Decomposable inverse limits with a single bonding map on $[0,1]$ below the identity

by

J. W. Rogers, Jr. (Atlanta, Georgia)

1. Introduction. It has been known for some time that the collection of all limits of inverse sequences of mappings from the interval $[0,1]$ onto $[0,1]$ is the collection C of all non-degenerate chainable continua (compact, connected, metric spaces) [4]. The study of the collection S of all limits of inverse sequences with a single bonding map on $[0,1]$ is more recent. Henderson [5] showed that the pseudo-arc is such a limit, while Mahavier [6] showed that not every chainable continuum is.

We let B denote the collection of all limits of inverse sequences with a single bonding map f on $[0,1]$ such that if $0 < x < 1$, $f(x) < x$, and note that Henderson's paper also shows that the pseudo-arc is an element of B.

In this paper, we characterize the decomposable elements of B (Theorem 1), and show that B is a proper subcollection of S, since the $\sin \frac{1}{x}$ continuum is not an element of B (by Theorem 3), but is the inverse limit with single bonding map f, where $f(0) = 0, f(\frac{1}{4}) = 1, f(1) = \frac{1}{2}$, and f is linear on $[0, \frac{1}{4}]$ and on $[\frac{1}{2}, 1]$.

2. Preliminaries and main theorem. For a discussion of inverse limits, the reader is referred to [2], and for chainable continua, to [1]. A δ-regular ϵ-chain is a chain such that each link of it is of diameter less than ϵ, and the distance between any two non-intersecting links of it is greater than δ. A regular chain is a chain which is, for some $\delta > 0$ and some $\epsilon > 0$, a δ-regular ϵ-chain. For more on this, see [3].

If f is a continuous function from $[0,1]$ onto $[0,1]$, then $\lim f$ denotes the limit of the inverse sequence with f as the only bonding map. The distance between two points (x_1, x_2, \ldots) and (y_1, y_2, \ldots) of $\lim f$ is $\sum_{n=1}^{\infty} |x_n - y_n| \cdot 2^{-n}$.

Definition. The continuum M is said to have property S with respect to the points A and B of M if and only if there exists a reversibly continuous transformation θ from M onto M such that $\theta(A) = A$, $\theta(B) = B$.
and if $\varepsilon > 0$ and $\delta > 0$ then there exists a positive integer m such that if the distance from B to the point P of M is greater than δ, then the distance from A to $\theta^m(P)$ is less than ε.

Theorem 1. If M is a decomposable continuum then in order that there exist a continuous function f from $[0, 1]$ onto $[0, 1]$ such that if $0 < x < 1$ then $f(x) < x$, and such that M is topologically equivalent to $\lim f$, it is both necessary and sufficient that (1) M be chainable, (2) M be irreducible between two of its points, A and B, and (3) M have property S with respect to A and B.

3. The conditions are necessary. Suppose f is a continuous function from $[0, 1]$ onto $[0, 1]$ such that if $0 < x < 1$, then $f(x) < x$. Then $\lim f$ is chainable and irreducible from the point $A(0, 0, ...)$ to the point $B(1, 1, ...)$. Let θ denote the reversely continuous transformation from $\lim f$ onto $\lim f$ such that if $P(p_1, p_3, ...) = \lim f$ is a point of $\lim f$, then

$$\theta(P) = (f(p_1), f(p_2), ...) = (f(p_1), p_1, p_3, ...).$$

Lemma 1. If $\varepsilon > 0$, and n is a positive integer, there is a positive number δ such that if $P(p_1, p_3, ...) = \lim f$ is a point of $\lim f$ at a distance from B greater than δ, then $1 - p_k > \delta'$.\]

Theorem 2. The continuum $\lim f$ has property S with respect to the points $A(0, 0, ...)$ and $B(1, 1, ...)$.\]

Proof. Suppose $\varepsilon > 0$ and $\delta > 0$. There exist (1) a positive integer n such that $(\delta) < \varepsilon$, (2) a number $\delta' > 0$ such that if $P(p_1, p_3, ...) = \lim f$ is a point of $\lim f$ at a distance from B greater than δ, then $1 - p_k > \delta'$ (by Lemma 1), (3) a number x such that $0 < x < 1$ and if $x < x < 1$, then $f(x) > 1 - \delta'$, (4) a number k such that $0 < k < 1$ and if $x < x < x < k$, then $f(x) > k$, and (5) a positive integer m such that $k^n < \varepsilon^2/2$.

Now, if $P(p_1, p_3, ...) = \lim f$ is a point of $\lim f$ at a distance from B greater than δ, then $1 - p_k > \delta'$, and $p_k < \varepsilon$. Thus

$$\frac{x'}{x} > f''(p_1) > f''(p_3) > ... > f''(p_{k-1}).$$

The distance from A to $\theta^m(P) = (f''(p_1), f''(p_3), ...) = \lim f$ is easily shown to be less than $f''(p_{k-1}) + (\delta) < \varepsilon$.

Theorem 3. If $\lim f$ is decomposable, and irreducible from the point P to the point Q, then P is one of the points A and B, and Q is the other.

Proof. The continuum $\lim f$ is irreducible either from A to P, or from B to P. If $\lim f$ is irreducible from A to P then, since $\lim f$ is decomposable, there is an open set R that contains A such that $\lim f$ is not irreducible from A to any point of R. If P is distinct from B then by
is linear on \([a_j, a_{j+1}]\), the interval \(f^n([a_j, a_{j+1}])\) is a subset of the interval \([a_1, a_{j+1}]\), and
\[f^n(a_{j+1}) - f^n(a_j) \leq (g^n(a_{j+1} - a_j))\]

Lemma 4. If \(i, j, \) and \(n\) are positive integers \((n_0 < i < j)\), and \(o^n(l_i)\) is a subset of \(l_i\), then \(f^n(l_i)\) is a subset of \(l_i\) (denotes the closure of \(l_i\)).

Definition. Let \(H\) denote the set \(B \cup B_2 \cup B_3 \cup \ldots\) and \(C\) denote the collection \(C_2 \cup C_3 \cup \ldots\).

Lemma 5. If \(e > 0\), \(n > 0\), and \(i > 0\), and \(P\) is a point of \(H\) that lies in \(o^n(l_i)\), then there is a positive integer \(j\) such that if \(e > E_j\), and \(j\) is a positive integer such that \(o^{n+j}(l_i)\) contains \(P\), then \(f^n(l_i)\) is a subset of \(s_i\) and the length of the interval \(f^n(l_i)\) is less than \(e\).

Proof. It is easy to show that if \(e > n_0\) and that there is a positive integer \(E\) such that if \(e > E\), then \(f^n(l_i)\) lies in \(l_i\) from which \(o^n(l_i)\) lies in \(l_i\) and by lemma 4, \(f^n(l_i)\) lies in \(s_i\), and \(2\) the number \(e_j\) is greater than each of the numbers \((l_j(a_j - a_{j+1}))\) and \((l_j(a_j - a_{j+1}))\). Hence, with the aid of lemma 3, each of the numbers \(f^n(a_{j+1}) - f^n(a_j)\) and \(f^n(a_{j+1}) - f^n(a_j)\) is less than \(e/\epsilon\). Since \(f^n\) is linear on both \([a_{j+1}, a_j]\) and \([a_j, a_{j+1}]\), the length of the interval \(f^n(l_i)\) is less than \(e\).

Definitions. Let \(V\) denote the collection of all sequences \(v = v_1, v_2, \ldots\) such that for each positive integer \(n_0\) \((n_0 \geq 1)\) there is a link \(l_i\) (to be denoted by \(L_0(v)\)) of \(C\) such that \(v_0 = o^n(l_i)\) \((0 < n < 1)\), \(2\) \(v_0\) lies in \(v_0\). If \(v\) is a sequence of \(V\), let \(L_0(v)\) denote the point of \(H\) common to all the elements of \(v\). The sequence \(v\) will be said to determine \(L_0(v)\).

Theorem 5. Suppose \(v\) is a sequence in \(V\) and for each \(n\) \(L_0(v)\) denotes \(L_0(v)\). Then if \(v\) is a positive integer, each term of the sequence \(s[L_0(v)], f[s[L_0(v)]], f^2[s[L_0(v)]]\), \(\ldots\) contains the closure of the next, and there is only one common number to all the elements of this sequence.

This theorem follows easily from lemmas 4 and 5.

Definition. If \(n\) is a positive integer and \(v\) is a sequence in \(V\) and for each \(i\) \(L_i(v)\) denotes \(L_0(v)\), then let \(x_0(v)\) denote the number common to all the elements of the sequence \(L_0(v), f(L_0(v)], f^2(L_0(v)], \ldots\).

Theorem 6. If \(v\) is a sequence in \(V\) and \(v\) is a positive integer, then \(x_0(v) = f^n(x_0(v))\).

Theorem 7. If the sequences \(v\) and \(v'\) of \(V\) both determine the point \(P\) of \(H\), then \(x_0(v') = x_0(v')\) for each \(n\).

Theorems 5, 6, and 7 justify the following:

Definition. Let \(T_1\) denote the transformation from \(H\) into \(limf\) such that if \(P\) is a point of \(H\), then \(a(n)\) if \(P = E_1\), \(T_1(P) = (1, 1, \ldots)\).
(b) if \(P \neq B \), then \(T_k(P) = (x_1, x_2, \ldots) \), where for each \(n \), \(x_n = x_0(v) \), for any sequence \(v \) of \(V \) that determines \(P \).

Lemma 6. If \(l \) is an element of \(C \) and \(P \) is a point of \(H \) in \(\omega^\omega \), for some positive integer \(n \), and \(T_k(P) = (x_1, x_2, \ldots) \), then \(x_n \) belongs to \(s(l) \).

Theorem 8. \(T_k \) is reversibly continuous.

Proof. With the aid of lemma 6, it is easy to show that \(T_k \) is reversible. Since \(H \) is compact, we need show only that \(T_k \) is continuous.

Suppose \(P \) is a point of \(H \), \(T_k(P) = (x_1, x_2, \ldots) \), and \(R \) is an open set in \(\text{limf} \) that contains \(T_k(P) \).

Suppose \(P \neq B \), \(v \) is a sequence of \(V \) that determines \(P \), \(L_i \) denotes \(L_i(v) \) for each \(i \), \(\epsilon > 0 \) and \(n \) is a positive integer such that if \(Q \) is a point of \(\text{limf} \) and \(|x_n - x_{n+1}| < \epsilon \), then \(Q \) is in \(R \). By lemma 5, \(Q \) is a point of \(\text{limf} \) and \(|x_q - x_{q+1}| < \epsilon \), then \(Q \) is in \(R \).

By lemma 4, \(Q \) is a point of \(\text{limf} \) and \(|x_q - x_{q+1}| < \epsilon \), then \(Q \) is in \(R \), and \(n \) is a positive integer such that \(1 - x_q < \epsilon \), \(L_i \) denotes the set \(H \cap (B \cup L_{i+1} \cup L_{i+2} \cup \cdots) \)

which is open with respect to \(H \). If \(Q \) is a point of \(D_i \), then either \(Q = B \) or \(Q \) is in \(L_i \) for some \(i \geq n \), so that by lemma 6, \(Q \) is in \(s(l_i) \). In any case, \(1 - x_q < \epsilon \), \(Q \) lies in \(R \).

Definition. For each \(n \), let \(T_{n+1} \) denote the transformation from \(\omega^\omega \) into \(\text{limf} \) such that if \(P \) belongs to \(\omega^\omega \), then \(T_{n+1}(P) = (f(x_1), f(x_2), \ldots) \).

Theorem 9. If the point \(P \) belongs to \(\omega^\omega \), then \(T_n(P) = T_{n+1}(P) \).

Definition. Let \(T \) denote the transformation from \(M \) into \(\text{limf} \) such that if \(P \) belongs to \(M \), then (1) if \(P = A \), \(T(P) = (0, 0, \ldots) \), and (2) if \(P \neq A \), then \(T(P) = T_{n+1}(P) \), for every positive integer \(n \) such that \(\omega^\omega \) contains \(P \).

Lemma 7. There is a positive integer \(n \) such that if \(P \) is a point of \(M \), then \(T(P) = (x_1, x_2, \ldots) \).

Theorem 10. \(T \) is reversibly continuous.

Proof. Clearly \(T \) is reversible, and since \(M \) is compact, it suffices to show that \(T \) is continuous. So suppose \(P \) is a point of \(M \) and \(R \) is a region in \(\text{limf} \) that contains \(T(P) \).

If \(P = A \), then with the aid of lemma 7 it is not difficult to show that there exists a positive integer \(n \) such that if \(D \) denotes the open set \(M \), then \(T(D) \) lies in \(R \).

If \(P \neq A \), there is a positive integer \(n \) such that \(P \) lies in an open subset \(Q \) of \(\omega^\omega \). Then \(T(P) = T_{n+1}(P) \), and there is an open subset \(D \) of \(Q \) containing \(P \) such that \(T_{n+1}(D) \) lies in \(R \). But \(T_{n+1}(D) = T(D) \).

Theorem 11. \(T(M) = \text{limf} \).

Proof. Since \(f(0) = 0 \) and \(f(1) = 1 \), \(\text{limf} \) is irreducible from the point \((0, 0, \ldots) \) to the point \((1, 1, \ldots) \). Hence \(T(M) = \text{limf} \).

Theorems 10 and 11 show that \(M \) and \(\text{limf} \) are topologically equivalent.

References

Emory University
Atlanta, Georgia

Reçu par la Redaction le 23. 1. 1968