icm

Extensions of uniform structures*
by
T. E. Gantner (Dayton, Ohio)

Let X be any completely regular space and let BX be any com-
pactification of X. It is well known that BX has a unique admissible
uniform structure U, whereas X may have many distinet admissible
uniform structures. Therefore there exists a unique admissible uniform
structure A on X such that VU is the relative uniform structure on X
obtained from 9Us; we then call U an ewstension of U to BX. In this paper
we cousider the following type of question: If X and ¥ are completely
regular spaces and if X is a subspace of Y, then what conditions placed
on X and Y will guarantee the existence of admissible extensions to ¥
of various admissible uniform structures on X? We show that if X is
a closed P-embedded (see § 1) subset of a completely regular space ¥,
then every admissible uniform structure on X has an admissible extension
to ¥; and that if X is a closed C*-embedded subset of Y, then every
admissible precompact uniform structure on X has an admissible (even
precompact) extension to Y. In the case of normal spaces, the latter
assertion generalizes the classical Tietze-Urysohn Extension Theorem.

We also consider the class of y-uniform structures which was defined
by G. Aquaro in [1]. We first characterize y-uniform structures in terms
of normal covers and then we show that, under suitable conditions, they
also have admissible extensions. As a result of this, a characterization
of y-collectionwise normal spaces is obtained that generalizes a theorem
due to Agquaro [2].

Tt will be assumed that the reader is familiar with the approaches
to uniform space theory by means of reflexive relations, or entourages,
and by means of normal covers. It is well known that these two approaches
to uniform space theory are equivalent (see for example [7], p. 149).
Tor details concerning the theory of uniform spaces, we refer the reader
o Kelley [11] and to Tukey [20]. We also refer the reader to [20] for
the elementary properties of normal covers, normal sequences of covers,
and star-refinements.

* This reseatch was supported in part by National Science Foundation grant
GP-04065.
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Most of the results in this paper are from the author’s doctoral
dissertation which was written at Purdue University under the direction
of Professor Robert L. Blair, to whom the author wishes to express hix
appreciation.

1. Preliminaries. In this section we give most of the basic de-
finitions and notational conventions that will be used in this paper.

Let X be a set and let » be an infinite cardinal number. By a y-sep-
arable pseudometric on X we mean a pseudometric d on X such that the
topological space (X, Bz) has a dense subset A of power at most y, where B,
denotes the topology on X induced by d. A pair (X, d) will be called
a y-separable pseudometric space whenever d is a y -separable pseudometric
on the set X. Following Shapiro [17], we say that a subset § of a topological
space X is P-embedded in X (resp. P”-embedded in X) if every continuous
(resp. continuous y-separable) pseudometric on § has a continuous (resp.
confinuous y-separable) psendometric extension to X. Shapiro [17]
proved that a subset § of a topological space X is P-embedded in X if
and only if § is P”-embedded in X for every infinite cardinal number y.

Following Gillman and Jerison [6], we denote by C(X) (resp. O*(X))
the ring of all continuous (resp. bounded continuous) real-valued functions
on the topological space X. A subset 8 of a topological space X is - embed-
ded in X (rvesp. C*-embedded in X) if every fe C(8) (vesp. f e C*(8)) has
an extension in C(X). We denote by A and Vv the lattice operations
in ¢(X), and if a € R, then we denote by « the constant function in ¢(X)
with value a. If f is a real-valued function on a set X, then by the pseudo-
metric on X associated with f we mean the pseudometric ¥y on X defined
by the equality P, y) = |f(z)—f(y)]. The following result will Dbe
needed:

1.1. PRrOPOSITION ([5], 2.2). If X is a topological space and if f ¢ C(X),
then the pseudometric Wy on X associated with f is a continuous s,-separable
pseudometric on X.

* We recall that if X is a set and  is a collection of pseudometrics
on X, then the collection of all subsets of X X X of the form

{@,9) e XX X: d(z,y) <&},

where d €T and & > 0, forms a subbase for a unique uniform structure U
on X, called the uniform structure on X generated by §; if § = {d}, then
the uniform structure on X generated by & is denoted by Uqg and is ealled
the uniform structure on X generated by d. If # is a collection of real-valued
functions on a set X, then the uniform structure on X generated by
{¥r: fe#} is called the uniform structure on X generated by .

) The uniform topelogy on X induced by a uniform structure U on X
is denoted by T'(W). If (X, B) is a topological space, and if Usis a uniform
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structure on X, then W is called admissible if T'(W) = 6. If (X, W) i8
a uniform space and if SCX, then we denote the relative uniform
structure on § by W|§x 8. If X is a set and if W is a uniform structure
on o subset S of X, then we say that a uniform structure U on X is an
extension of U provided that VS x 8§ = U

We know that if (X, 8) is a completely regular space, then ‘Ug(X), °
G(X), and CHX) are admissible uniform structures on X, where Uy(X)
(resp. G(X), CX(X)) denotes the uniform structure on X generated by the
collection of all continuous pseudometrics on X (resp. by €(X), by 0*(X)).
Uy(X) is called the universal uniform structure on X sinee it is the largest
admissible uniform structure on AX.

Let W = (Uy)aer and B = (Vg)ges be two covers of a set X. We denote
by UAD the cover (U, Vpduperxs. I SCX, then s6(S, ) denotes
the union of all U,, ael, such that Ua~ 8 = @; if §= {z}, then we
write st(z, 1) in place of st({z}, U). As usual, we say that U is a refinement
of B, written 1 < B, if, for each a € I, there exists § eJ such that Us C Vy;
and we say that U is a star-refinement of B, written U <* B, if (st(Tay W)aez
is a refinement of B.

We will say that a collection u of covers of a set X generates ¢ uniform
structure U on X if the collection

{Uasl(va XVa): (Va)aeI el‘}

is a subbase for W, If (X, W) is a nonempty uniform space, then a cover B
of X is a uniform cover if there exists ¥ e W such that (17({10))mE x<B.
(Bvery cover of an empty uniform space is uniform.) It is easy to see
that the collection u of all uniform eovers of a uniform space X satisfies:

(1) I Bep and if B < W, then I e p.
(2) T B, W ey, then BA € g
(3) If I e p, there exists B eu such that B <* .

Moreover, if p denotes the collection of all uniform covers of the
uniform space (X, ), then p generates the uniform structure “U.

We assume the 7,-separation axiom in the definition of completely
regular spaces, but not in the definitions of normal and collectionwise
normal spaces. Following Aquaro [2], if X is a topological space and
if y is an infinite cardinal number, then X is a y-collectionwise normal
space if, for every discrete family (Fo)aer of closed subsets of X of power
at most y (i.e. |I| < y), there exists a family (Ud)eer of pairwise disjoint
open subsets of X such that F,C U. for each aI. Thus, a space X is
collectionwise normal if and only if it is y-collectionwise normal for every
infinite cardinal number y. Also, according to Kuratowski [12], & space X
is normal if and only if it is xo-collectionwise normal.
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2. y-uniform structures and u,-embedding, Throughout this
section we will use y to denote an arbitrary infinite cardinal number.
Tf X is & topological space, then we denote by W, (X) the uniform structure
on X that is generated by the collection of all continuous y-separable
pseudometrics on X.

Since y-separability, like separability, is an hereditary property for
psendometric spaces, it follows that if X is a topological space, and if
§C X, then we have the inclusion Uy (X)8x8C U, (8).

2.1, Levma. If (X, 6) is a completely regular space, then Uy(X) is
an admissible uniform structure on X.

Proof. Clearly, Uy(X)D U (X). Moreover, for each feC(X), the
pseudometric ¥y on X associated with f is No-separable (1.1), and is
therefore y-separable. Thus we have U,(X)D C(X). Bub both U(X)
and CG(X) are admissible structures, and so 6= T (Wy(X))D T (Usn( X))
D T{C(X)) = B. Therefore U(X) is admissible.

As g result of this lemma, if X is a completely regular space, then
we have the following chain of admissible uniform struetures on X:

Ug(Z) D e D Uy X) D o D Ung X) D C(X) D EHX) .

G. Aquaro [1] calls an open cover (Vi)uer of & topological space X
reducible if there exists a closed cover (Fl)qer of X such that F, and X\V,
are completely separated in X for each a el (ie. for each a eI, there
exists f, e 0(X) such that fi(F.)C {1} and f(X\V.) C{0}). Now let X
be a topological space and let u be the collection of all reducible locally
finite open covers of X of power at most y. Then, according to Aquaro 1],
# not only generates a unique uniform structure on X, bub immediately
gives a base for this unique structure, which he calls the y-uniform
structure on X. Our immediate goal is to provide two simpler descriptions
of Aquaro’s y-uniform structures. For this we need the following result:

2.2. PropostTION. If X is o topological space, then the collection of
all reducible locally finite open covers of X of power at most y coincides with
the collection of all locally finite normal open covers of X of power at most y.

This proposition follows immediately from the following unpublished
characterization of normal covers due to H. L. Shapiro whose proof is
included here for completeness.

2.3. TuweorEM (Shapire [16]). If W= (Uyaer is an open cover of
a topological space (X, B), then the following statements are equivalent

(1) U is normal.

(2) There exists a locally finite cozero-set cover B = (Viaer of X such
that clV, is ecompletely separated from X\U, for each ael.
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Proof (Shapiro [16]). (1) implies (2). By hypothesis, there exists
a normal sequence (U;);ey of open covers of X such that U, < . By [20],
Chapter V, Theorem 7.4, there is & continuous pseudometrié d on X
associated with (U)ien. If Ba denotes the topology on X induced by d,
then Bz C G since d is continuous. Using the first part of the proof of
([17], Lemma 2.6), one obtains a locally finite open cover W = (Wo)aer
of (X, B;) such that W, C T, for each a ¢ I. Since (X, d) is a pseudometric
space, (X, Bz) is normal. Therefore, by [13], Theorem 33.4, there exists
an open cover (Vo)eer of (X, Bg) such that, for each ael, clV,C W,
relative to Bg. Thus, for each ael, there exists a continuous map fa,
relative to Bg, from X into the unit interval such that f.(#)=1 for
zeclV, and fuz) = 0 for © e X\W,. But each V,, being an open set in
the pseudometric space (X, d), is a cozero-set relative to G;. Since Tz C G,
each f, is continuous relative to G, and each V, is a cozero-set relative
to G. Hence (Vo)eer is a cozero-set cover of (X, ®) such that elV, is
completely separated from X\U, for each ael.

(2) implies (1). This implication is well known (see, for example [14],
Theorem 1.2).

2.4, LEemma. Suppose that (X, B) is a topological space, that d is
& continuous y-separable pseudomeiric on X, and that ¢> 0. Then there
exists a locally finite normal open cover B = (Va)aer of X of power at most y
such that

@) \J (VaxVa) C{l@,y) e TX X: d(z,y) <&}

a€el

Proof. Let B; be the topology on X induced by d, and consider
the open cover &= (S8a(#,&/2))cex 0Of (X, Ba), where Saz,e/2) is, of
course, the open ball with center at » and radius /2. Since (X, Ts) is
paracompact and has a base of power at most y, it follows that there
exists a locally finite open cover B.= (Va)aez of (X, Ba) of power at most y
such that 8 < . But then, according to A. H. Stone [19] and the fact
that Stone’s theorem also holds for pseudometric spaces, B is a normal
open cover of (X, By). Since BzC B, B is a locally finite normal open
cover of (X, B) of power at most y. Finally, since 8 < &, the inclusion (1)
is immediate.

2.5. LEMMA. If B = (Vo)eer s a normal open cover of a topological
space X such that |I| <y, then there emists a continuous y-separable pseudo-
metric d on X such that

2) {z,9) e XxX: d(m,9) <27 C UI(VaxV,,) .
Proof. This is an easy consequence of [17], 2.6 and 2.4.

2.6. THEOREM. The uniform structure Us(X) on a topological space X
is precisely the y-uniform structure on X. Moreover, the y-uniform structure
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on X may also be described as the uniform structure on X generated by the
collection of all normal open covers of X of power al most y.

Proof. Let Uy(X) denote the y-uniform structure on X, and let
Ui(X) denote the uniform structure on X generated by the collection
of all normal open covers of X of power at most y. By 2.4 and 2.2, U,(X)
C WYX); by 2.2, Wy(X) C Usy(X); and by 2.5, Uy(X) C Us(X). Therefore,
Uy (X) = U X) = Up(X), as desired.

2.7. ProposiTioN. Let X be a fopological space and denote by u the
eollection of all reducible locally finite open covers of X of power at most y.
Then every element of u is a uniform cover of (X, W, (X)), and every uniform
cover of (X, W,(X)) has a refinement in p.

Proof. We may assume that X == @. Suppose that B e x, and choose,
by [1], § 2, Lemma 8, W e & such that W <*B. Let W = (Wo)ser, and
set W= {J(W.xW,). Then W e Wy, (X), and, for each X, W(a)

ael

= st(z, 98). Therefore, (W (#))zex refines B, and hence B is a uniform
cover of (X, Us(X)).

Now suppose that B is a uniform cover of (X, W,(X)). Then there
exists ¥ e U, (X) such that (V(#))zcx refines B, and there exists L= (Waaes
in p such that W = UI(WaXW,,)CV. Therefore (W (®))zex refines 9.

But, again, W{z)=st(z, W) for each zeX, and so W < (W(@))zex,
whenee I8 < B. This completes the proof.

2.8. TEEOREM. Equip a topological space X with the uniform structure
Uy(X), and let 8 be a uniform subspace of X. Then every bounded uniformly
continuous y-separable pseudometric on S has a bounded uniformly con-
tinuous y-separable pseudometric extension to X.

Proof. In view of 2.7, this result follows immediately from [5],
Theorem 3.6.

Now, suppose that X is a completely regular space, and that § C X.
Then 8 is said to be u,-embedded in X if every admissible uniform structure
on § generated by a collection of continuous y-separable psendometrics
on § has an admissible extension to X.

2.9. PROPOSITION. Suppose that X is a completely regular space,
that SCX, and that y >y = x,. If 8 is u,-embedded in X, then 8 is
- embedded in X.

2.10. PrOPOSITION. If § is a subset of a completely reqular space X,
then the following statemenis are equivalent:

(1) 8 is P"-embedded in X.

(2) Usn(B) = Vs X)[8 X 8.
Lo () We(S) has an admissible ewtension fo X.
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Proof. (1) implies (2). Clearly we need only show that the inclusion
Uy (8) C U (X)|S X 8 holds, and for this we need only show that a subbase
of U,(8) is contained in U, (X)|S x 8. Thus, suppose that d is a continuous
y-separable pseudometric on § and that e > 0. Then the set V = {(z, %)
e 8% 8: d(x,y) < e} is a typical subbase element of Us(8). By (1), there
exists a econtinuous y - separable pseudometric » on X such that #|8 x § = d.
But then

V={=19eXxX:rzy)<e~(§x8)

is an element of U, (X)|S % S. Hence (2) holds.

(2) implies (3). This is immediate.

(3) implies (1). By (3), there is an admissible extension U of Us(S)
to X. Therefore, (9, W,(8)) is a uniform subspace of (X, V). If d is a con-
tinuous y-separable pseudometric on §, then, by [11], Theorem 6.11,
4 is uniformly continuous on (8, WU,(8)), so by [5], Theorem 3.4, @ has
a continuous y-separable pseudometric extension to X. It follows that §
is P”-embedded in X.

2.11. CoROLLARY. If § is a u,-embedded subset of a completely regular
space X, then 8 is P¥-embedded in X.

We remark that the converse of 2.11 is not true in general (see 3.26).
However, the converse of 2.11 is true for closed sets (see 2.14).

212, LemmA. If 8 is a P"-embedded subset of a topological space X,
then clS is P?-embedded in X.

Proof. Suppose that d is a continuous y-separable psendometric
on clS. Then d|8x 8§ is a continuous y-separable psendometric on S,
and so there exists, by hypothesis, a continuous y - separable pseudometric »
on X such that r|Sx 8 = d|8% 8. But §x 8 is dense in cl§ x cl8, so' by
contimity, d = r|el§ X el8. Thus cl§ is P*-embedded in X.

2.13. THEOREM. If S is a P”-embedded subset of a completely regular
space X, then cl§ is u,-embedded in X.

Proof. Suppose that 8§ is a P-embedded subset of X, and set
F = cl8. Then, by 2.12, F is a closed P’-embedded subset of X. Let U
be an admissible uniform structure on F generated by a collection 9, of
continuous y-separable pseudometrics on F, and let § be the collection
of all uniformly continuous y-separable pseudometrics on (#, W). By [11],
6.11 and 6.15, $,C T and W is generated by F. Let §* be the collection
of all continuous y-separable pseudometrics on X such that, for each
def* we have d|F xF ¢F. Since F is P’-embedded in X, we have
{0} F x F: d €5*} = 5. Now let U be the uniform structure on X generated
by 9*. Then the uniform structure U|F xF of ¥ is generated by the
collection {d|F x¥: deT*} =7, and so U= V|F xF. In order to com-
plete the proof, we must show that U is admissible.
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Let G be the topology on X. Since each element of * is continuous
relative to G, we have T(VU)C 6. We now show that T C T(?V). Suppose
that @ ¢ B and that , < @. Since the cozero-sets in (X, B) form a Dbase
for B, we may assume that @ is a cozero-set in (X, B). We consider
two cases.

If 2, ¢ F, then & ~ (X\F) is a neighborhood of #, in X, so there exists
fe0(X) such that

0<f<1, fla)=1, and f[F< (X\G)C{0}.

Then the pseudometric ¥y on X associated with f is a continuous x,-sep-
arable pseudometric on X (1.1), and if (@,y) e F'xF, then ¥iz,y)
= |f(x)—F(y)| = 0, s0 Pris a continuous extension to X of the zero pseudo-
metric 0 on F. Since 0 is obviously uniformly continuous with respect
to U and is y-separable, we have 0 ¢ F. Also, since y = x,, it follows
that ¥ is y-separable, and consequently that ¥;e 9™ Then the set

W= {weX: Prlw, z) <1}

is an element of T(V), and we clearly have #, ¢ W C @, since @ « X\¢
implies ¥x(x, ) = 1.

Next we suppose that xz, e F. Since @ is a cozero-set neighborhood
of z, in X, there exists a zero-set neighborhood Z of z, in X such that
Z C @. Then Z and X\@ are disjoint zero-sets in X, so there is a function
g € 0(X) such that

0<g<1l, and

9(2) = {0}, g(X\G) C {1}.

Since Z is a neighborhood of x, in X, and since U is admissible, then
Z ~F is a neighborhood of z, in the uniform space (F, W). Therefore,
by a result of Weil [21] (see [8], I. 13), there exists a uniformly continuous
real-valued funetion f on (F, W) such that

flwg) =0, and fIE\F ~ Z)) cC{1}.

’]_fhen the pseudometric ¥; on F associated with f is a uniformly con-
tinuous &,-separable (hence, y-separable) pseudometric on (F, W). It
follows that ¥YreT, and so0 there exists d e* such that d|.F XF = ¥;.
We now define a funetion d,, from X into the real line R by setting

0<f<1,

dy(®) = d(@, @) (weX).

Then dg, is continuous, and, for each % ¢ ¥, we have
Aoo(B) = d(@g, @) = P5(o,; 2) = |f(20) —f(@)] = f(2),

8o that d,|F = f. Now we set
h=dsVg.
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Then h is & continuons funetion on X and h(z) = f(x) for all © < . There-
fore the pseudometric ¥, on X associated with h is a continuous &q-Sep-
arahle pseudometric on X (1.1) such that PilF x F = ;. Since y = 8,
it follows that ¥, is y-separable and therefore ¥y eJ*. Finally, we set

W= {2 eX: Paler, z) <1} .

Then, obviously, #,¢ W and W e T(V). Moreover, if z ¢ W, then, since
R () = f(@) = 0, we have ¢(z) < h(z) = Y@, @) < 1, whence # ¢ @.

Therefore we have found, in either case, W e T' (V) such that %€ W
C @ It follows that G e T(V) and so GC T(V). Hence &= T(V), and
s0 U is admissible.

9.14. CoroLLARY. If F' is a closed P'-embedded subset of a complelely
reqular space X, then F is w,-embedded in X.

Recall that a completely regular space is realcompact in ease (X, ex)
is a complete uniform space (see [6], 15.14). We will now show that the
converse of 2.14 is valid for realcompact subsets of a completely regular
space.

915, TrmorEM. If § is a realcompact subset of a completely regular
space X, then the following statements are equivalent:

1) 8 is w,-embedded in X.

(2) 8 is closed and P’-embedded in X.

Proof. Suppose that § is u,-embedded in X. Then, by 2.11, S is
P?-embedded in X. By 1.1, the uniform structure C(8) on 8 is generated
by a collection of §o-separable (hence, y-separable) continuous pseudo-
metrics on 8, and therefore, by (1), there is an admissible extension W
of C(8) to X. But then, since § is realcompact, (S, C(8)) is a complete
uniform subspace of the (Hausdorff) uniform space (X, W), and hence §
is closed in X. The converse follows at once from 2.14.

9.16. THEOREM. Suppose that 8 is a u,-embedded subset of a completely
regular space X. If W is an admissible uniform structure on 8 generated by
a collection of continuous y-separable pseudometrics on S, then there is an
admissible emtension of W to X that 48 generated by a colledtion of continuous
y-separable pseudomelrics on X.

Proof. We first note that, by 2.11, § is F”-embedded in X. Then,
as the proof of 2.13 shows, every admissible uniform structure on el
generated by a- collection of continmous y-separable psendometrics on
ol8 has an admissible extension to X that is generated by a collection
of continuous y-separable pseudometrics on X. Therefore, we may assume
that § is dense in X. i i

Now suppose that Wb is an admissible uniform structure on § generated
by a collection ¢ of continuous y-separable pseudometries on 8. By virtue
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of [11], 6.15, we may assume that & is the collection of all uniformly
continuous y-separable pseudometrics on (8, W). Also, by hypothesis,
there exists an admissible extension U of U to X, so that (8, W) is
a uniform subspace of (X, V). Let 9* be the collection of all uniformly
continuous y-separable psendometrics on (X, V). We claim that

§ = {dI8x 8: deg*}.

We clearly have {d|§ X §: d «$*} C . Thus, suppose that 7 e . Equipped
with the product uniform structures, §x § is a uniform subspace of
X'x X and r is uniformly continuous on & x §. Therefore there is a unique
continuous map p from el(§X8) = X x X into the nonnegative real
numbers R* that extends  (see [11], 6.26). It is easy to see, by continuity,
that p must also be a pseudometric. Moreover, since 7 is ¥ -separable
and 8 is dense in X, it follows that p is y-separable. Therefore, p e ¥,
and so 7 =p[SX S e{d]8x 8: deg*}.

Finally, suppose that  is the topology on X, and let W denote the
uniform structure on X generated by §*. Since §= {d|Sx 8: d « Y, it
follows that W|8 x § = AL, Moreover, since each element of * ig a uni-
formly continuous pseudometric on (X, ), we have WC U, whence
T(W)CT(V) = 6. Thus, it remains to show that BC T(W). Suppose
that G «® and let # ¢ G. Then, by a result of Weil [21], there exists
a uniformly continuous real-valued function f on (X , V) such that

F@X\G) C{1}.

But then, the pseudometric ¥; on X associated with f is a uniformly
continuous x,-separable (hence, y-separable) pseudometric on (X, U),
by 1.1, whence P;ed*. Set W = {y e X: Py(z,y) < 1}. Then W e T(W)
and 4 ¢ W C @, whence G C T'(W). Therefore W is an admissible extension
of U to X that is generated by a collection of continuous y-separable
psendometrics on X, and the proof is complete.

The following result is now obvious:

0<f<1, fl&=0, and

2.17. PrOPOSITION. If X is a completely reqular space and A C BC X,
then the following statements. are true:

(1) If 4 ids u,-embedded in X, then A is u,-embedded in B.

(2) If 4 is u,-embedded in B, and if B is u,-embedded in X , then 4
s u,-embedded in X.

In order to give a simple characterization of y-collectionwise normal
spaces, we need the following theorem:

2.18. TaEOREM (Katstov [10]). The Jollowing statements are equivalent
for a normal space X:

(1) X is y-collectionwise normal.
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(2) For every closed 8 C X, if (Fo)aer (vesp. (Ha)zer) s @ locally fimite
family of closed (resp. open) subsets of S such that |I| <y and ¥, C H, for
each a eI, then there exists a locally finite family (Go)aer of open subsets
of X such that FoC Go~ 8C H, for each ael.

We refer the reader to [10], 3.1, for the proof of 2.18, and we nqte
that, although Katétov originally stated this theorem for' co]l.ectwnwme
normal spaces, his proof is valid for the case of y-collectionwise normal
spaces as stated above.

2.19. TuaEorEM. The following statements are equivalent for a fopological
space X:

(1) X s y-collectionwise normal.

(2) Bwery closed subset of X is P?-embedded tn X.

Proof. (1) implies (2). This is immediate from 2.18 and [17],

Theorem 2.7. .
(2) implies (1). Let (Fl)er be a discrete family of closed subsets

of X such that |I| < y, and set F'= |_J F,. Then F is a closed subset of X.
ael

Let p be the discrete metric on I (i.e., p(a, f) = 1if e # ), and eqlfip I
with the diserete topology B, so that p is a continuous .y—separable metric
on I. Moreover, let f be the map from F into I defined by

f(#)C{a} forall ael.

Then f is continuous and hence the pseudometric 7 = p o (f X f) is a con-
tinnous y-separable pseudometric on F' (see [5], 2.1). Consequently,
by (2), there exists a continuous pseudometrie d on X such that AF X F =r.

Now, for each ael, we seb
Uo= | Sal®, ) -

zeR,

i i i irwise disjoint family of open subsets
It is easily seen that (Us)eer is & pairwise disjoint . ; :
of X suc]}; that F,C U, for each « eI. Therefore X is y - collectionwise
normal.

9.20. TaEoREM. The following statements are equivalent for a completely
regular space X:

(1) X is y-collectionwise normal.

(2) Hvery closed subset of X is w,-embedded in X . '

(3) For every closed subset I of X, Wy (F) has an admissible extensionto X.

(4) For every closed subset I' of X, W, (F) = Usp(X)|F X F.

Proof. The equivalence of (1) and (4) was proved by_ Aqw%a,ro in [2].
The implications: (1) implies (2), (2) implies (3), and (3) }mphes‘ (4); are
immediate from, respectively, 2.19 and 9.14, the definitions, and 2.10.
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8. Normal and collectionwise normal spaces. In section 2,
we have seen that the y-uniform structure is the natural structure to
consider when talking about y-collectionwise mormal spaces. In this
section, we show that collectionwise normal T -spaces can be characterized
in terms of universal uniform structures, a result that can immediately be
obtained from [2], and hence in terms of extensions of arbitrary admissible
uniform structures. Then we discuss the relationships of the wuniform
structures W, (X), C(X), and C*(X) in a normal T,-space X.

If 8 is a subset of a completely regular space X, then we say that §
is uy-embedded in X in case every admissible uniform structure on §
has an admissible extension to X. The following result is obvious:

3.1. ProrosrrionN. If X is a completely regular space and AC BC X,
then the following statements are true:

(1) If A s uy-embedded in X, then A is uy-embedded in B.

(2) If A is w,-embedded in B, and if B is uy-embedded in X, then A
is uy-embedded in X.

3.2. PropOSITION. If 8 is a subset of a completely regular space X,
then the following statements are equivalent:

(1) 8 is P-e¢mbedded in X.

(2) Un(8) = Uy X) % 8.

(8) U(8) has an admissible extension to X.

' Proof. (1) implies (2). Let y = |X|+8,. Then § is P?-embedded
in X, by (1), and every continuous pseudometric on X (resp. on §) is
y-separable. Therefore Uy(8) = Wy(8) and Wy(X)= U(X), and so
the implication follows from 2.10, ’

(2) implies (3). This is immediate.

(3) implies (1). Let U be an admissible extension of Wy(S) to X.
Then (8, U(S)} is a uniform subspace of (X, V), and every continuous
pseudometric on § is uniformly continuous on (8, UWy(8)). Therefore §
is P-embedded in X, by [5], 3.5.

We note that the equivalence of (1) and (2) of 3.2 may be obtained
from [17], Theorem 2.1, since the universal uniform structure on a com-
pletely regular space X is that structure on X generated by the collection
of all normal covers of X (see [8], Theorem I1,20),

3.3. CorOLLARY. If 8 is a ug-émbedded subset of a completely regular
space X, then S is P-embedded in X.

As the following example shows, the converse of 3.3 is not true in
general.

3.4, BExawpie. Let X be any pseudocompact completely regular
space such that |X| is a nonmeasurable cardinal namber and such that X
is not almost compact (i.e. |[X\X| > 2). A simple example of such a space

. P P,
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is the topological sum of two copies of W(w,), where W(w,) denotes the
ordered space of all countable ordinal numbers. Now, since X is pseudo-
compact, every continuous real-valued function on X is bounded, and
go it follows that vX = pX, where X denotes the Stone-Cech compactifi-
cation of X, and vX denotes the Hewitt realcompactification of X (cf. [6]).
Set ¥ = pX. Then X is dense and C-embedded in ¥, and |¥| is a non-
measurable cardinal number. Consequently, by [17], 3.3, X is P-embedded
in Y. On the other hand, since X is not almost compact, it follows that
there are at least two distinet admissible (even admissible precompact)
uniform structures Uy and W, on X (see [6], Problem 15R). But ¥ is
compact, so there is a unique admissible uniform structure U on ¥, and
clearly U cannot he an extension of both AU, and AU,. Therefore X iy
not %,-embedded in Y.

3.5. THEOREM. If S is a P-embedded subset of a completely regular
space X, then clS is u,-embedded in X.

Proof. Let y = |elS|-+%,, and suppose that U is an admissible
uniform structure on c18. Then A is generated by a collection ¢ of con-
tinuous pseudometrics on cl8. Clearly, for each d e, d is y-separable.
Consequently, since § is P?-embedded in X, we may apply 2.13 to conclude
that WU has an admissible extension to X. Therefore 18§ is u,-embedded
in X.

3.6. COROLLARY. If T is a closed P-embedded subset of a completely
regular space X, then II? s u,-embedded in X.

We recall that a completely regular space X is called fopologically
complete if there exists an admissible uniform structure U on X such
that (X, W) is a complete uniform space.

3.7. TaROREM. If S is a topologically complete subset of a completely
regular space X, then the following statements are equivalent:

(1) 8 is uy-embedded in X.

(2) 8 is closed and P-embedded in X.

The proof of this result is very similar to that of 2.15, and therefore
will be omitted.

We now give several characterizations of collectionwise normal
spaces. The following theorem, which easily follows from 2.19, was impli-
citly proved by €. H. Dowker in [4]:

3.8. TamoreM. The following statements are equivalent for o topological
space X:

(1) X is collectionwise normal.

(2) Every closed subset of X is P-embedded in X.
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Now, using 3.8, 3.6, and 3.2, we have:

3.9. TEEOREM. The following statements are equivalent for a completely
regular space X:

(1) X is collectionwise. normal.

(2) Buery closed subset of X is w,-embedded in X.

(8) For every closed subset F' of X, Un(F) has an admissible ewtension
to X.

(4) For every closed subset F of X, Wy(F) = Un(X)|F x F.

If § is a subset of a completely regular space X, we say that § is
w-embedded (rvesp. u*-embedded) in X in case every admissible uniform
structure on S generated by a collection of continuous (resp. bounded
continuous) real-valued functions on § has an admissible extension to X.

It is well-known (cf. [15]) that an admissible uniform structure U
on a completely regular space X is generated by a eollection of bounded
continuous real-valued functions if and only if U is precompact. Therefore
a subset S of a completely regular space X is w*-embedded in X if and
only if every admissible precompact uniform structure on § has an admis-
sible extension to X. The following result is obvious:

3.10. PropPoSITION. If 8 is a pseudocompact subset of a completely
regular space X, then § is w-embedded in X if and only if S is u*-embedded
in X.

The proof of 2.10 is easily modified to obtain pwroofs of Propositions 3.11
and 3.13 below. To get the last implication (i.e., (3) implies (1)) of 3.11,
one uses [5], 3.16, and to get the last implication of 3.13, one uses [9],
Theorem 3. The first implication of 3.11 and all of 3.13 seem to be well-
known (cf. [6]). Shapiro first noticed the implication *(3) implies (1)”
of 311 (cf. [18]).

3.11. PRrOPOSITION. If 8 is a subset of a completely regular space X,
then the following statements are equivalent:

(1) 8 48 C-embedded in X.

(2) C(8) = C(X)] 8% 8.

(3) C(8) Rhas an admissible extension to X.

3.12. CorOLLARY. Bwvery u-embedded subsét of a completely regular
space X 48 O-embedded in X.

3.13. PrROPOSITION. If § is a subset of a completely reqular space X,
then the following statements aré equivalenmt:

(1) 8 48 C*-embedded in X.

(2) C*8) = C*X)I8x 8.

(8) C*(8) has an admissible estension to X.

icm
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3.14. CoROLLARY. Hvery u*-embedded subset of a completely regular
space X is C*-embedded in X.

We now observe that the converse of neither 3.12 nor 3.14 is true
in general, since Example 3.4 provides an example of a space X that is
both C*-embedded and C-emhedded in BX, but is neither «*-embedded
nor u-embedded in SX.

3.15. LevMA. If 8 is a C-embedded (resp. CF-embedded) subset of
a topological space X, then clS is C-embedded (vesp. (*-embedded) in X.

Using this lemma, along with a suitable modification of the proof
of 2.13 (i.e. use functions instead of pseudometries), one obtains the
following theorvem:

3.16. THBOREM. If S is a C-embedded (resp. C*-embedded) subset of
a completely reqular space X, then cl8 is u-embedded (vesp. w*-embedded)
in X.

Note that, in this theorem, the extension of an admissible uniform
structure on cl§ generated by a subecollection of C(clS8) can be chosen
to be a uniform structure on X generated by an associated subeollection
of 0(X). The details are left to the reader.

- 3.17. CoroLLARY. If F is a closed C-embedded (vesp. C*-embedded)
subset of a completely regular space X, then F' is u-embedded (vesp. w*-embed-
ded) in X. :

3.18, TumorEM. Let S be o realcompact subset of a completely reqular
space X. Then 8 is u-embedded in X if and only if S is closed and C-em-
bedded in X.

The proof of this result is similar to that of 2.15. There does not
seem to Dbe a nontrivial analogue of this result relative to u*-embedded
subsets.

3.19. THEOREM. Suppose that X is a completely regular space and that S
is o w-embedded subset of X. If U is an admissible uniform structure on §
generated by a collection of continuous real-valued functions on 8, then
there is an admissible emtension of W to X that is generated by a collection of
continuous real-valued fumctions on X.

The proof of this result is similar to that of 2.16. The following prop-
ogition is now obvious:

3.20. PropPOSITION. If X 4s a completely regular space and A C BC X,
then the following statements are true:

(1) If A is w-embedded in X, then A is w-embedded in B.

(2) If A is u-embedded in B, and if B is u-embedded in X, then A is
u-embedded in X.

For precompact uniform struetures, we can obtain a result that is
somewhat stronger that 3.19.
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:;.21. TrEoREM. Suppose that 8 is a subset of a completely regulor
space X and that U is an admissible precompact uniform structure on 8.
If W has an admissible extonsion to X, then W has an admissible precompact
extension to X.

Proof. Let 4 be the set of all f e C*(8) that are uniformly continuous
with respect to U. Then AU is generated by . Let U be an admissible
extension of U to X, and let 3 be the set of all g ¢ C*(X) that are uniformly
continuous with respect to 9U. Then % generates a precompact uniform
structure W on X such that WC U. We now show that W is admissible.
Let B be the topology on X. Then, clearly, T'(W)C T'(V) = 6. Suppose
that & ¢ © and that @ € G. Then, by a result due to Weil [21], there exists
fe® such that

0<f<l, flw=0, and fX\HC{}.
Therefore the set W = {y ¢ X: f(y) < 1} is an element of T(W), and we
have e WC G. Hence GeT(W) and s0 GC T(W). It follows that W
is admissible. Thus it remains to show that W| §x 8§ = U. Clearly, we
have WX S C V8 XS =W To show that WCW|ExS, it suffices
to show that a subbase of U is contained in W8 x §. Thus, suppose
that b e 4, and &> 0. Then consider the typical subbase element

U={@y) e8x8: [h(@)—h{y) < e}

of L. Since h is uniformly continuous with respect to W, and since (S, )
is a uniform subspace of (X, V), it follows by [9], Theorem 3, that there
exists a bounded uniformly continuous real-valued function g on (X, V)
sach that g|§ = h. Therefore g ¢ B, and hence the set

V={#9 eXXX: |ga)—gy)l<e}
is an element of W. But then, it is clear that
U=V (Ex8)eWIxH,
whenee U C‘W[S x S. Therefore W is an admissible precompact extension
of W to X.

The following proposition is now obvious:

3.22. ProPOSITION. If X is a completely regular space and AC BC X,
then the following stafements are true:

(1) If A is u*-embedded in X, then A is w*-embedded in B.

(2) If A is u*-embedded in B, and if B is u*-embedded in X, then A
is u*-embedded in X.

Remark. We recall (see [6], Problem 15D.1) that if & is a collection
of continuous y-separable psendometrics on a topological space X that
generates o uniform structure U on X, then ¥, = {dAl: d e} also
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generates U, and moreover, each element of &, is still y-separable. There-
fore, assuming the generalized continuum hypothesis, we can prove
a result similar to 3.21 for uniform structures generated by collections
of continuous y-separable pseudometrics, thus improving 2.16. To do
this, one modifies the proof of 3.21 and uses [5], 3.11 in place of [9],
Theorem 3. We note that [5], 3.11 is true for y = &, without assuming
the generalized continuum hypothesis (see [5], 3.8). Therefore, for ¥ = &,,
one gets:

393. THEOREM. Suppose that 8 is a subsel of a completely regular
space X, and that U is an admissible uniform structure on S generated
by a collection of continuous x,-separable pseudometrics on S. If U has an
admissible extension to X, then U has an admissible extension to X thai is
generated by a collection of comtinuous s,-separable pseudometrics on X.

The next result clarifies the relationship between the concepts of
u-embedding and u.,-embedding.

3.24. TEEoREM. If 8 is a subset of a completely regular space X, then
the following statements are equivalent:

(1) S is Uy, -embedded in X.

(2) 8 is u-embedded in X.

Proof. (1) implies (2). This is immediate by 1.1.

(2) implies (1). Let G be the topology on X, and let U be an admissible
uniform structure on 8 generated by continuous x,-separable pseudo-
metrics on 8. Let ¥ denote the collection of all uniformly continuous
%o-separable pseudometrics on (8, W), and let # denote the collection
of all bounded uniformly continuous real-valued functions on (8, W).
Then {¥;: f e £} C 9 and ¢ generates W. Let U* be the uniform structure
on § generated by . Olearly, T'(W*) C T'(W) = B|S. Using an argument
similar to that in the last paragraph of the proof of 2.16, it is easily seen
that B|§ C T(U*). Therefore U* is admissible on S. Since W* is generated
by bounded funetions, it is precompact, and so, by (2) and 3.21, there
is an admissible precompact uniform structure U* on X such that
YHE x 8§ = U*. Moreover, U* is generated by the collection % of all
bounded uniformly continuous real-valued functions on (X, U*). Next,
we note that, by (2), 3.12, and [17], 4.7, § is P*-embedded in X. Finally,
we let 9* denote the collection of all continuous s,-separable pseudo-
metrics on X such that ded* implies d|8x 8 7, and we let U denote
the wuniform structure on X generated by T*. Since V|8 x 8 is generated
by {8 x8: ded*} =7, we have U= U|8xS. Moreover, since each
d e 9* iy continuous on (X, B), we have T7(U)C B. It remains to show
that B C T(J). Bus if f « B, then f|8 is uniformly continuous with respect
to U¥, and hence with respect t0 W, since U* C U. Therefore ¥psed
and 50 ¥y e 7* (1.1). It follows that U* C U, and congequently = T(U*)
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C T(V). Thus VU i§ an admissible -extension of U to X, s0 § is uy,-em-
bedded in X.
3.25. THEOREM. For a completely regular space X, the following
statements are equivalent:
(1) X s normal.
(2) Every closed subset of X 4is thy,-embedded im X.
(8) BEwery closed subset of X is w-embedded in X.
(4) Ewvery closed subset of X is u*-embedded in X.
(5) For cach closed B C X, Uny(F) = Wyo( X)|F x F.
(8) For each closed FC X, C(F) = C(X)|FxF.
(7) For each closed F C X, C*F) = CX)|F x F.
(8) For each closed F C X, Us,(F) has an admissible extension to X.
(9) For each closed FC X, C(F) has an admissible extension to X.
(10) For each closed F C X, C*(F) has an admissible éxtension to X.
Proof. By a theorem of Kuratowski ([12], p. 260), it follows that X
is normal if and only if X is x,-collectionwise normal. Therefore the
equivalence of (1), (2), (5), and (8) follows from 2.20. Clearly (2) implies (3)
and (3) implies (4). But (4) implies, by 3.14, that every closed subset
of X is 0*-embedded in X, i.e. that X is normal. Finally, by using 3.11
and 3.13, the statements (6), (7), (9), and (10) are all equivalent to (1).
3.26. Remark. The following diagram now summarizes the implica-
tions that exist among the various notions of embedding that are studied
in this paper:
Uy = Uy = Uy, <==> U => U*
¥ 4 \ 4 \
P=>P =P (¢=C

(where y is an infinite eardinal number greater that &,).

‘We note that 3.4 gives an example of a space X that is P-embedded
in BX, but is not even u*-embedded in SX. Thus none of the vertical
implications can be reversed in general. Bing ([3], Example @) (see also [5],
2.6) gives an example of a normal T, -space (hence X,-collectionwise
normal) that is not x,-collectionwise normal. Thus, by virtue of 2.19
and 2.20, the implications “u, = u,> and “P’ = P" cannot be reversed
in general. The equivalence of u,, and u is the content of 3.24, while the
equivalence of C and P™ is the content of ([5], 2.4). Next, the space
4 = pR\(BN\N) constructed by Kat¥tov [9] (see also [6], Problem 6P),
containg N as a closed C*:embedded subset that is not C-embedded
in A, In view of 3.17, N is therefore w*-embedded in 4, but is not u-em-
bedded in A. It follows that the implications “C = ¢** and “u = u*”
cannot beé reversed in general. We have been unable to show that the
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remaining two implications cannot be reversed (i.e. to construct, for
a> 0, an Ng-collectionwise normal space that is not Ng;-collectionwise
normal).

Remark. It is possible to define absolutely u,-embedded spaces,
absolutely u*-embedded spaces, etc., in the obvious manner; but these
spaces are then none other than the almost compact spaces, i.e. those
spaces differing from their Stone-Cech compactifications by at most
a gingle point.
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