Axiom systems for Lipschitz structures*

by
Robert B. Fraser, Jr. (Louisiana)

1. Introduction. In 1954, Efremovich [1] suggested that the
study of certain geometric properties of metric spaces could be advanced
by studying the properties preserved by a Lipschitz function. Sandberg [7],
in an attempt to carry out such a plan, generalized the notion of a Lip-
schitz function. Geraghty [4] gave a different generalization which was
closer (in some sense) to the original concept of a Lipschitz function.

We give two axiom systems for a Lipschitz structure on a space
and show that they are both natural and equivalent. Separation axioms
are considered, yielding some conditions for which a Lipschitz structure
is given by a metric. Finally, a “reagonable” topology is given for the
space of Teal- (or complex-) valued functions which satisfy an M -Lip-
schitz condition”.

2. M-Lipschitz structures. Let (X,d) and (¥,e) be pseudo-
metric spaces. A function f: X—¥ is called a local Lipschite function
if there exist positive numbers K and & such thatb ¢ o fiy#;, #5) < Kd(w,, )
whenever d(z,, @) <8, where fy®,, @) = (f(@), f(%)). When d and ¢ are
psendometrics on X sueh that Id: (X, d)—(X,e) is a local Lipschitz
function, we denote it by e <d. Thus to say that f: (X, d)—~(Y, e) satisfies
a local Lipschitz condition can be denoted e o f; <d. Finally, if d<e and
and e <d, we will say (following Efremovich) that d and ¢ are strongly
equivalent, and denote it by d~e ().

2.1. DEFINITION. Let X be a space. An M - Lipschitz structure for X
is a non-empty collection D of pseudometrics satisfying the following
conditions:

M1. It d, dy e D, then &+ d, e D.

M2. If d, ¢ D and d, < d,, then dyeD.

M3. If min{d, 1} ¢ D, then d e D.

* These results form a portion of the author’s Ph. D. Thesis, written under the
direction of Professor Solomon Leader.

(4 Efremovich [2] actually defined two metrics to be strongly equivalent if a Lip-
schitz condition was satisfied both ways. Since the properties which he discussed are

preserved by local Lipschitz mappings, we feel justified in usurping his definition for
mappings which satisfy a local Lipschitz condition in both directions.
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The pair (X, D) will be called an M -Lipschilz space.

We list a few easy consequences of the definition. As usual, v denotes
max and A denotes min.

9.9. It dy, dye D, then dvdyeD.

2.3. For any two pseudometrics, di+ dy ~ AV Ay

9.4, If d e D, then nd e D for any positive integer n.

2.5. If d e D, then rd ¢ D for any positive real 7.

2.6, For any real 6 <0, d A deD iff deD.

9.7. If deD and ¢<d, then ¢e.D.

9.8. The intersection of any collection of M -Tipschitz structures on
a space X is again an M -Lipschitz structure on X.

9.9. Given a non-void set of pseudometrics on & space X, there is
a unique smallest M - Lipschitz structure on X containing the given set
of pseudometrics.

We will refer to the smallest M -Lipsehitz structure containing
a given set of pseudometrics as the M -Lipschitz structure generated
by that set of psendometrics.

92.10. Let X be a space, 4 a non-empty set of pseudometrics on X, and D
the M-Lipschite structure gemerated by 4. Then eeD iff there ewist

kd
gy fagy oory By € 4 sUCH that €< 2, duy-
i=1
Proof. Let I’ = {¢] ¢ is a pseudometric on X for which there oxish
. ki3
Aoy y Aoy ey dg, SUCHh that €< 2 dg}. Cleawly D'CD by finite induetion
q=1

on M, and 2.6. Since 4 C D', we need only show that D’ is an I - Lipschitz
structure. This is routine. ) :

2.11. Let (X,d) be a pseudometric space and D the M - Lapschits
structure generated by d. Then e e D iff e<d.

2.12. DerinirioN. Let (X, D) and (Y, #) be M-Lipschitz spaces.
A function f: XY will be called an M -Lipschits funcion if given ¢ < K,
there exists d ¢ D such that ¢ of, <d.

We observe that the composition of two M -Lipschitz funetions is
again an M -Lipschitz function. This follows from the fact that the com-
position of two funections, each satisfying a local Lipschitz condition,
yields a function which also satisfies a local Lipschitz condition. Thus if
dy, dy, d; are all pseudometrics for X, such that dy <d, and dy <d;, wo
see that d,<d,.

2.13. DEFINITION. Two M -Lipschitz spaces are isomorplic if theve
exists an M - Lipschitz function from. one to the other which is one to one
and onto with its inverse being an M -Lipschitz function.
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2.14. Let (X, d) and (¥, ¢) be pseudometric spaces with D and E the
M -Lipschitz structures generated by d and e, respectively. Then a function
f: XY is an M-Lipschite function iff ¢ o f,<d.

Proof. Suppose f satisfies a local Lipschitz condition. Let e’ ¢ B
be given. Then Id: (¥, e)—>(Y,¢') satisties a local Lipschitz condition,
and, by the remark above, f(X, d)—(Y, ¢') does also. That is, ¢' o f, < d.

Conversely, suppose f is an M -Lipschitz function. Then there exists
d’ e D such that e of,<d’. But d' «D iff d'<d. Since < is transitive,
e of,<d, and f satisfies a local Lipschitz condition.

2.15. A function f: (X, D)—(Y, E) is an If-Lipschitz function iff
¢ >f,eD for every ee H.

2.16. A function f: (X, D)-~(Y, E) is an I -Lipschitz function iff
¢ >f,e D for every e in a generating set for E.

2.17. If X is a space with pseudometrics d and ¢, then the correspond-
ing M -Lipschitz structures are isomorphic under the identity iff d ~ e.

3. E-Lipschitz structures. Before we give the definition of an
E-Lipschitz structure, it is necessary to establish some notation. Let X
be a space and 8 C X X X. For a function f defined on X, f,(8) = {fa(s1, s»)
(81, 8) € 8} If uy, m=0,1,2,... is a sequence of entourages, we shall
write {#y}neo, Or more simply {u,} whenever there can be no eonfusion.
Finally, {#a} < {vx} will mean that u, C v, for each integer n > 0.

3.1. DeriNmmioN. Let X be a space. An E-TLipschitz structure for X
is o filter U of sequences of entourages (pai'tially ordered by <) with
a basis U’ satisfying

E1. If {v,} e U, then v24; C v, = v,  for each m, and

E2. If {v,} e U’, then {vp1}e U

The pair (X, U) will be called an F-Lipschitz space.

Comparing this definition with that of an J[-Lipschitz structure,
we see

a) Property E1 provides us with pseudometrics.

b) Property B2 implies that we are only interested in behaviour
locally, and so corresponds to M3.

¢) The “superset” property of a filter corresponds to M2, and the
“intersection” property corresponds to MI.

3.2, DeFNITION. Let (X, U) and (Y,V) be I-Lipschitz spaces.
Then a function f: X—Y will be called an F-Lipschite function if given
{va} € V, there exists {un} e U such that {fa(un)} < {va}.

3.3. Let (X, U) and (¥, V) be B-Lipschitz spaces, with U’ and v’
the respectively bases guaranteed hy the definition. The following are
equivalent:

o
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(i) The function f is an E-Lipschitz function.
(ii) Given {va} ¢ V', there exists {un} e U’ such that {fiua)} < {wa}.

(i) If {va} ¢V, then {fz"(va)} e U.

(iv) If {’Un} ¢ V', then {f51(7)ﬂ)} «U.

The proof, being straightforward, is omitted.

3.4. Tet X be a space and d a pseudometric on X. The entourage
sequence generated by d is {un}, wheve un = {(21, @) ¢ XX X| d{wg, @) < 1/2").
The set of entourage sequences {(Unprpomol T=0,1,2,..} satisfies the
conditions for a basis of an I7-Lipschitz structure, and the resulting
B-Lipschitz structure will be called the I-Lipschitz structwre generated
by d. More generally, let 4 be a collection of pseudometries on X. Then
the set {{atinsr}| dacd, b=10,1,2, ...} satisfies the conditions for a sub-
base of a filter (with the partial order <). The base which the subbage
generates satisties B1 and E2. Thus we call the resulting filter the K- Lip-
sehitz structure generated by 4.

3.5. Let (X, d) and (¥, ¢) be pseudomelric spaces, and U, V the H-Lip-
schite structures generated by d, e respectively. Then a function f: XX
is an B-Lipschitz function iff f satisfies a local Lipschilz condition.

Proof. Suppose that e of, <d. That is, there exist 6 >0 and & >0
such that e o folw, #,) < kd (%, @) whenever d(w,, ) <. Without loss
of generality, we assume that k= 2™ gnd 6= 1/2"™ for some pair of
positive integers m and n. Then when d (s, &) < 1/2™ ™ we have
¢ o fuly, @) < 1/2"TE, That i, folthmsnss) C vnsr fOT each positive integer k.
Selecting an arbitrary {vi4r}i-o from V', we see that fo(tnsm-r1n) C Untire
Cuyx for every k. Thus f is an F-Lipschitz function by 3.3.

Conversely, assume that f is an - Lipschitz funetion. That is, given m,
there exists # such that fu(umix) C Onir for each k. Now (2, @) € Upin—
— Uy implies that 2™ < d(ay, @) <1/2"TF. Then 6 o fo(w,, @)
<3MTE = 12 HERL 19" (g, ma) /2" That iy, I d (g, ) < 127,
then 6 o fy(m, @) < 2" "d (@, @y).

3.6. Let X be a space with pseudometrics & ond 6. Let {un} and {vn}
be the entourage sequences generated by d and e, respectively. Then &< ¢ iff
there ewists & such that {vnyr} < {Ua}.

Proof. If d<e, then Id: (X, V) (X, U) is an F-Lipschitz function,
where V and U are the E-Lipschitz structures generated by ¢ and d ro-
spectively. Since {{unii}nme] &= 0,1, ...} forms a base for U, there cxisls
a k such that idy(unir) = Unir C va for all n.

Conversely, suppose such a & exists. We will show that Id: (X, V)
—(X, U) is an E-Lipschitz function. It suffices by 8.3 to consider a se-
quence of the form {v,,:}. By hypothesis, there is a k such that wn.p41 C "t
for every n. Thuy d<e.

icm®

Awiom systems for Lipschite strygtures 19

We recall the

3.7. DermaTioN. Let f: (X, d)—(Y, e) be such that for any & >0,
there is a 6 > 0 for which ¢ o fy(#,, 2,) < ed (2, #,) Whenever d(x, %,) <J.
Then f will be said to satisfy a lipschitz condition, or to be a lipschitz function.
Note that lipsehitz should be read “little Lipschitz”.

Little Lipschitz functions have their analogue in M - Lipschitz strue-
tures with the obvious definition. To discuss lipschitz functions in terms
of entourage sequences, we use .

3.8. Let X be a space with pseudometrics d and e. Let {uz} and {on}
be the entourage sequences generated by @ and e, respectively. Then Id: (X, €)
—~(X, d) is a lipschitz function iff given any positive integer m, there ewisls
a positive integer T such that vn C Umin for all n = k.

Proof. If Id: (X, e)—(X, d) is a lipschitz function, then there exist
positive integers 4 and j such that when e(z,y) < 1/2%, then d(w,y)
< 1/%%(, y). Thus when (2,y) € oy, We have d(z,y) <1/2°7"", and
(#,9) € Uirnsi. That is, v, Cayg for all o >j.

Conversely, suppose that given m, there exists & such that vx C tmin
for all > k. That is, e(w,y) <1/2" and n >k imples that d(z,y)
< 1/2™*". Choosing (@, ¥) € Da—Tpe1, With 7> k, We have e(w, y) > 1/2",
Hence 1/2"¢(w,y) > 1/2"™ = 1/2d(z,y) when e(w,y) < 1/27, proving
the result.

4. Equivalence of M-Lipschitz and F-Lipschitz structures.
In order to see the relation between M -Lipschitz structures and
E-Lipschitz structures, we need some method of transferral from one to
the other. We already have a method for obtaining an F-Lipschitz strue-
ture from an M -TLipschitz structure. To go the other way, we use the
following:

4.1, MBTRIZATION THREOREM ([3], p.164). For a space X, let {un}
be a sequence of entourages satisfying Bl. Then there ewists a pseudometric d
for X with the property that

42 {(@, 9! Az, y) <12""}Cun  and  uaC{(z,y) d(x,9) <12,

with d{xz,y)=1 if (®,y) ¢ uy.
Proof. For each n, set dsn= uy. If a is a dyadic rational,

E
= 22””‘ , N> Nigr -
-

i

Then put

&
A= ‘l\(ﬂ?, y): (%, Y) € Uny © Uny © ... © Un, Where o= Z 2'7”}.
i=1
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This extends the definition of A, to all dyadic rationals .
Define

_ 1 £ (2, 9) ¢,
)= linf{a] (#,9) e dap it (2,9) .

It is easily seen that 4 is in fact o pseudometric and sabisfies 4.2,

The psendometric construeted in the above manner will be referred
to as the pseudometric associated with an entourage sequence, or the pseudo-
melric constructed from am eniourage Sequence. .

4.3, CoroLLARY. Let d be a pseudometric, {tn} ils associated entourage
sequence, and d' the pseudometric consirucled from {un}. Then d ~ d'.

Proof. Let {v,} be the entourage sequence constracted from d’,
By the metrization theorem, {Un41} < {un} << {tn}. Thus d<d <d.

4.4, COROLIARY. Let {un} be am enlowrage scquence salisfying 131
and B2, d the pseudometric constructed from it, and {0} the entouraye seqewnce
generated by d. Then {vns1} < {tn} < {on}.

We are now ready to prove the main theorem of thiy section. It
should be noted that 4.3 and 4.4 form the keystone of the proof. Also,
the sharpness of Gaal’s proof of the metrization theovem is essential,
since the proof in [6] (for instance) will not suffice.

4.5. TaEorEM. To each I-Lipschilz structure corresponds in a notural
way o unique M-Lipschitz structure and conversely. This correspondence
is reflemive. Moreover, the class of M -Lipschite functions is precisely the
class of B -Lipschitz functions.

Proof. We first make some almost obvious observations. Let d
and ¢ be pseudometrics on X and {u.}, {v»} their respective entourage
sequences. Then {u, n v} is the entourage sequence generated by dve.
Similarly, if {u,} and {v,} are entourage sequences with d and ¢ their
respective pseudometrics constructed by the metrization theorem, then
dve is the psendometric congtructed from {us ~ va}.

Now let U be an E-Lipschitz structure for a space X and U’ the et
of all entourage sequences of U satisfying Bl and B2. For each entourage
sequence in U’', we construct the associated pseudometric by means of
the metrization theorem. Let D be the M-Lipschitz structure generated
by the set of all such psendometrics. Clearly D is unique.

Conversely, let D be an 3 - Lipschitz structure on X, Then the family
of entourage sequences generated by the pseudometrics of D forms a baso
for an E-Lipschitz structure U. Omnce again, this construction yields
a unique structure.

Let D be an M-Lipschitz structure, U the X-Lipschitz structure
constructed from D, and D’ the M -Lipschitz structure constructed
from U. It follows from 4.3 that D C D'. To show D'C D, let d' e D'.

a(w,y

Aaiom systems for Lipschitz structures 21

Then by 2.3 and 2.10, &' €divdV... vdj for some di, ds, ..., dx, where
each d; was constructed from an entourage sequence {iu,} in U satisfying E1

&
and F2. Thus d' < ¢’, where ¢’ was constructed from { (] us}. Since the set
i=1

of entourage sequences in U generated by pseudometrics of D forms
a base for U, there is an entourage sequence {vn}e U such that {va}

k
< {N1a} and v, = {(z,y)| d(z,y) < 1/2"} for some pseudometric d
i=1

in D. Then we see that ¢’ < d. By the transitivity, ' < d, and d’ « D by 2.10.

To complete the proof of reflexivity, let U be an B-Lipschitz structure,
D the J-Lipschitz structure constructed from U, and V the E-Lipschitz
structure constructed from D. Let T’ and V' be bases whose elements
satisfy Bl and B2 for U, V, respectively. By 4.4, {un} ¢ U’ implies {un} e V.
Now let {vn} ¢ V'. The paragraph above shows that the pseudometric d

k

constructed from {v,} is in D. Then d <€ Z d;, where each d; was constructed

i=1
from an entourage sequence {sm,} of U. Letting ¢ be the pseundometric
k

k
dvdyV...Vd;, we have e constructed from {1 sus} and 2, d; ~ e. Thus
i=1 =1

k
d<e, 80 {[) U} << {a}, and {vn} e U.
i=1

Finally we show that the class of [ -Lipschitz functions is identical
with the class of F-Lipschitz functions. Let f: X—Y be a function,
U and ¥ E-Lipschitz structures for X and Y respectively, and D, E the
I -Lipschitz structures constructed from U, V respectively. Now fisan
E-Lipschitz function iff {fs *(va)} e U for each {v,} in V satisfying E1 and E2.
But f is an 17-Lipschitz function iff e o f, ¢ D for each ¢ ¢ E. Since e o f,
is the pseudometric associated with {fs*(v2)} when e is the pseudometric
assoeiated with {r,}, the theorem follows.

5, Separation and metrizatiop. It should De observed that
either Lipschitz structure induces a uniformity in a natural way. The
gage of the uniformity is usually “larger” than the I - Lipschitz structure.
Tor example, let (X, d) be a compact metric space with a point of accumula-
tion. Then the gage generated by d contains every pseudometric on X
whose topology coincides with that of 4. On the other hand, ¥ is not
in the I -Lipschitz structure generated by d.

Let (X, U) be an E-Lipschitz space. The structure is called separated
if M {‘"11 {un} € U} = A, the diagonal. This is clearly equivalent to saying
that the pseudometries in the corresponding M -Lipschitz structure
separate the points of X. Thus a separated Lipschitz space induces a sepa-
rated uniform space.


GUEST


22 R. B. Fraser, Jr.

In the event thab ﬂ up = A for some {u,} ¢ U, we will call the strue-

ture strongly sepala,ted It i easy to see that the M -Lipschitz structure
for a strongly separated space is generated by a family of mefrics. One
might hope that a strongly separated structure which was generated
by a countable collection of metrics would be generated by a single metric.
This need not occur, even for a compact space.

51 Exampre. Let X Dbe [0,1]. For each positive integer n, let
du(z, ¥) [x y[*". The M-Lipschitz structure D  generated by
{d,) n=1,2,..} cannot be generated by a single raetric.

Indeed, if m < n, then dn<dy. If D were generated by o single
metric d, then we would have d < dp,Vdr,V...Vdy, for some finite set of
indices. Letting & = kVEV...VEs, we have that d<€ds. IE d generated
D, by 211 we would have that dpp<d. Bub |z-y| M), g e gy M
= p—y | o0 ag [w—y| 0. That i8, i1 < dp is impossible, showing
that D is not generated by a single metric.

If there is an entourage sequence {us}e U such that {{'un»(.k}|
k=0,1,2, } is a base for U, the struecture will be called simple.

5.2. ProrosiTioN. If X is a space with a simple K- Lipschitz structure U,
then there s a psewdometric d such that U is the H-Lipschite structure gen-
erated by d.

Proof. Let {va}e U satisfy Bl and T2, and {v.} < {us}, where
{{tnsadneol 5=10,1,2,..} is a base for U. Let d be the pseudometric
construeted from {v,}. Now dp = inf{2"d,1} is the pseudomotric con-
© structed from {v,;x} and dp~ d. Sinee {{v,.}h=0,1,2,..] also form
a base for U, d generates the X-Lipschitz structure.

5.3. CororrArY. If X is a space with o simple separvated - Lipschitz
structure, then the H-Lipschitz structure is gemerated by a metric,

If an M-Lipschitz space (X, D) is given, it iy clear that ~ is an
equivalence relation on D. This equivalence relation induces a partial
order in D, the set of equivalence classes, by d <@ iff d<e. It is easily
shown that < is a well defined partial ordering, This order makes D
2 lattice in the usual way. We then have

54 ProrosrrioN. The M-Lipschitz structure D on X ds generaled
by o single pseudometric iff D has o maximal element.
) Proof. Tf D has a maximal element 4, then any d ¢ 4 will generate D.
For let ¢« D. Then £<d, and so e<d. Conversely D is generated by

a metric d means that any metric ¢ e D must satisfy e <d. Thus
and d is maximal.

6. Constructions. Let (X., Du)oer be a family of M-Lipschitz
spaces and for each a, let f.: ¥—X, be a function. The smallest 3 - Lip-
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schitz structure D on ¥ such that each f, is an I -Lipschitz function is
called the projective MM -Lipschitz structure determined Dby the family
of f, and X,. It is fairly clear that the projective M -Lipschitz structure
is the M-Lipschitz structure generated by {da ofa| due Do, e} As
examples of projective M -Lipschitz structures, we consider subspaces,
product spaces, and projective limit spaces.

6.1. Subspaces. If (X, D) is an M -Lipschitz space and Y C X, we
can consider the M -Lipschitz structure B on ¥ induced by Id: ¥-X.
This structure is clearly generated by B = {d|r| d e D}. If ¢ e B, then
¢ < d|y for some d e D. Sinee ¢ has an extension ¢’ to X given by ¢'(ay, #,)
= inf{d (2, ¥1)+ ¢ (Y1, ¥2) + (Yo, B)] 91, Y2 ¥}, We see that ¢’ <d on
X (®). Thus e (being equal to é'|y) is in E'.

6.2. Product spaces. Let (X., Do)aer be given. Then the projections
Pa: H X.—~X, induce the product M-TLipschilz structure. If I' is a finite

set and each D, is generated by a single pseudometric d,, then the product
M -Lipschitz structure is generated by the pseudometric Z dy.

The product uniformity for a countable product of pseudometric
uniformities is again a psendometric uniformity. This is not true in
general for I -TLipschitz structures, as one can verify by taking X, to be
[0,1] and du{®,y) = ]w—yl”n, #=1,2,.. The “diagonal” space is the
space deseribed in 5.1.

6.3. ProposITION. Let ¥ be a space and (Xu, Do)eer o collection of
M -Lipschitz spaces each having a map fo of ¥ to X,. Let (Y, E) be the
projective Lipschite structure induced by the (X.,D.). Then f: (X', B')
(Y, E) is an M -Lipschitz map iff foof is an M-Lipschitz map for
each a.

Proof. The “only if”’ part is trivial. Suppose then that f, o f+ ¥'—>X,
is an M-Lipschitz function for each a. Then dy o (fuo o f;) ¢ B’ for each
ds € Dy by 2.15. But dg o (fas © fo) = (da © fuz) o fo. Since the pseudometrics
d, o f,» generate the projective M -Lipschitz structure, f is an M -Lip-
sehitz function by 2.16.

6.4. Projective limit spaces. Let (X, Da), @ ¢ I' be a family of M-Lip-
schitz spaces. Leb < be a directed partial ordering on I' such that for each
pair of indices a, f with a < B, there is a canonical M- Lipschitz mapping
fos: Xp—X,. Further, the canonical mappings are to satisty fos o foy = Sy
and fu=4id on X,. Then limproj{(X,, D) ael}={xe¢ H X,| for
o < B, fap o Dp() = Pa(z)} Where p, is the projection map onto X.. As
an illustration, we show that each separated M -Lipschitz structure can
be considered as the projective limit of M -Lipschitz structures generated
by a single metric. Let (X, D) be an M -Lipschitz space. For each d eD,

(%) This pseudometric is due to R. H. Bing.
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let (X4, d’) denote the (metric) quotient space oblained by identifying

points which are zero distance apart. D has the obvious partial order

induced by the quasi-order <. The canonical map fup is the one induced

by Id: (X, d)) (X, da), where of course de<ds. Then the natural maps

(X, D)_;]zj (X, d) —>ﬂ D(Xd, d') give the obvious M - Lipschitz isomorphism
€ €

onto limproj(Xga, d’).

For (X,D) an M-Lipschitz structure, define Lip(X, D) to be
[f: X—R| fis a bounded, M -Lipschitz function]. (We use the customary
metrie for R.) For any pseudometric d on X, seti Lip (X, d) == {f+ X .- 1|
1f(@)—F)| < kd(z, y) for some k> 0}. Lip(X, d) iy o Banach space [8).
In [2] it is shown that d <e iff Id: Lip(X, d)->Lip(X, ¢) is a continuouy
imbedding. Hence {Lip(Xz, d'| d ¢ D} is an inductive family of Banaeh
spaces. We topologize Lip(X, D) with the inductive limit topology.

As was mentioned before, from the fact that I is countably generated,
we cannot conclude that D is generated by a single pseudometric. ITowever,
we do have

6.6. TusorEM. Let D be countably generated. Then Lip(X, D) is
a Frechet space iff D is generated by a single pseudometrie,

Proof. If D is generated by d, then Lip(X,.D) ~ Lip(X, d) by the
identity map. :

Now suppose Lip(X,.D) is a Frechet space and D iy gencrated by
{di}, i=1,2,... We assume without logs of generality that d;< dq., for
each 4. The inductive limit topology is the strongest locally convex
topology making all of the injection majps Lip(X , d) -Lip(X , D) continuous,
- By a theorem of Grothendieck [5], Lip (X, D) is isomorphic to Lip (X, d)
for some » via the injection map. Then since Lip(X, dy)-»Lip (X, doz)
must be an isom'orphism for each %, dy, ~ dny. Thus D is generated by d,.
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Topologies uniquely determined by their
continuous self map

by
Joseph C. Warndof (Arkansas)

The major content of this paper is the search for topologies which
are unique among the topologies for a given set with respect to their
continuous self maps. Several classes of such spaces shall be given. Among
them are the locally Huclidean, T,-spaces; the separable metric, locally
connected continua; all spaces of CW-complexes; and the non-discrete,
eofinite spaces.

Tor notation let a pair (X, U) denote a topological space if X is the
set of points in the space, and U is the collection of all closed subsets of
the space. This variation from standard is a convenience to this study.
If (X, U) is a topological space, let C¢(U) denote the collection of all fune-
tions from X into X which are continuous with respect to U. A space
(X, U) is special if and only if the only topology 7V on X such that C(U)
= (V) is the topology ¥V = U. If  is a class of spaces, then a space (X, U)
in Q is Q- special if and only if the only topology ¥ on X such that (X,V)is
in @, and C(V)= C(U) is the topology V= U. A space (X, U) is
T,-special it and only if it is @-special when @ denotes the class of all
T, spaces.

Now the problem may be described as the search for special spaces.
The method will involve the study of spaces which are both maximal
and minimal in the lattice of 7T,-spaces with respect to their continuous
self maps. Then conditions shall be given under which a T;-special space
is special. In the process a class of spaces which are absolutely minimal
T, -spaces with respect to their self maps shall be studied. There is a close
relationship between this study and the study of S -admissibility [3].
This relationship shall be clearified, and several theorems on the con-
struction of S-admissible classes shall be given.

Additional notation. If (X, U) and (¥, V) are spaces, let C(U, ¥)
denote the set of continuous functions from (X, U) into (¥, V). Let b
denote the set of all functions from X into Y. Let 2% denote the set of
all subsets of X. If f and g are two functions such that the composite
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