Some remarks on convex functions

by
R. Ger (Katowice)

§ 1. All the sets in the following considerations are subsets of the
set R of real numbers. The measure is always the Lebesgue measure.
Symbols mi(4), m.(4d) and m(4) denote the inner Lebesgue measure,
the outer Lebesgue measure and the measure of the set 4, respectively.

DerFINITION 1. The set

/vAig{w: {I)=Zd1, aie.Ail
=1 i

i i=1

is called the vector-sum of the sets 4;, i=1,2,..,n.
To simplify the notation we introduce the notation:

A,

Ile:
ibs

Vv
£47,
where 4;=A for 1=1,2, ..,
DEFINITION 2. For a real number a and a set 4 we put
aAg{m: %=oan, aecd}.

The obvious relations hold:

e a ) di= 3 (ady),
(2) a(fA) = (af)4 .

Moreover, we have for an arbitrary set 4 and a real number «

me(ad) = [a]mfe(A) s

miad) = la|miAd) .

(3

In the sequel we shall use the following lemma.
LeMMA 1. If mi(4) >0, then there exisls a measurable set BC A
with a positive measure.
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DErINITION 3. A real-valued function f defined on an interval
A = (a, b) is called convex in Jensen’s sense if for every =, y € 4 the relation

ﬂ_l_
f(‘”—.:l) < )(f('f‘ )+ ()
holds.

In the sequel the symbol f always denotes a real-valued function
defined on an interval 4 = (a, b) and convex in this interval. The convexity
will always be understood in Jensen’s sense.

DerixitioN 4. For an arbitrary set T we denote by J(T) the set

(. o0
J(T)= U I,
where -
a

at
T = T Tn-H %(Tn‘{‘Tn) .

It is easily seen (induction) that we can write the set J(T) in the form

© /1 N3
02
1
An important example of a convex funetion is an additive function,
i.e. a function satisfying Cauchy's functional equation

fle+y) = fl@)+fy) .

Such a function is actually convex, since

R =3 ) -2

P

L\nl -

=5fl@+y) —g( ff+f) -

' The general solution of Caumchy’s equation i‘s constructed with the
aid of the Hamel basis of the set of real numbers (cf. G. Hamel [4],
J. Aczél {1]). The solution is of the form . -

@ Jw@ = YrgE) dor w= YrH., reQ, HeH,

where H denctes a fixed Hamel basis; Q is the set of rational numbers,
and g is an arbitrary ﬁmetion, g: H~>E.

B The fundamental pr@blem from. the theory of convex functions
the conditions which imply the continuity of such functions.
It &ppears that eveﬂvezry ‘weak hypotheses on a convex function guarantee
its eontimmity (el for.instance, Bernstein and Doetsch [2], Sierpinski [13],
Ostrowski [11]; M&muﬁ [9]; 110]). Recent results in, this direction are

©
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contained in papers by 8. Kurepa [7], M. Kuczma [6] and M. R. Mehdi [8].
Kurepa’s theorem reads as follows:

If a function f is tlefw ed and convex on an interval A and sz is bounded
from above on a set T C A such that

mT+T)>0
then f is continuous in A.
The condition myT-+T)>0 cannot be replaced by the condition
'7)2-4(T+T) > 0.
A more general theorem i true (%).

TrrorEM 1. If @ function f is defined and convex in an interval A,
if f is bounded from above on a set T C A, and if there ewists a positive integer n
such that

then f is continuous in A.

Proof. Let us note that without loss of generality we can assume
that 0 ¢ T. In fact, if 0 ¢ T then we can consider the interval

A* = A—zy= (@a—y, b—12p) ,

where #, is an arbitrarily fixed point of the set T. The set T* = T—,
has the property that 0 e T. The function

(@) =flo+e), wed*,

is defined on the interval 4* convex and bounded from above on the
set T*. Therefore we can assume that 0 e T. Then we have the inclusion

TCT+T

since te T and 0¢ T imply t=14+0¢T+T.
Further, lest us note that if f(f) < M for teT, then

f(z1+t2tj...+t2;) <,

wheret; e Tfori= 1,2, 27 and j is an arbitrarily fixed positive integer.
This follows easily by mductmn from the fact that the funetion fis convex.

The agsumption mal Z T) > 0 implies in virtue of Lemma 1 that there

(*) This theorem is essentially equivalent to the one proved: by J. H. B. Kem-
perman [5] and S. Marcus [9)], [10]. :
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n

exists a measurable set BC DT with a positive measure. Let us take
1

a positive integer & such that 2°7' < n < 2%, By (3),

m(iB) = %m(B) > 0.

%
2

Let # e lkB. Then
9

bttt G4l 040440
&= oF = oF ’

where we have taken 2°—n zero terms. According to the above remarks,

flr) < M. In virtue of Ostrowski’s theorem (cf. [11]) the function fis

continuous in 4.

The above theorem is an improvement on the result of S. Kurepa.
To show this we shall use the following lemma.

Levma 2 (cf. B. Borel [3]). Let Z denote the set of such real numbers
that the digit k, 0 < k< N—1 fized, does not appear i their N -adic ex-
pansions. Then Z is measurable and m(Z) = 0.

It is easily seen that an arbitrary number in the N -adic system
can be represented as & sum of ¥ —1 terms such that their expansions
consist of 0 or 1 only. In other words,

where

at > a \
T =135 0= 2L e {0, 1},
fos 0 o X S e 0,13

N-2
In view of Lemma 2, the sets 7, T+T, ..., 3 T are of measure zero.
1

So if we use Theorem 1, then the boundedness of the function f on the
set T' iy sufficient; however, the quoted theorem of Kurepa does not
apply already for N = 4.

§ 3. The purpose of the present paper is to establish the relation
between the generalized Kurepa -theorem and the following theorem
of M. Kuezma (cf. [6]):

If a function f is defined and convex in & interval 4 and if f is bounded
Jrom above on a set TC A such that ’

'rm(J(T)) >0,
then f is continuous in A.
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Kueczma's theorem is more general than Theorem 1 (and thus also
than Kurepa’s theorem, which corresponds to the case n = 2). In fact,
since we have

i .
‘""1(._5 T) >0,

1

k-1 ok o
taking & such that 2% < n < 2% we obtain

Thus

By (3) and (1),

ok of
O 1\

0< _A"”(L\J T) = mi(ﬁ.é\J T) = ma(Th) < mu(J (T)) .
1 Y

Therefore the following implication holds:
n
(») m;(Z T) >0 implies ms(J(T))>0.
1
It turns out that the infinite step in Kuczma’s theorem is esse?nti:xl.
Indeed, the converse implication to (5) does not hold. To show this, we
n
shall construct a set T such that miY T)= 0 for every natural a, but
1
J T) = R. B R
( Let {r;} denote the sequence of all rational numbers and H a fixed
Hamel basis of the set of real numbers. Let us take

as

-

T (reH) .

=1

J(T) = R since for an arbitrary # ¢ B we have

$1 S5 Sn
&= 1yt ol il = E il1+gj7bz+--~+2j7l:z ,

where 7y €@, hs eH, sy = 2r; for i =1,2, ..., 0, and j is so chosen that

2 < ng 2L ' '
Then, after taking 2’-n zero terms, we obtain

1

@= %(slhl—i—sEhg—}» wrtSaln) = (83T Sahy o+ Suhy 40 4+04 ... 4-0) ,
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ie.

1 T 1]
!1}52721 — T, CJ(T).

Thus, R CJ(T). The converse inclusion is trivial.
N
Further, suppose that there exists an N such that md T} > 0.

N

In virtue of Lemma 1 there exists a measurable set B C X' T of positive
1

measure. According to H. Steinhaus’s theorem [14], the set B+B containg

2N

an interval P = (¢, f). Of course, P C 3'T, which means that every real
- )

number from the interval P has at most a 2N -term Hamel representation.
Let 2, €(a, B) and let

By =ty 41l At o royhoy,  tieQ, hieH, i=1,2,..,2N.
(If such an element does not exist, then we take the element which has
the longest Hamel expansion.)

Now, let us take an I, ¢ H such that hy 5= s for i =1, 2, ..y 2N,
and a rational number r, so small that

Iroh| < min (|7, al, [#,—f]) .
Then
as
By = By+¥ohy € P

and it has a (2V-1)-term expansion.
This eontradiction proves that for any natural n,

Now, taking an arbitrary convex function bounded from above on
the set T we infer from Kuczma’s theorem that it must be convex. This
conclugion does not result from Theorem 1, because that theorem does
not guarantee the continuity of a convex function bounded on the set 7.

ar ° 2
§ 4. The set K(T)= U1 12T rather than J(T) seems to be a more
e

natural generayzation of the sets occuring in Theorem 1. However, it
turns out that it is fmpossible o replace in Theorem 1 g finite vector-sum
by the set K(T). Indeed, let us take the get

ag
T={z:2=rh, re[—1,1]nQ, heH},
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and a convex function f given Ly the formula
(6) flz) = E r, for a= S taHay, 72€¢Q, Hye H .

This function is not continuous since g(H,) = 1, whence

H, 1
g(Hu)=ﬁ«;$eonst,

while the constancy of this quotient is a necessary and sufficient condition
of the continuity of the additive function (4) (cf. J. Aczél [1]). Funetion (6)
is convex (§1) and bounded from above by 1 on the set T.

On the other hand, K(T)= R, because

(i) an arbitrary rational number r can be represented as a finite
sum 7 = 7y +ry+...+ 7, where rpe[—1,11n @ for m=1,2,..,1;
(ii) an arbitrary real number @ can be represented as the finite sum
= # hy+ 7o+t .. 70 liy, which can be written in the form:

[R5

&= (Pt et ) b+ Pt Pt Fe0) et
+ (P Tnat o+ Tig) hn

where the sums in brackets are decompositions of the rational numbers 7,
ag in (i).
Therefore, if # ¢« B then

Tyt tetantin

se(Y T+ T4 1)= Y TCE®D).
1 1 1 1

Thus, R C K(T). The converse inclusion is trivial.

The above construction yields an example of a discontinuous and
convex function bounded from above on a set T such that K(T)= E.
Thus this kind of a generalization of the condition from Theorem 1 is

not possible.

§ 5. M. R. Mehdi [8] has proved that if f is defined and convex
in an interval A and if f is bounded from above on a second category
Baire set 7' C 4, then f is continuous. This is an immediate consequence
of S. Kurepa's theorem (2) since the conditions on T guarantee that the
set T--T contains an interval (cf. [12], p. 188).

() But only in the ease of a single real variable. M. R. Mehdi’s theorem is valid
generally for real-valued functions defined on convex subsets of topological vector
spaces.
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