On movable compacta

by
Karel Borsuk (Warszawa)

The purpose of this note is to distinguish among all compacta a class
of spaces, called movable compacia, such that if a movable compactum X
fundamentaly dominates another compactum ¥ (in the sense defined
in [1], p. 233 then ¥ is also movable. It follows, in particular, that if
two compacta X, Y lying in the Hilbert cube ¢, are fundamentally equiv-
alent (in the sense of [1], p. 233), that is if they have the same fundamental
shape, then either both are movable, or both non-movable. Hence the
movability is a topological property depending only on the shape of the
compactum (similarly as several other global topological invariants, as
the homology groups in the sense of Cech or Vietoris, or the fundamental
groups, as defined in [1], p. 251). The class of all movable compacta is
rather large; it contains in particular all compact ANR-sets, and also
all plane compacta. However, in the 3-dimensional Euclidean space B
there exist compacta which are not movable (for instance the solenoids
of van Dantzig).

I wish to thank Dr. H. Patkowska for some valuable remarks con-
cerning this note.

1. Definition and examples. Let X be a compactum lying
in the Hilbert cube @ (that is in the subset of the Hilbert space consisting
of all points (a,, @y, ...) With 0 < @ < 1fn for n=1,2,..). It is said to
be movable, if for every neighborhood U of X (in @) there exists a neigh-
borhood U,C U of X (in Q) such that for every neighborhood W of X
(in @) there is a map

@ Upx<0,15—=TU

satisfying the condition
(11) @, 0)=x and gz, 1) e W for every point @ e Us.
The following examples illustrate thie sense of this notion:
(1.2) E’very compact ANR-set X CQ is movable.

In fact, if X < ANR, there exists a neighborhood & of X (in @) and a
retraction r: G—>X. Consider now a neighborhood U of X. Since r(z) = @
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for every point @ ¢X, there is a neighborhood U,C ¢ of X such that
@ ¢ U, implies that the segment |or ()| lies in U. Setting

plw, 1) = (1—t)w+ir(z)
we get a homotopy ¢: Uyx (0,1>— U such that

for every (z,t) « Uyx<0,1>,

@@, 0) = and ¢(z,1) = r(@) for every point we U, .

It follows that for every neighborhood W of X the condition (1.1)
is satisfied. Hence X is movable.

(1.3) Boery solenoid of van Dantzig is not movable.

First let us give a purely geometric definition of a solenoid. Lt 4
denote the anchor ring which one obtains in the Tuclidean 3-space 1P
by rotating around the axis consisting of points of the form (5, %, m5)
the cireular disk lying in the plane s = } and having (3,4, 1) as its
center and vy as its radius. It is clear that if (s, @, @) € 4, then

O<m<l, O0<wm<i, <<},

Observe that the first Betti group H,(4) of A is cyeclic infinite and
there exists in the cirele § with center (%51, %) and radius .\, lying in the
plane z; = }, a true 1-dimensional cycle y being a represenm“tive of a gen-
erator of the group H,(4). h

. Consider now a natural number % > 1 and let Oy denote the curve
defined as the subset of E® consisting of all points of the form

(3 (1 +fgsinw) cos ku, 3+ (4, + 1y sinw) sinku, } 1, cosu)

where 0 << % < 2. One sees easily that there exists a positive number
£k Sl}(}h that the set A consisting of all points x ¢« B* with o (s, C4)
lies in the interior of 4 and it is homeomorphic to ’
there exists a homeomorphism

(L4) Py A—Ay.

. Observe that i maps the true 1-dimensional

tative of a generator of the group H,(Ay)

(1.5)  Raly) ~k-y in A.

Now 1(?17 ky ,.kz, ... be a sequence of integers > 2 and let Ty = 1. Denote
by g, the identity map of 4 onto itgelf and set

(1.8)  gm = ha by, ... by, for every m=1, 2, ...

Then gy, is a homeomorphism mappi i

! Lot ping the anchor ring 4 onto a set B

and sinee Ry, (4) lies in the interior 4 of A, we infegr thait "

< &k
4. Consequently,

cyele y onto a represen-
and that

Bui1 = gm11(4) = gulhipsa(4)] C gu(4) C B, .
Let us show that
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1.7 gmly) ~ ( ll k!‘) cyin 4,

for m= 0,1, .. If m =0, then g, is the identity map of 4 onto itself
m

and [k, = k, = 1. Hence (1.7) is for m = 0 obvious. Assume that (1.7)
u=0

holds for an index m. Then
m+41

Gna(y) = gﬂlfhkm+1(2’)}"‘ gn(Fmi1 y) = by gm(y) ~ (Hku) yin 4,
p=0

and we infer by induction that (1.7) holds for every m =0,1, ..

It follows by the inclusion BpyiC B, that the set S, ks, ...)
= B; n By ..., called the solenoid corresponding to the sequence ky, ks, ...,
is a not empty continuum.

Suppose, contrary to (1.3), that X = 8(k, ks, ...) is movable. Con-
sider E® as a subset of the Hilbert space E”, by identifying every point
(@, &, @3) ¢ B® with the point (2, #,, %5, 0,0, ...) e B°. It is clear that
the anchor ring A lies in the set @* = E*~ Q. Setting

Je@,

observe that the set U = p~(4) is a neighborhood of X in @. It follows
that there exists a neighborhood U,C U of X such that for every neigh-
borhood W of X there is a homotopy ¢: U,<0,1>—U satisfying the
condition (1.1). Consider an index m such that B, C U,. Setting
W = p~1(Bm+1), weinfer that ¢ is a deformation of theset By, in the set U
inte a subset of W. It is clear that setting

for every (x,1) e Box<0,1>,

D@1, Bay Bsy Byy o) = (B1, Ta, B3, 0, ...) for every point (wy, &y, 2y,

(@, t) = plp(=z, 1)]

we get a homotopy which contracts the set By in the set 4 to a subset
of the set p(W) = Bm+1. Hence the true cycle gm(y), being a representative
of a generator of the group H,(Bn) is homologous in 4 to a true cycle
lying in Bpi1, consequently to a true cycle of the form g-gm41(y), where g
is an integer. We infer by (1.7) that

l;l-kz...km-_yfwmkl.‘.km'kmﬂ-_y in 4,
which is impossible, because y is a representative of a generator of the

group Hi(4) and ¢-Fny1 # 1, because kmi:=> 2. Thus the supposition
that X is a movable compactum leads to a contradiction.

2. Components of mevable compacta. Let us prove the following
] (2.1) TurOREM. A compactum X CQ is movable if every component
of it is movable.
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Proof. Assume that every component of a compactum X C¢ is
movable. Consider a neighborhood U of X. Then for every component X,
of X there is an open neighborhood ¥, of X, such that its boundary is
disjoint to X and that for every neighborhood W, of X, there exists
2 homotopy @.mw,: ff#x {0,1>-+ U such that

P, 0)=a and  @ur,(@,1) ¢ W, for every point z e ¥,

Since X is compact, there is a finite system of indices uy, phs, ..., m
such that V="V, vV, w..vV, is a neighborhood of X. Setting

Vi= m_y_%, for 4=1,2,.., %,
we get a system of open and disjoint sets Vy, V,, ..., Vi such that the set
V= _L_iji is a neighborhood of the set X.
Now Iet ¥ be a neighborhood of X. Setting W, = W and
Ppl#, ) =9, p(®,1) for every (#,%)eV; and i=1,2,..,k,

we get & homotopy @,: VX (0,1>—U such that

(2.2)  ppl@, 0)=2 and g, (»,1) ¢ W for every point z < V.

Thus we have shown that for every mneighborhood U of X there is
a neighborhood V of X such that for every neighborhood W of X there
exists a homotopy @,: Vx 0,1>-U satisfying the condition (2.2).
Hence X is movable and this completes the proof of Theorem (2.1).

Remark. Observe that the theorem converse to (2.1) is not true.
In fact, keeping the notations of § 1, one shows easily that the set

80k Ty ) o U (Ba\Bp)

is & movable compactum, but its component 8(ky, s, ...) is not movable.

3. Fundamental domination and the movability. One
says ([1], p. 233) that a compactum X C Q fundamentaly dominates another
compactum ¥ C¢Q (notation: X % Y) if there exists a fundamental ge-

quence ([1], p.225) f= {fy, X, ¥} and a fundamental gequence
9= {gx, ¥, X} such that the composition fg = {fugx, ¥, Y} is a funda-
mental sequence homotopic to the fundamental identity sequence
ir={i, ¥, ¥}. Let us prove the following

gS.l) ‘TH:EOREM. If X, Y are two compacta lying in the Hilbert cube Q
and if X is movable, then the relation X > ¥ implies that Y is also movable.
F
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Proof. Since X > Y, there exist two fundamental sequences
F

:f= {fx; X, ¥} and  g={g, ¥, X} with fg= {figr, ¥, ¥} = ir.

Let V be a neighborhood (in @) of the set ¥. The homotopy fg =~ iy
implies that there is a neighborhood ¥, CV of ¥ and an index %, such
that

(8.2)  frgx/Vy ~ 4V, in V for every k= k.

Moreover, there exists a neighborhood U of X (in Q) and an index %,
such that

(3.3) fi/U =~ fm/U in V, for every k, m = k,.

Consider now an arbitrary neighborhood G of ¥ (in @). Then there
exists a neighborhood W of X and an index #; such that

(3.4)  fu/W =~ fu/W in G for every k, m = k.

Since the compactum X is movable, there is a neighborhood U,
of X contained in U and such that the inclusion map of U, into U is
homotopic to a map a: U,—U satisfying the condition

(8.8) «a(Uy)CW.

This means that there exists a homotopy

(3.6) @ Uyx<0,1>—-T
such that

(8.7  ¢(=,0)=2 and ¢(z, 1) = a(x) for every point z ¢ U,.

If we recall that g is a fundamental sequence, we infer that there
exists a neighborhood ¥, C ¥, of the set ¥ (in @) and an index ko > ky, ky, ks
such that

(3:8)  gr(Vo) C U

Let us set

(3.9) vy, =fk.€l9(gk.(y), t) for every (y,%) e Vox <0,1).

It follows by (3.8) and (3.6) that ¢(gr,(y), i) € T, and by (3.9) and (3.3)
that p(y, %) eV, CV for every (y,1) e Vyx <0,1). Hence

p: Vox 0,15V
is a homotopy joining the map B,: V,—V, given by the formula By(y)
=yp(y, 0) for every point y eV,, with the map f: V,—V given by the
formula g(y) = y(y, 1) for every point y e V.

Now let us observe that Byy) = frp(gre(¥), 0) = fr.gri(y) for every
point y e Vo CV,. Since %, > k,, we infer by (3.2) that

(3.10) The map f;: V,—7V is homotopic to the inclusion map j: Vo—V.
Moreover, (3.8), (3.7), (3.5) and (3.4) imply that

B(Y) = Frap(91:¥), 1) € fre@(To, 1) = faoa(Uo) Cfiee W) C & for y e Vo,
10%
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Since the homotopy y joins in ¥ the maps f, and B, we infer by (3.10)
that the inclusion map j: V,—V is homotopic to the map f: V,—V satis-
fying the condition f(V,)C G.

Thus we have shown that for every neighborhood V of the set ¥
(in @) there is & neighborhood V, of ¥ such that for every neighborhood ¢
of the set ¥ (in @) the inclusion map j: V,—V is homotopic to a map
B: Vy—V satisfying the condition §(V,) C . Hence the compactum ¥
is movable and the proof of Theorem (3.1) is finished.

(3.11) CorROLLARY. The movability of a compactum X CQ depends
only on the fundamental shape of X.

It follows, in particular, that the movability is a topological property.
Thus we can omit in the definition of the movability the hypothesis
that X is a subset of the Hilbert cube and say that an arbitrary com-
pactum is movable if it is homeomorphic to & compactum X C ¢ movable
in the previous sense.

Let us recall, that the fundamental absolute neighborhood retracts
(called also FANR-gsets) may be defined ([2], p. 67) as fundamental
retracts of ANR-sets lying in the Hilbert cube . That is, for every set
Y ¢ FANR lying in @ there exists in @ and ANR-set XD ¥ and a fun-
damental retraction 7: X -7, thatis a fundamental sequence r = {ry, X, ¥}
satisfying the condition 7x(y) = y for every point y ¢ ¥ and for k =1, 2, ...
It we denote, for every k=1,2,..., by ¢ the identity map i: @@,
then we see at once that the fundamental sequence g = {gz, ¥, X} satisfies

the condition 7g ~ ¢y. Consequently X > ¥ and we obtain, by Theo-
LT ra
rem (3.1) the following

(3.12) CorOLLARY. Every FANR-set is movable.
(3.13) CoroLrARY. Huery factor of & movable compactum is movable.
(3.14) CoroLrARY. The solenoids of van Dantzig are mot FANR-sets.

4. Cartesian product of movable compaecta. Let us prove the
following

(4.1) THEOREM. The Cartesian product of a finite or countable number
of compacta X is movable if and only if all compacta X; are movable.

Proof. Let us represent the Hilbert cube @ as the Cartesian product
Ql_x @2 X ..., where @, is homeomorphic to ¢ for ¢ = 1,2, .. Then every
I'mmi; zgeQ may be written in the form [z,m,,..], where @;e @ for
i=1,2,.. .

Now consider a. compactum X Deing the Cartesian produect of
“ohe movable compacta X,, X,,.. Since the movability is a topolog-
ical property, we may assume that X;CQ; for +=1,2,.. Hence
X=X, xX,x..CQ. T
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Let U be a neighborhood of X in . Then for every i=1,2, ...
there exists a neighborhood U; of X; in @; and an index n, such that
U xUyx...CU, U;i=0;

Since X; is movable, there exists a neighborhood V;C U; of the
set X; in Q; such that for every meighborhood W; of X; (in @;) there is
a homotopy ¢ Vix €0, 1>— U; such that

for every 4> m, .

i@, 0) = @; and @i, 1) € W; for every point #;¢V;.

Let us observe that we can assume that ¥; = @; for ¢ > n,. In fact,
it suffices to select a point a; e X; and to set for every 4> ngy:

@i, ) = t-a-+(1—1)-z;  for (w,1) e@ex 0,1,

in order to get a required homotopy g;.

Then the set ¥ = V; X ¥, X ... is a neighborhood of X in the space Q.
Consider now & neighborhood W of the set X in Q. We can select a neigh-
borhood W; of X; (in @) so that Wy X WX ...C W and that there is an
index n,; > n, such that W;= @; for every 7> n;. Setting R

@ (@, 1) = [o1(@1, 1), @@, 1), ..]  for every point = [z, @, .JeV

and for 0 << 1, we get a homotopy
g: Vx<0,1->TU

such that ¢(2,0) =2 and @(%,1) ¢ W for every point zeV.
Thus we have shown that X is movable. It remains to recall Corollary
(3.12) in order to finish the proof.

5. Weakly contractible compacta. A compactum X CQ is
said to be weakly contractible to a compactum ¥ C X, if for every neigh-
borhood U of X and for every neighborhood ¥ of Y there is a homotopy
@: X x(0,1>— U such that ¢(z,0)= o and ¢(z,1) eV for every point
zelX.

Let us prove two following lemmas:

(5.1) Lowwa. If a compactum X CQ is weakly contraciible to a com-
pactum ¥ C X, then for every neighborhood U of X and for every neighbor-
hood W of Y there is a neighborhood U, of X and a homotopy @: Uy X <0, 1)
— U such that p(z,0) == and ¢(z,1) e W for every point & e U,.

Proof. It is clear that one can replace in the proof of Lemma (5.1)
‘the given neighborhood U of X by any neighborhood of X contained
in U, and also to replace the given neighborhood W of Y by any neigh-
borhood of ¥ contained in . Thus we may assume that U is an ANR-set
and W is open.


GUEST


144 K. Borsuk

Since X is weakly contractible to ¥, there exists a homotopy
$: XxC0,1>-T
such that

#(z,0)=2 and ¢@@,1)eW for every point »e X .

The set U being an ANR-set and the identity map 4: U— U being
an extension of the restriction $/X X (0), we infer by the homotopy ex-
tension theorem (see, for instance {3], p. 94) that there is a homotopy
w: Ux 0,1y~ U being an extension of the homotopy ¢. Since the values
of gf[X X (1)] belong to the open set W, we infer that there exists a neigh-
borhood U, C U of X (in @) such that the restrietion ¢ = y|U,x <0, 1)
is a homotopy satisfying the required conditions.

(5.2) LemmA. If XD YD Z, where X is a compactum weakly con-
tractible to ¥ and Y is a compactum weakly contractible to the compactum 7,
then X is weakly contractible to Z.

Proof. Let U be a neighborhood of X. Then U is also a neighborhood
of ¥ and we infer by Lemma (5.1) that for every neighborhood W of Z
there is a neighborhood ¥V, of ¥ and a homotopy u: Vyx (0,1)—TU
such that

-

p(®,0) =2 and y(x,1) ¢ W for every point w ¢V, .

Moreover, there is a homotopy @: X x <0,1>-»U such that ¢(z, 0)
=2 and ¢(z,1) eV, for every point 2 ¢ X. Setting
%@, 1) =o(x,21) for every point ¢ X and for 0 <t <%,
%(%, %) = plp(z, 1), 20—1] 1<1,
we get a homotopy x: X X €0, 1>~ U satisfying the condition x(z,0) =g

a,ndZ 2(@,1) ¢ W for every point # ¢ X. Thus X is weakly contractible
to Z. '

for every point » e X and for } <

oo
(5.3) THEOREM. If X = anXn, where X, are movable compacia

and Xy is weakly contractible to X,y for every m=1,2, ..., then X is
movable. N

Proof. Ifet U be a neighborhood of X. Then there is an index n
such that U is a neighborhood of X,. Since X, is movable, there exists

a neighborhood T, of X, such that for every neighhorhood ¥ of X, there
is a homotopy

wp: Upx<0,15-T
such that

?p{®, 0) = 2 and ¢,(z,1) ¢V for every point # e U, .
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Consider now a neighborhood W of X. Then there is an index m > n
such that W is a neighborhood of Xy,. It follows by Lemma (5.2) that X,
is weakly contractible to X, and we infer by Lemma (5.1) that one can
select the neighborhood ¥ of the set X, so, that there is a homotopy

@: Vx0,1>->U
such that
¢(z,0)= o and @(z,1) e W for every point zeV .
Now let us set:

pl@,t) = g,(w, 2t) for every point ze U, and for 0 << 1§,

(@, 1) = ‘?[‘Pv(aﬂ 1), 2t—-1]

One sees easily that ¢: Uyx <(0,1>—U is a homotopy such that
¢@,0) =2 and p(@,1)=¢[p,(z,1),11¢ W for every point ze Us.
Henece X is movable.

The following example illustrates the last theorem:

(5.4) BxamprE: Let a = (0, 3,0, ...), b= (0,0,...), by = (1/n,0, 0,...)
for n=1,2, .. and let X denote the union of the segments |byd,| and
labs] with # = 0,1, ... Setting X, = X v |ab,bs|, where |ab,b.| denotes
the triangle with vertices a, b, and b., one sees easily that X, ¢ ANR
and X, is contractible (hence also weakly contractible) to X1 for every

for every point we U, and for 1 <t<<1.

o0
#=1,2,.. Moreover X = [| Xp. It follows by Example (1.3) and by
n=1

Theorem (5.3) that X is movable.

It is known ([1], p. 235) that every plane continuum decomposing
the plane F® into s, regions fundamentally dominates every plane con-
tinnum. Thus, combining Example (5.4) with Theorem (3.1) and Theorem
(2.1), we get the following

(5.5) CorROLLARY. Huvery plane compactum is movable.

6. Problems. Let us formulate some open problems concerning
movable compacta;

(6.1) Is it true that every movable component of a compactum X is
necessarily a fundamental refract of X?

Let us remark, that a not movable component of a compactum X
can be not a fundamental retract of X. For instance, if we keep the
notations used in See. 1 and if we seb

(Bk'—Bk) ’

Cs

X = 8k, Fsy ...

v
k

Il

1

then 8(%, ks, ...) is 2 component of X which is not a fundamental retract
of X.


GUEST


146 K. Borsuk

(6.2) To giwve an interior characterization of the movability.

(6.3) Does there exist a non-movable compactum X such that all its
homology groups are isomorphic to the corresponding homology groups of
a movable compactum Y?

(6.4) Let X and A C X be movable compacta. Is the homology sequence
of the pair (X, A) necessarily exact?
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Incompleteness of Lp languages

by
Mitsuru Yasuhara (New York)

An Lp language is an extended first order language which is “rich
enough” for the comparison of the cardinalities of two sets. In §1 we
develop a general theory about Lp languages, and show them to be in-
complete (the set of valid formulae is not recursively enumerable) and
incompact. Also, it will be shown that no obvious modification of the
Liowenheim-Skolem—Tarski theorem holds in an Lp langnage.

In § 2, we consider four examples of Lp languages. The first one is
an ad hoc invention from the definition. The remaining three were
considered in the literature. We have repeated definitions of these lan-
guages so that this paper will be intelligible by itself. Some results are
extended, some problems are solved, and some conjectures are refuted.
These are mentioned in § 2.

§ 1. The general theory of Lp languages. We have in mind
extensions of first order language made by the introduction of new guan-
tifiers or quantifier variables. Semantical notions such as interpretation
and satisfiability include those of possible new variables.

DEFINITION OF AN Lp LANGUAGE. In an Lp language, there is a for-
mula [4, B], having no individual variables and no predicate symbols
but 4 and B (these are monadic), and satisfying the following two con-
ditions:

(Lp 1) If [A, B] is true in an interpretation, and if (the interpretation
of) A is a subset of B while the complements of 4 and B are of the same
power, then A is of stricily less power than B.

(Lp 2) For every strictly ascending sequence of cardinalites {xy, %y ., #n)
there is anm interpretation of the variables in [y, *,] so that [4, B] is true
for all subsets A, B of a given domain D if the cardinalities of 4,B,D
are wg, wpe1y %y Tespectively, where {41 < 7.

‘We call this interpretation right for the given sequence of cardinalities.

We call a language incomplete if the set of valid formulae is not
recursively enumerable; incompact if there is a set of formulae which
is not simaltaneously satisfiable even though each finite subset is.
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