 2, ..., n). f(x) is of generalized bounded variation relative to ω , BVG- ω , on [a, b] if the interval can be expressed as the union of a countable family of closed sets on each of which f(x) is BV- ω .

DEFINITION 1.2. Let f(x) be defined on [a, b] and be in class \mathcal{U} and let $x \in [a, b]$. For any point $\xi \neq x$ in S we define $\psi(x, \xi)$ by the relations:

$$\psi(x,\,\xi) = egin{cases} rac{f(\xi) - f(x-)}{\omega(\xi) - \omega(x-)} \,, & \xi > x \,, \; \omega(\xi) - \omega(x-)
eq 0 \,\,, \ rac{f(\xi) - f(x+)}{\omega(\xi) - \omega(x+)} \,, & \xi < x \,, \; \omega(\xi) - \omega(x+)
eq 0 \,\,, \ 0 \,\,, & \omega(\xi) - \omega(x\pm) = 0 \,\,. \end{cases}$$

If $\psi(x,\xi)$ tends to a limit as ξ tends to x over S except for a subset of S of ω -density zero at x, then the limit is the approximate ω -derivative of f(x) at x and is denoted by $(ap)f'_{w}(x)$. (If $\psi(x,\xi)$ tends to a limit as ξ tends to x over S, then this limit is the ω -derivative [5] of f(x) at x. It is denoted by $f'_w(x)$.)

In the present paper we show that

- (i) if f(x) is ACG- ω on [a, b], then it possesses the property (N_{ω}) on [a, b],
- (ii) if f(x) is BVG- ω on [a, b] and possesses the property (N_{ω}) on [a, b], then it is ACG- ω on [a, b] and
- (iii) if f(x) is BVG- ω on [a, b], then $(ap)f'_w(x)$ exists finitely at ω -almost all points of [a, b].

We require the following known results.

THEOREM 1.1 ([3], Th. 3.2). Let A and B two subsets of [a, b]. If they are ω -separated, then at ω -almost all points of one set the ω -density of the other is zero.

THEOREM 1.2. ([3], Th. 6.2). If f(x) is BV- ω on [a, b], then $f'_{\omega}(x)$ exists finitely at ω -almost all points of [a, b].

THEOREM 1.3. ([4], Th. 3.5). If f(x) is BV- ω on [a, b] and possesses the property (N_{ω}) on [a, b], then it is AC- ω on [a, b].

THEOREM 1.4. ([4]. Th. 3.2). If f(x) is AC- ω on [a, b], then it possesses the property (N_{ω}) on $\lceil a, b \rceil$.

2. Preliminary lemmas. Let F be a closed subset of [a, b] and $\lceil a_n, b_n \rceil$ be the smallest closed interval containing the set F. Let f(x) be BV- ω on F.

LEMMA 2.1. If $\{(a_i, b_i)\}$ be any set of pairwise disjoint open intervals on $[a_0, b_0]$ with $a_i, b_i \in F$ and increasing end-points $(a_1 < a_2 < a_3 < ...)$ such that $\omega(b_i) < \omega(a_{i+1})$ (i = 1, 2, ...), then each of the following is finite:

(i)
$$\sum_{i} |f(a_i+) - f(b_i+)|$$
, (ii) $\sum_{i} |f(a_i-) - f(b_i-)|$,

(ii)
$$\sum_{i} |f(a_{i}-)-f(b_{i}-)|$$

(iii)
$$\sum_{i} |f(a_i+) - f(b_i-)|$$

(iii)
$$\sum_{i} |f(a_{i}+)-f(b_{i}-)|$$
, (iv) $\sum_{i} |f(a_{i}-)-f(b_{i}+)|$.

Proof: Since f(x) is BV- ω on F, $f(x\pm)$ is bounded on F (cf. [1], Th. 2). So there is a positive constant K such that $|f(x\pm)| \leq K$ for all $x \in F$. Let n be any positive integer. We have

Since $a_0 \le b_1 < a_2 < b_3 < a_4 < ... \le b_0$, $a_0 < b_2 < a_3 < b_4 < a_5 < ... \le b_0$ and $a_0 \le b_1 < b_2 < b_3 < ... < b_n \le b_0$ are ω -subdivisions of $[a_0, b_0]$, we obtain

$$\sum_{i=1}^n |f(a_i+)-f(b_i+)| \leqslant 3V_{\omega}(f;F) + 2K.$$

Since n is arbitrary, result (i) follows.

On functions of generalized bounded w-variation

The proofs of (ii), (iii) and (iv) are analogous and each of the quantities is $\leq 3V_{\omega}(f; F) + 2K$.

LEMMA 2.2. Let $\{(a_i, b_i); i \in I\}$ be any set of pairwise disjoint open intervals on $[a_0, b_0]$ with $a_i, b_i \in F$ and increasing end-points, where $I = \{1, 2, ..., n\}$ or $I = \{1, 2, 3, ...\}$. If $\omega(a_i) < \omega(b_{i+1})(i \in I)$, then each of the following is finite:

(i)
$$\sum_{i=1}^{n} |f(a_i+)-f(b_i+)|$$
, (ii) $\sum_{i=1}^{n} |f(a_i-)-f(b_i-)|$,

(ii)
$$\sum_{i \in I} |f(a_i -) - f(b_i -)|$$

(iii)
$$\sum_{i \in I} |f(a_i+) - f(b_i-)|$$
, (iv) $\sum_{i \in I} |f(a_i-) - f(b_i+)|$.

(iv)
$$\sum_{i \in I} |f(a_i -) - f(b_i +)|$$

Proof: We divide the set I into three parts A, B, C such that $A = \{1, 4, 7, ...\}, B = \{2, 5, 8, ...\}$ and $C = \{3, 6, 9, ...\}$. Then each of the sets of intervals $\{(a_i, b_i); i \in A\}, \{(a_i, b_i); i \in B\} \text{ and } \{(a_i, b_i); i \in C\}$ satisfies the conditions of Lemma 2.1. We have

$$\sum_{i \in I} |f(a_i) - f(b_i)| = \sum_{i \in A} |f(a_i) - f(b_i)| + \sum_{i \in B} + \sum_{i \in C}.$$

From Lemma 2.1, it follows that

$$\sum_{i \in I} |f(a_i+) - f(b_i+)| \leq 3[3V_{\omega}(f; F) + 2K].$$

The proofs of (ii), (iii) and (iv) are analogous and each of the quantities is $\leq 3\lceil 3V_{\infty}(f;F) + 2K\rceil$.

LEMMA 2.3. If f(x) is AC- ω on a set $E \subset [a, b] \cdot S$, then given any $\varepsilon > 0$ there is a $\delta > 0$ such that for every set of pairwise disjoint open intervals (a_i, b_i) on [a, b]

$$\sum_{i} \left(u_{i} - l_{i}\right) < \varepsilon \quad \text{ whenever } \sum_{i} \left\{\omega(b_{i} -) - \omega(a_{i} +)\right\} < \delta \; ,$$

where u_i and l_i are respectively the supremum and the infimum of f(x) on $[a_i,b_i]\cdot E$ $(\neq void)$ and the summation is taken over all those i for which $[a_i, b_i] \cdot E$ is non-void.

Proof. Since f(x) is AC- ω on E, it is BV- ω on E (cf. [1], Th. 5) and therefore bounded on E (cf. [1], Th. 2). Choose $\varepsilon > 0$ arbitrarily. Then there is a $\delta > 0$ such that for any set of pairwise disjoint open intervals (x_i, x_i') on [a, b] with $x_i, x_i' \in E$,

$$\sum_{i} |f(x_{i}') - f(x_{i})| < \varepsilon \quad \text{ whenever } \sum_{i} \left\{ \omega\left(x_{i}'\right) - \omega\left(x_{i}\right) \right\} < \delta \ .$$

Let $\{(a_i, b_i)\}$ be any set of pairwise disjoint open intervals on [a, b] with $\sum_{i} \{\omega(b_i -) - \omega(a_i +)\} < \delta$. There are points ξ_i , η_i on $[a_i, b_i] \cdot E$ $(\neq \text{void})$ such that

$$|f(\xi_i) - u_i| < \varepsilon/2^{i+2}$$
 and $|f(\eta_i) - l_i| < \varepsilon/2^{i+2}$ $(i = 1, 2, ...)$.

Denote by a_i, β_i the maximum and the minimum of ξ_i and η_i . Then $a_i, \beta_i \in E \text{ and } \sum_i \{\omega(\beta_i) - \omega(a_i)\} \leqslant \sum_i \{\omega(b_i -) - \omega(a_i +)\} < \delta.$ Therefore

$$\sum_{i} (u_i - l_i) \leq \sum_{i} \{|f(\xi_i) - f(\eta_i)| + |f(\xi_i) - u_i| + |f(\eta_i) - l_i|\}$$

$$\leq \sum_{i} |f(u_i) - f(\beta_i)| + \varepsilon \cdot \sum_{i} 1/2^{i+1} < \varepsilon/2 + \varepsilon/2 = \varepsilon.$$

3. Results on BVG-ω functions.

THEOREM 3.1. Let f(x) be defined on [a, b] and be in class U. If it is BV- ω on a closed set $F \subset [a,b]$, then there is a function g(x) in $\mathfrak U$ such that g(x) is BV- ω on [a, b] and g(x) = f(x) on F.

Proof. Let $[a_0, b_0]$ be the smallest closed interval containing the set F. Then the set $G = [a_0, b_0] - F$ is open. Let $G = \sum_i (\alpha_i, \beta_i)$ where the intervals (a_i, β_i) are pairwise disjoint. We define the function g(x)as follows:

$$g(x) = \begin{cases} f(x) & \text{for all } x \in F, \\ f(a_i+) + \frac{\omega(x) - \omega(a_i+)}{\omega(\beta_i-) - \omega(a_i+)} \left\{ f(\beta_i-) - f(a_i+) \right\} \\ & \text{for } a_i < x < \beta_i \text{ if } \omega(\beta_i-) \neq \omega(a_i+), \\ f(a_i+) + \frac{x-a_i}{\beta_i-a_i} \left\{ f(\beta_i-) - f(a_i+) \right\} \\ & \text{for } a_i < x < \beta_i \text{ if } \omega(\beta_i-) = \omega(a_i+), \\ f(a_0-) & \text{for } x < a_0, \\ f(b_0+) & \text{for } x > b_0. \end{cases}$$

Then clearly g(x) belongs to the class $\mathfrak A$ and $g(x\pm)=f(x\pm)$ for all $x\in F$. Let $a_0 \le x_0 < x_1 < x_2 < ... < x_n \le b_0$ be any ω -subdivision of $[a_0, b_0]$ and let

$$V = \sum_{i=1}^{n} |g(x_i+) - g(x_{i-1}-)|.$$

If $x_0, x_1, x_2, \dots, x_n \in F$, then we have

$$V = \sum_{i=1}^{n} |f(x_i+) - f(x_{i-1}-)| \leq V_{\infty}(f; F).$$

Let $x_{r-1} \in F$, $x_r, x_{r+1}, \dots, x_{k-1} \in (a_s, \beta_s)$, $x_k, x_{k+2} \in F$ and $x_{k+1} \in (a_t, \beta_t)$ where $\omega(\beta_t -) = \omega(a_t +)$. Then

$$\begin{split} &\sum_{i=r}^{k+2} |g(x_i+) - g(x_{i-1}-)| \\ &= |f(x_{r-1}-) - g(x_r+)| + \sum_{i=r+1}^{k-1} |g(x_i+) - g(x_{i-1}-)| + \\ &+ |f(x_k+) - g(x_{k-1}-)| + |f(x_k-) - g(x_{k+1}+)| + \\ &+ |g(x_{k+1}-) - f(x_{k+2}+)| \\ &\leq |f(x_{r-1}-) - f(a_s+)| + 4 |f(a_s+) - f(\beta_s-)| + |f(a_s+) - f(x_k+)| + \\ &+ |f(x_k-) - f(a_i+)| + 2 |f(a_i+) - f(\beta_i-)| + |f(a_i+) - f(x_{k+2}+)| \;. \end{split}$$

These considerations show that

$$\begin{aligned} V \leqslant \sum_{i} |f(a_{i1}-)-f(a'_{i1}+)| + \sum_{i} |f(a_{i2}+)-f(a'_{i2}+)| + \\ &+ 4 \sum_{i} |f(a_{i3}+)-f(a'_{i8}-)| \;, \end{aligned}$$

where the sets $\{(a_{ij}, a'_{ij}); i = 1, 2, ...\}$ (j = 1, 2, 3) of intervals are all pairwise disjoint and satisfy the conditions of the Lemma 2.2. Therefore by the same lemma,

(1)
$$V \leq 18[3V_{\infty}(f; F) + 2K]$$
, where $K = \sup\{|f(x\pm)|; x \in F\}$.

Thus in any case relation (1) holds. Since $x_0, x_1, ..., x_n$ is an arbitrary ω -subdivision of $[a_0, b_0]$ it follows that g(x) is BV- ω on $[a_0, b_0]$. Since g(x) is constant on $[a, a_0]$ and $(b_0, b]$ it is BV- ω on $[a, a_0]$ and $[b_0, b]$. Hence by Theorem 3 [1], g(x) is BV- ω on [a, b]. This proves the Theorem.

THEOREM 3.2. Let f(x) be $BV-\omega$ on a closed set $F \subseteq [a,b]$. If f(x) is constant on each open interval (a,β) complementary to F where $\omega(x)$ is constant and if f(x) possesses the property (N_{ω}) on F, then f(x) is $AC-\omega$ on F.

Proof. Let $[a_0, b_0]$ be the smallest closed interval containing the set F and let $[a_0, b_0] - F = \sum_i (a_i, \beta_i)$, where the intervals are pairwise disjoint. Let g(x) be the function as defined in Theorem 3.1. Then g(x) is constant on each $[a_i, \beta_i]$ where $\omega(\beta_i-) = \omega(a_i+)$. So g(x) is AC- ω on each such interval. Also from the definition of g(x) we see that g(x) is AC- ω on each $[a_i, \beta_i]$ where $\omega(\beta_i-) \neq \omega(a_i+)$. Therefore by Theorem 1.4, g(x) possesses the property (N_{ω}) on each $[a_i, \beta_i]$. Since g(x) = f(x) on F, g(x) possesses the property (N_{ω}) on F. So g(x) possesses the property (N_{ω}) on [a, b]. By Theorem 1.3, g(x) is AC- ω on [a, b]. Hence f(x) is AC- ω on F.

THEOREM 3.3. If f(x) is BVG- ω on [a, b] and possesses the property (N_{ω}) on [a, b], then it is ACG- ω on [a, b].

Proof. Since f(x) is BVG- ω on [a, b] we can express the interval as the union of a countable family of closed sets F_i , $[a, b] = \sum_i F_i$, on each of which f(x) is BV- ω . Let (a, β) be any open interval on which $\omega(x)$ is constant. Then f(x) is continuous on (a, β) . Let $e = [c, d] \subseteq (a, \beta)$. Then f(e) is either an interval or consists of a single point. Now $|e|_{\omega} = 0$ and f(x) possesses the property (N_{ω}) on [a, b]. So mf(e) = 0, which shows that f(e) consists of a single point. This implies that f(x) is constant on [c, d] and therefore on (a, β) . From Theorem 3.2, it follows that f(x) is ACG- ω on each F_i . Hence f(x) is ACG- ω on [a, b].

THEOREM 3.4. If f(x) is ACG- ω on [a,b], then f(x) possesses the property (N_{ω}) .

Proof. Let E be any subset of [a, b] with $|E|_{\omega} = 0$. Then $E \subseteq [a, b] \cdot S$. Since f(x) is $ACG-\omega$ on [a, b] we can express the interval as the union of a countable family of closed sets F_i , $[a, b] = \sum_i F_i$, on each of which f(x) is $AC-\omega$. Write $E_i = EF_i$ (i = 1, 2, 3, ...). Then $E = \sum_i E_i$ and $f(E) = \sum_i f(E_i)$. We show that $mf(E_i) = 0$ for each i which will give that mf(E) = 0 and the proof of theorem will be complete.

Let i be any positive integer. Consider the set E_i . Write $A = E_i(a, b)$. Choose $\varepsilon > 0$ arbitrarily. Since f(x) is $AC-\omega$ on A, by Lemma 2.3, there is a $\delta > 0$ such that for any set of pairwise disjoint open intervals $\{(a_k, b_k)\}$ on [a, b],

(2)
$$\sum_{k} (u_{k} - l_{k}) < \varepsilon \quad \text{whenever } \sum_{k} \{\omega(b_{k} -) - \omega(a_{k} +)\} < \delta ,$$

where u_k , l_k have meanings as in Lemma 2.3. Since $|A|_{\omega} = 0$ there is an open set $G \supseteq A$ and $G \subseteq (a, b)$ such that $|G|_{\omega} < \delta$. Let $G = \sum_{k} (a_k, b_k)$, where the intervals are pairwise disjoint. Then $\sum_{k} \{\omega(b_k -) - \omega(a_k +)\} < \delta$. Since $A = \sum_{k} [a_k, b_k] \cdot A$, we have $f(A) = \sum_{k} f([a_k, b_k] \cdot A)$. So,

(3)
$$m^*f(A) \leqslant \sum_k m^*f([a_k, b_k] \cdot A) \leqslant \sum_k (u_k - l_k) < \varepsilon$$
 (using (2)).

Since $\varepsilon > 0$ is arbitrary, from (3) we obtain $m^*f(A) = 0$. If $B = \{a, b\}$, then $E_i \subseteq A + B$ and $f(E_i) \subseteq f(A) + f(B)$. So $m^*f(E_i) \leq m^*f(A) + m^*f(B) = 0$.

THEOREM 3.5. If f(x) is BVG- ω on [a, b], then $(ap)f'_{\omega}(x)$ exists finitely at ω -almost all points of [a, b].

Proof. Since f(x) is BVG- ω on [a,b], we can express the interval as the union of a countable family of closed sets F_i , $[a,b] = \sum_i F_i$, on each of which f(x) is BV- ω . Consider the set F_i , where i is any positive integer. By Theorem 3.1, there is a function $g_i(x)$ in calss \mathcal{U} such that $g_i(x)$ is BV- ω on [a,b] and $g_i(x) = f(x)$ for all $x \in F_i$. Denote by F'_i the set of points of F_i where the ω -derivative of $g_i(x)$ exists finitely. Then by Theorem 1.2, $|F_i - F'_i|_{\omega} = 0$. Let E_i denote the set of points of F'_i where the ω -density of $S - F_i$ is zero. Clearly F'_i and $S - F_i$ are ω -separated. So by Theorem 1.1, $|F'_i - E_i|_{\omega} = 0$. We have $F_i - E_i = (F_i - F'_i) + (F'_i - E)$. So $|F_i - E_i|_{\omega} = 0$. Let a be any point of E_i . Since $g_i(x) = f(x)$ on SF_i and the ω -derivative of $g_i(x)$ exists finitely at a, it follows that $(ap)f'_{\omega}(a)$ exists finitely. Since a is arbitrary, $(ap)f'_{\omega}(a)$ exists finitely at each point of E_i . Write $E = \sum_i E_i$. Then, at each point of E, $(ap)f'_{\omega}(x)$ exists finitely. Now $[a,b] - E \subseteq \sum_i (F_i - E_i)$. So $\omega^*([a,b] - E) \leqslant \sum_i \omega^*(F_i - E_i) = 0$. This proves the Theorem.

I am grateful to Dr. P. C. Bhakta for his kind help and suggestions in the preparation of the paper.

References

- [1] P. C. Bhakta, On functions of bounded ω -variation, Rev. Math. Univ. Parma (2) 6 (1965).
- [2] On functions of bounded w-variation II, J. Aust. Math. Soc., Vol. V, part 3, (1965), pp. 380-387.
- [3] M. C. Chakrabarty, Some results on w-derivatives and BV-w functions, J. Aust. Math. Soc., Vol. IX, parts 3 and 4 (1969), pp. 345-360.
 - [4] Some results on AC-ω functions, Fund. Math. 64 (1969), pp. 219-230.
- [5] R. L. Jeffery, Generalized integrals with respect to functions of bounded variation, Canad. J. Math. 10 (1958), pp. 617-628.

DEPARTMENT OF MATHEMATICS, KALYANI UNIVERSITY, West Bengal, India

Recu par la Rédaction le 12. 7. 1968

Structure spaces of lattices

p2

J. R. Isbell and J. T. Morse (Cleveland, Ohio)

Introduction. This paper gives a simpler proof of the functoriality of the structure space of maximal l-ideals of an f-ring with unit. Like the previous proof [3], this one depends (when analyzed) on a different, visibly functorial construction that turns out to yield the maximal ideal space. Both constructions generalize to distributive lattices with base point. Hence the maximal ideal space of a unitary f-ring is determined by the underlying lattice. This was previously known for commutative semisimple unitary f-rings [6].

Kaplansky's original proof that the lattice of continuous functions C(X) on a compact Hausdorff space X determines X[4], and its generalizations until now, have used ad hoc constructions to wring the space from the lattice. After an ad hoc beginning (the quickest), we exhibit the following natural structure. A based distributive lattice L has a T_0 space $\pi(L)$ of prime ideals containing 0. The present construction, and Kaplansky's, form the finest quotient space $\varkappa(L)$ in which the closure of every point is collapsed to a point. The more radical treatment of [3] yields a compact Hausdorff space $\beta(L)$, which, unlike π and \varkappa , is functorial for a category of lattice homomorphisms containing the unitary f-ring homomorphisms. Obvious mappings run $\pi(L) \rightarrow \kappa(L) \rightarrow \beta(L)$. The easiest way to establish coincidence of $\varkappa(L)$ and $\beta(L)$ (and a space of prime ideals) is to find a subspace of $\pi(L)$ continuously cross-sectioning $\pi(L) \rightarrow \beta(L)$ and mapping surjectively to $\kappa(L)$; that is what the maximal ideal space of a unitary f-ring does, and also the maximal ideal space of an abelian l-group with strong order unit [3]. A continuous cross-section is not enough (for a vector lattice). We find a sufficient additional condition, for abelian l-groups. to the effect that group elements positive at a point are non-negative on a $\beta(L)$ -neighborhood.

1. Maximal ideal spaces. Let $\mathcal{M}(A)$ be the space of maximal l-ideals of a unitary f-ring. (It is compact Hausdorff [2]; compact by the usual maximality argument, Hausdorff by a simple argument due to Gillman [1] depending on the fact that for $M \in \mathcal{M}(A)$, A/M is totally