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1. Introduection. This paper concerns compact ANRs (see [2],
p. 100). The question is what assumptions are to be made in order that
a given 2-dimensional ANR be a deformation retract of some 2-dimensional
polyhedron (see [2], p. 11).

A homogeneously 2-dimensional polyhedron P is said to be a 2-di-
mensional X-pseudomanifold provided every 1-simplex of P is a face
of exactly two 2-simplexes of P. For example, every 2-dimensional pseudo-
manifold ([4], p. 252) (thus any 2-dimensional manifold as well)
is a ¥-pseudomanifold.

Given an arbitrary polyhedron P, a subset P’ of P is said to be a
subpolyhedron of P whenever there is a triangulation T = {oi}i-1,...x
of P guch that P’ = | J |o4,|. Obviously, we can find sueh two polyhedra P

and P’ that P'CP b:lt P’ is not a subpolyhedron of P. However, if P is
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assumed to be a 2-dimensional X-pseudomanifold, then every poly-
hedron P’ which is a subseb of P is a subpolyhedron of P.

We are going to show that any ANR-set X lying on 2-dimensional
S-pseudomanifold P iy a strong deformation retract (*) of some sub-
polyhedron of P (Theorem (8.1)).

We begin by proving the particular case of this theorem, for P which
is a manifold (Theorem (6.1)). Afterwards, by means of splitting operation
(see [6]), we generalize this result to an arbitrary -pseundomanifold.

2. Polyhedral approximation of the continuum lying on
a 2-dimensional manifold. Let ¥ Dbe a homogeneo_usly n-dimensional
polyhedron with a given triangulation T. A boundary Y of Y is understood
as the union of n—1 simplexes of T with the following property:

every n—1 simplex in Y is a face of exactly one n-simplex of T.

The set ¥= Y—7 is said to be an interior of the polyhedron Y.

By an arc we mean the image I of the closed interval {0,1) by an
arbitrary homeomorphism k: <0, 1>~L. The set of end-points {A(0), 2 (1)}
of L is denoted by L, the interior of L (i.e. k((0, 1))), by L. A 1-dimensional
polyhedron I' is said to be a closed curve, whenever its boundary I is
empty.

Now, let us consider & 2-dimensional manifold M with a given metric p.
For an arbitrary subset A of M and for &> 0 let K (4, &) denote the
set {we M: o(z, 4) < & Let X be a non-degenerate continuum in M,
Z'— the components of the set M —X and let ¢ > 0. A homogeneously
2-dimensional subpolyhedron ¥ of M is said to be a polyhedral &-approxi-
mation of X provided that

P xXCy;

2 YCE(X,e);

3° ¥ is a union of n = n(e) closed curves I, ..., I™ such that

a) I"CZ for i=1,..,m; b) I'=TIfu .. Ik, all the sets I}

being arcs with end-points in X, with interiors in M — X and with dia-
meters less than e;

4° the sets Z' ~ (M —Y) are connected for ¢ =1, ..., n;

5° if {Z'} = m, then n(e) = m.

‘We have the following

(2.1) Lemwa. Let M be o 2-dimensional mamifold. For any mnon-
degenerate continuum X C M and for every &> 0 there is a polyhedral
s-approvimation Y of X.

®) As regm‘df; AN R-@a%s, the following two conditions are equivalent: 1° ¥ is
a strong deformation retract of X, 2° ¥ is a deformation retract of X (see [3]).

iom®
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3. Proof of Lemma (2.1) in the case of I non=-decompos=
ing the manifoeld /. In this case, Lemma (2.1) is a modification
of Borsuk’s Lemma (13.3) of [2] p. 132, which concerns plane continua.
The proof of this particular case of owr Lemma (2.1) is similar to the
proof of Borsuk’s lemma and therefore we do not put it here in detail.
Let us only remark that the proof of Borsuk’s Lemma (13.3) was based
on Lemma (13.2) ([2] p. 132), which coneerns the %-dimensional Euclidean
space. In our proof, this Lemma (13.2) should be replaced by a correspond-
ing statement which deals with manifolds (see (3.3) below). To formulate
this statement, we start with defining a special property of metric space
M, o>:

The space MM has the .A-property provided given a continmum X
non-decomposing 3, a point b e M —X and &> 0, there is 5= 5{e) > 0
which satisfies the following condition:

(3.1) for any compact Q C M—{b}

FrQCE(X,n) =QCK(X,s).

One can easily verify that

(3.2) For compact metric spaces, the A-property is a lopological invariant.
Now, the statement mentioned above is the following:

(3.3) Every locally connected continuum has the A-property.

Let us observe that in the case of the %-dimensional sphere, proposi-
tion (3.3) is simply another form of Borsuk’s Lemma (13.2). In general,
for an arbitrary locally connected continuum, by Bing’s theorem [1]
and by our proposition (3.2), we can assume p to be a convex metric.
Then we can easily prove our statement (3.3) applying the idea used by
K. Borsuk in the proof of (13.2). Obviously, (3.3) holds in particular
for a manifold. Thus, for X non-decomposing the manifold M, Lemma (2.1)
is taken as proved. Moreover, as in (13.3) of [2], ¥ is a subpolyhedron
of M in a triangulation the simplexes of which have diameters less
than #(e) (y(e) satisfying (3.1)).

4. Proof of Lemma (2.1) in the gemeral case. Let 3 bhe
a 2-dimensional manifold with a convex metric ¢ (by Bing’s theorem [1]
such a metric does exist). Consider an arbitrary non-degenerate con-
tinuum X in M and take &> 0. Assume the set M —X to be non-empty
and denote its components by Z° (the collection {Z°} is finite or countable).
Let b; € Z* for each i. Observe that

(4.1) There is an indes n = n(e) such that Z* C K(X,e) for k> n.
. 14%
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In fact, if {—Z_T} = m, then (4.1) is satistied for n(z) = m. Let the family {2%
be infinite and let us suppose that
o(2n, X)ze.
n kn>n on€Zln
Sinee ¢ is a convex metric, for every 2., 2 ¢ M there is & segment |zp2y|
in M. Let 2 € Z for j = n,n'. Since Z¥ ~ 7" = 0, the two sets Frz™
and |22 have a point  in common. Then « « X ~ |2n2w|, and therefore

Q(zﬂ’zﬂ’) = Q(zmm) = ini Q(z%a @)= Q(zﬂz X) Ze.
2eX

But the last inequality contradicts the compactness of M and thus
proves (4.1).

Now, let us define

X=XoUZ, i=1,2,.
jEi

Bach of the sets X' is a non-degenerate continuum which does not de-
compose the manifold M, i.e. M — X' is connected for every 4; moreover,
bse M— X' Thus, Lemma (2.1) holds for X' (see Section 3). According
to (3.3) M has the A-property and thus for every i there is u:= ni(e)
satisfying condition (3.1).

Let Y' be a polyhedral e-approximation of Xt (i=1,2,..). Y s
a subpolyhedron of M for a triangulation T'; with simplexes of diameters
less than #. .

Let us set 5= min [#, ..., 7a], 7= n(c) satisfying (4.1). We can
find a triangulation T, with simplexes of diameters less than 7, and such

that each ¥ (i=1, ...,7n) is a union of some simplexes of T,.
Setting
Y-ATY
Dt g1

we obtain a subpolyhedron ¥ of the manifold M. As we have already
remarked, condition (4.1) holds in particular for n(e) = m = {~Z—f}. Hence
condition 5° is satisfied, and thus it remains to verify conditions 1°-4°.
To this effect, let us notice that

(42) X=X,
i=1

k) - P .
Therefore X C(| X'. Since X'C ¥’ for i=1,2,.., we have X C ¥,

i=1
ie. Y satisfies condition 1°
Besides, we have

(£.3) éx":xuuzf_

i>n
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Now, take an arbitrary point y ¢ ¥ and show that o(y, X) < e. In fact,

T-AT=AXoT -1
=1 i=1 i=1 j=1

n : n . n . . . s
S AT A T F= A T A T A 2,

i=1 i=1 j=1 fe=1 i=1 j=1
whence, by (4.3), we obtain

Y—XoUZ oA T A 12].
i>n i=1 F=1
If y « X, then o(y, X)=0;
if ye|JZ, then oy, X)< & by (4.1);
i>n
n N n .
it ye() XY and simultaneously y e | J Z’, then there is a j < n such
i=1 . . i=1 R
that y eZ' AT therefore o(y, X’) < ¢ (since ¥’ is an s-approximation
of X%), and o(y, X') = o(y, X) (since y ¢ Z’), and so o(y, X) < ¢ as well.
Thus condition 2° is verified.

In order to verify condition 3° it suffices to show

¥

s

(4.4) V=

=1

Let us prove (4.4).

i=1 g

Ve VAT T=-ATru-T
=1
AT A MY = () V(XA MY,
i=1 i=1 i=114=1
Tt i#j thew MY CZCX'CY, and 50 ¥'n M-T = M-Y
it i—j then Y'm M—Y = ¥’ Hemee ¥ = UJ(¥ n M-T))= o,
j=1 j=

which proves (4.4).

Now, let us observe that

LA (M-Y)=Z' ~ (M) T)= 2~ J(H-T) = U-T

j=1

i=1

since ¥* is an s-approximation of X° the set M —7Y"is connected. Then
condition 4° ig satisfied. This completes the proof of Lemma (2.1).

5. Two lemmas on strong deformation retracts.

(5.1) Lemma. If A, B are two absolute retracts and ACB, then A
is a strong deformation retract of B. Moreover, every retraction r: B—~A
is a strong deformational one.
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o
=
o

Proof. Since 4 ¢ AR and A C B, there is a retraction »: B-»A4,
Let i: A—~B De the inclusion. Define a map w2 Bx{0,1} v AXI B,
where I = {0, 1):

ir(z) for (%,%)eBx{0},
%(“”’“ff{x for  (e,0) e BX {1} U AxI.

Sinece Bx {0,1} v AxICBxI and B e AR, there is a map y: BxI->B
such that w, C o (i.e. p(#) = ypy2) for @« Bx {0, 1} v A xI). We have

p(z, 0) = pl@, 0) =ir(x), e, 1)=yplz,1)=2 foraeB,

and
@, t) =gz, ty =2 for (r,¢)eAxI.

Hence r is a strong deformational retraction. This completes the proof.
n

(5.2) Lemma. If ¥Y=X v {JC,, all the sets C, and X ~ C, being
r=1

absolute retracts and C, ~ (', C X for » £ o', then X is a strong deformation
retract of Y. Moreover, if v,: C, X ~ O, is a retraction for v=1,.., 0,
then the map r: Y —X defined by the formula

r(x) for wed,,
rla) =1 .
Df | for » e X

is a strong deformational retraction.

Proof. According to Lemma (5.1) the set X ~ C, is a retract of C,
for v=1,..,n. Let us take retractions ».: 0,~X n (,. By (5.1) r,
are strong deformational retractions, i.e. there exist maps v,: €, x I =0,
such that w(z,0) = r(2), plz,1)=x for e, and o,(z,t) =
for (z, 1) e (X ~ C,)xI. Setting

{w,(a&,t) for (x,t) e C,x1I,

%, 1) =
(@, 1) x for (z,t)e X %I,

Dt
we obtain the map y: ¥ XI—Y such that y(x, 0) = r(z),y(z, 1) ==
for xe Y and y(z,t) =2 for (x,1) e X x1I.

Henece r is a strong deformational retraction.

6. Deformational properties of ANRs lying on 2-di-
mensional manifolds. The theorem which we shall prove now is
a particnlar cage of Theorem (8.1).

(6.1) TemoreM. Let M be a 2-dimensional manifold. If X ¢ ANR
and X is a subset of M, then there exists a subpolyhedron ¥ of M such that X
is o strong deformation retract of ¥.
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Proof. Let us assume X to be connected.

If the manifold M is not homeomorphic to S%, then there exists
a simple closed curve which is not eontractible in M. Moreover, since If
is loeally 1-connected, the inferior of diameters of all such curves is positive.
Hence, for any 2-dimensional manifold 1I, the following positive number
Zo= Co( M) can be defined:

infd(R) (2 being o simple closed curve non-contractible

i M), if M+ S
62) Coﬁ in M), if ] topk ,

1 if M= 8.

If a simple closed curve £ is contractible in 37, then there is a disk
A= A(Q) in M, with the boundary Fr4 = Q. Moreover,
(6.3) AVIHQ<y=0A@Q)<a.
a>0 n(a)
Besides, since X ¢ ANR, the set M —X has a finite number of components
Zt, .., 2" .
Let us define ;= {i(M, X) for i =11, 2:

R _ . &
(6.4) G5l min 5(29)
(6.5) &y o % min(tn; &) -

Since X is a locally connected continuum, the following condition
is satisfied (see [4], p. 129):
6.6 Yy Yo) < & = §(Ly< £]
©.0) D eé{'m m,ﬁsx[gu“ ) 2=t ’

L being an arc in X, with the end-points #:, ¥».
Let us set

(6.7) e = min (&, £'(0)) -

According to Lemma (2.1) there is a polyhedral e-approximation
Y of X. We are going to show that the set ¥ is the desired one,
i.e. X is a deformation retract of ¥. To this effect, let us take the arc I
(determined by condition 3°, §2, for j=1, .., ki, i =1, .., m) and
let x%, al,; be the end-points of I (@4 =#5). By condition 3° men-
tioned above, (1)< &, and then, by (6.7), o(@f, #j41) < e < &'(%)- So,
by (6.6), there is an arc L;E:L}(m;,w}ﬂ) in X, such that 6(Lj) < L.

Since the two arcs I7j, Lj have common end-points and disjoint
interiors, the set

0} = oL
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is a simple closed curve. Moreover, 6(.(2;”:) < (S(Ié) + (S(I’jl:) < L+ e and thus,
by (6.7), we obtain

(6.8) 89 < 2%,

Condition (6.8) together with (6.5) and (6.2) implies the contractibility
of 0f in M. Let Af be a disk in M which is bounded by Q7. Observe that,
for any 4,7 (j=1, .., ki, i=1,...,m) the two sets A} and |JZ* are

KE

disjoint. In fact, ot ~ Z¥ £ 0 if and only if k = ¢; therefore, if there is
a ki such that Af~ Z" 0, then Z"C A}, but this is impossible,
because conditions (6.8), (6.5), (6.4) and (6.3) imply §(4A;) < min b(Z"),

1<k<m

Hence
(6.9) AfnAFC X for  (i,§) £ (4,5 .

By our construction, the polyhedron Y is of the form

(6.10) Y=Xul|JA}.
Let us set ) " )
X; = X~ A;
and show that

(6.11) Xic AR  for every j,i.

To this effect, 1t suffices to prove that X§ ¢ ANR, X! is connected and it
does not decompose the disk A%, Since Xin X —X!=TLicAR and
X;n X—X}CX, there is a retraction fi: X —+Xin X —Xi A map
¢5: X X} defined by the formula

filw) = filw)  for meX'—Xﬁ,
® for z ¢ Xj,

is o retraction as well. Then, X ¢ ANR implies X7 ¢ ANR. Moreover, X: is
connected, since any two poins of X can be joined in X by an arc having
no points in common with I5. At last X} does not decompose Af, since A}
does not contain Z* (k= 1,..,m). Thus (6.11) is verified.

According to Lemma (5.2), it follows by (6.9)—(6.11) that X is a strong
deformation retract of Y. This completes the proof of Theorem (6.1)
for connected X.

If X is not connected, then a number of itg components is finite.
In this case we construct a polyhedral e-approximation for each com-
ponent of X. Assuming the triangulation of M to be sufficiently fine,
we can make any two of these polyhedrons disjoint. Then the proof of

Theorem (6.1) is reduced to the case of a connected X which hag already
been discussed. i

- ©
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7. 2-dimensional Z=-pseudomanifold as a continuous image
of a union of 2-dimensional manifelds. Given a triangulation T
of a polyhedron P and a vertex p of T, let us define the star S(p) of the
point p relative to T

8(p) = Jloil 5

where {o;} is the totality of simplexes with a common vertex p. Let P
be a 2-dimensional X-pseudomanifold. A point « ¢ P is said to be regular
whenever there is a neighbourhood D(z) of z in P, D(z) being a disk.
Otherwise, # is said to be singular. The set of all regular points of P will
be denoted by 15; the set of all singular points — by P*.

By the definition of X-pseudomanifold it follows that

(7.1) The set P* is finite

and

(7.2) If the triangulation T of P is assumed to be sufficiently fine, then
the star S(p) is a upion of disks Dip) (j =1, ..., m) for each p ¢ P*.
Moreover, D;(p) ~ DjAp)= {p} for j % j' and p is an inner point
of Dyp) for j=1,..,m. :

In order to prove (7.2) it suffices to observe that

1° the boundary N (p) of the star S(p) is a union of a finite number
of disjoint closed simple curves, and

2° S(p) is a cone over §(p) with the vertex p.

Let us establish the following

(7.3) LumwA. Given a 2-dimensional X-pseudomanifold P, there ewisi
o-dimensional manifolds My, ..., My and a map of their disjoint umion

f: Lnj M2 P such that
i=1

(1) fz) > 1 for each = e P*,

(2) FHP*) < 8,

(3) fIf MP) is o topological imbedding.

Proof. By (7.1) the set P* is finite; let P* = {p,, ..., px}- By (7.2)
we can assume each two of the stars S(p:) to be disjoint and

g

St = Ditpo),

the sets D;(ps) being disks, Dy(ps) ~ Dyps) = {ps} for j # J', and ps e Dy(p1)
for j=1,..,m; (¢=1,..,k). Consider the set

_—
0= P—U8(py).

i i=1
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Let Di(j =1, ..., muis 4=1, ..., k) be disks disjoint one with another,
not intersecting the set C. Take the homeomorphisms
hi: Dy(pi)—Di
and define the space N and the map h: N o, P oags follows:
(7.4) N=Cu D}, (Fig. 1)
bt i

z . for ze(,

75 k) =1 r
(75)  h(x) Df{(h?) Yoy forweDi, j=1,.,m, i=1,..,k.

Denote ¢} = Bipi).
Now, let M be a quotient space obtained from the space N by the
following identification:

(7.6) ar~y<=(z=y)V[re C'Y/\y € D;Z/\ h(y)=w], (see [5], p.9).

One can easily see that the space M is a compactum locally homeomorphic
to the Buclidean plane E®. On the other hand, the set M is of a finite

gl > 0]

7(ql)

#(q3)
>0 M
N
Fig. 1

number of components as well as the set P— P* Hence M is a union
of a finite number of 2-dimensional manifolds M, ..., M.
Let 7: N —+M be the natural projection (see [5], D- 9). Setting

(7.7) F@) = ha='z)  for every zeW

we obtain a map f: M- P satistying the desired three conditions ((1)~(3)).
In fact, by (7.5) and (7.6) f is single-valued. To verify the continuity

©
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of f, take an arbitrary open subset U of P and ¥ = f7(T). By (7.7) we
have z (V)= 2"(U). Since & is continuons, =z ¥(¥) is an open subset
of N. Therefore, by the definition of a quotient topology (see [5], p. 9),

V is open in M. Moreover, f|f () is one-tc-one, and Fips) = k a(gh)

for each p; e P*. Then f (p1 = m; and f
conditions (1 (1)~(3) are satisfied.

Z’ mi< 8, and hence

8. Deformational properties of ANRs lying on 2-dimen-
sional X-pseudomanifolds. We are ready now to prove

(8.1) THEOREM. Let P be a 2-dimensional I-pseudomanifold. If
X ¢ ANR and X is a subset of P, then there is a subpolyhedron T of P such
that X is a strong deformation retract of T.

Proof. Let P be the set of regular points and P* — the set of singular
points of P.

According to Lemma (7.3), there is a space I which is a union of
2-dimensional manifolds M, ..., My, and a map f: M oo, p satisfying
conditions (1)~(3).

Let wy: P be a splitting of the space P, ie. wfz)=fY(x)
(see [6]). Consider the set

X’ = wi(X) .
By Theorem (4.1) of [6], the set X’ is again an absolute neighbourhood
retract. Moreover, X' is a proper subset of M.

Take X, = X' ~M,for v=1,..,n If X, is a proper subset of M,,
then by Theorem (6.1) there exists a subpolyhedron ¥, of M, such that X,
is a strong deformation retract of ¥;. Otherwise, if X,= M,, we put
¥, = M,. The set ¥’ = = U Y, is a subpolyhedron of 3 and X’ is a strong

deformation retract of I”.

Obviously, assuming the triangulation of P to be sufficiently fine,
we can make the following equality satisfied:
(8.2) XA wy(PY =T~ g PY) .

.

Now, let us put
Y=f(1").
It follows from the properties of the map f, that ¥ is a subpolyhedron

of the X-pseudomanifold P. To finish the proof, we must show that X
is a strong deformation retract of ¥.
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By the definition of the splitting operation, (8.2) implies w/(X ~ P¥)
— X' AP = T~ o P = o ¥~ PY).
Hence

X A P*= ol X ~ P*) =fo (Y A P¥) = Y A P*,

and thus applying Theorem (3.1) of [6], we infer that X is a strong de-
formation retract of ¥. This completes the proof of Theorem (8.1).

Remark 1. The polyhedron Y is a homogeneously 2-dimensional
one.

) Remark 2. Let us assume P to be a manifold. Observe that
A;CE(Xj,¢) for every 4,j (see § 2 and (6.10)). For sufficiently small ¢
there are retractions rj: Aj->X] satisfying the condition rj(4}— XJ)
CFr X} ([2] p-139). By Lemma (5.1) all #; are strong deformational
retractions and therefore by Lemma (5.2) we get a strong deformational
retraction 7: ¥—-X such that »(¥—X)CFrX. Obviously, mapping
a unjon of manifolds onto a X-pseudomanifold (see § 7) we obtain the
same result for an arbitrary X-pseudomanifold.

Using these two remarks we get the following

(8.3) CorOLLARY. Let P be a 2-dimensional X-pseudomanifold. If
X ¢ ANR, X CP, then there exist a homogeneously 2-dimensional sub-
polyhedron Y of P and a strong deformational retraction r: ¥ X such
that (Y —X) C Fr X.

ProBrLEM. Can the assumption on P in Theorem (8.1) be replaced
by the following ‘weaker one: P is & homogeneously 2-dimensional poly-
hedron, the set P ~ X being of a finite number of components?

The author would like to express her gratitude to prof. K. Borsuk
for his valuable advice.
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Lifting trees under light open maps *
by
J. H. Carruth (Knoxville, Tenn.)

The purpose of this paper is to prove the nonmetrie analog of a theorem
due to G. T. Whyburn concerning the liftability of dendrites under
light open maps. The proof uses the nonmetric analog of an arc lifting
theorem of Whyburn which is due to R. J. Koch.

A continuum is hereditarily wnicoherent provided the intersection of
any two of its subcontinua is connected. A tree is a locally connected
hereditarily unicoherent continuum. An are is a continuum with exactly
two noncutpoints. The closure of a set A will be denoted by A* and the
void set by .

TrrOREM. Suppose f is a light open map froin a compact Hausdorff
space X onto a topological space Y. If T is a tree in Y and a ¢ f7YT), then
there exists a continuum K in X such that a « K and f maps K topologically
onto T.

Proof. Clearly, it can be assumed that ¥ =T and X:f“(T).
Tet C be the collection of all continua M in X such that a e« M and f
restricted to M is a homeomorphism into 7. Then {a} ¢ C so that C 7 [J.
Tet 46 be a maximal tower in C, let 4 = | A, and let K = A*. We show
that K is the desired continuum in two parts. First it is shown that f
is one-to-one on K and second it is shown that f maps K onto T.

For the first part fix p ef(K). It suffices to show that s n K
is a single point. Let U be a basis for the topology of T at p consisting
of open connected sets. The proof that f74(p) ~ K is a single point depends
on the following four facts:

(i) F4U) ~ A iy connected for each U e W.
(ii) f7p) " K # O.
(i) £Yp) ~ K Climinf{f {(U) ~ 4: U e}
(iv) limsup {f U): U eW}Cf(p).

_* This paper forms part of the author’s doctoral dissertation prepared under the
diveétion of Professor R. J. Koch at Louisiana State University.
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