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On the differentiation of integrals in euaclidean spaces
by
A. M. Bruckner* (California)

1. Introduction. Let f be a continuous real-valued function of
a real variable. Neugebauer [4] has shown that the two upper Dini derivates
are equal, except, perhaps, on a set of the first category. Furthermore,
according to a theorem of Young [7], an upper derivate on one side is
at least as great as the lower derivate on the opposite side except for
o set which is & most denumerable. Certain related results involving,
for example, symmetric derivates are also valid [1].

The purpose of this article is to extend the theorems of Neugebauer
and Young (and related theorems) in a matural way to derivates of in-
tegrals of summable functions in higher dimensional spaces. These analogues
are established in section 3, below. Then, in section 4, we consider certain
possible extensions of these results to other sefitings considered by Buse-
mann and Feller [2], de Possel [5] and others.

2. Preliminaries. In this section we develop the definitions,
notations and concepts which we use in section 3 below.

Let # be a family of bounded open sets in By, euclidean N - dimensional
space, such that if I e s, then any open set homothetic to I is also in .
Thus, the family 4 is closed under translations and (non-negative) dila-
tions, but not necessarily under rotations. We write IT~J if J and T are
homothetic. To each I e A, we associate a point & in the boundary of I
such that if T ~dJ, then the points associated with I and J are in correspond-
ing positions. A sequence {I,} of sebs in 4 i3 said to converge to a point 2
provided, for each n, # is the point agsociated with I, and 6(I,)—0, where
8(I,) denotes the diameter of In. Now let f be summable on compact
subsets of euclidean N -space, u denote Lebesgue N - dimensional measure
and o be defined by o(B) = Tf fdu where B is any bounded meagurable
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1

set. We shall write

_ . D’(Iw)
Do(e) = suplimsup 175
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and

i pre s U'(I'n)
Do (z) = mﬂiﬁ“jﬁf AL

the supremum and infinum being taken over all sequences of setg {I}
in # converging to . We shall call these two numbers the upper and lower
derivates of o at #. The family + is called a differentiation basis.
ExawpiE. Let 4 denote the family of open intervals on the line,
Tor each such interval, let the associated point Dbe the left-hand end
point. Then I,—a means that for each », I, is an open interval having g
as a left-hand end point, and 6(I,)—0. The upper and lower derivates
of o are then just the upper right and lower right Dini derivates of the

@&
function F' given by F(z) = [ f(t)di. Similar remarks would apply if we
@

associated with each open interval its right-hand end point. The theorems
of Neugebauer and Young have obvious interpretation in this setting,

To extend the theorems of Neugebauer and Young to higher dimen-
sions, we consider a family # as’ decribed above. With each I e+ we
associate two different points # and y and we establish a theorem relating
the upper derivates obtained relative to the two notions of convergence
obtained (Analogue of Neugebeuer’s Theorem) and a theorem relating
the upper derivate relative to one notion of convergence with the lower
derivate relative to the other notion of convergence (analogue of Young’s
Theorem). To distinguish the two types of convergence, we shall use
symbols such ag In?w and I, 7Y Furthermore, we shall use the notation

wfI (or y gI) to mean that @ (or y resp.) is the point asgociated in the

first-sense (second sense resp.) with 7. Finally, we shall use such symbols
as Do to indicate our differentiation is with respect to the first notion
of convergence,

One more comment is in order. It was shown by de Possel that a nec-
essary and sufficient condition that the Fundamental Theorem of Calculus
holds for every bounded summable f (i.e., that s differentiates the integral
of f back to f a.e.) is that the Weak Vitali Theorem holds for # (with the
- associated notion of convergence). Unless we explicitly state to the con-
trary, we shall assume that £ is such a basis that the Weak Vitali Theorem
holds with respect to each of the two notions of convergence. This theorem
canl be stated as follows:

Leb # be a differentiation hasis with — its motion of convergence.
Let 4 be an arbitrary set and let a be an arbitrary number satisfying
0<a<1 If £ is a Vitali Cover for 4, that is, a subset of # such that
for every = e 4, there exists a sequence of sets

in A4* which converges
to z, then there exists a sequence I, I,,..

- of sets in £* such that (i) u*4
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= u*d ~ Uy and (i) > plh < %1 w4, (Here u* denotes Lebesgue
outer measure.)

3. Analogues to the Theorems of Neugebauer and Young.
We turn now to our two main results. Throughout this section, the defini-
tions and notations of section 2 apply.

TuroREM 1. Lot 4 be a differentiation basis consisting of bounded
open sets in Hy, closed under homothetic transformation, and possessing
the wealk Vitali property with respect to the convergences ’s and e Let f

be swmmable on compact sets and define o by o(E) :,E[ fdu. If 4 differen-

tiates o to f a.e. (with respect to both notions of convergence), then Do = Dyo
and Do = Dyo except for a set of the first category.

Proof. We assume first that f is non-negative; the case that f is
non-positive is analogous and the general case then follows by decomposing
the integral into its positive and negative parts. Let, then, F = {z:
Dio(z)< D,o(x)}. We show that I is of the first eategory-r. .

For each pair of rational numbers r < s and each positive integer #,
define a set Hyen DY

Brgn = {2: o(I) < ru(l) whenever & fI e and 6(I) < 1/n} n

A {w: Dyo(m) > s} .

It is easy to verify that B C |J Hym, so it suffices to show that Hye

78,1
is nowhere dense for each triple (r, s, n). Suppose, then, that for some
triple (r, s, ), the set By is dense in some non-empty open set G. Then
there exists J e &, J C @ such that §(J) < 1/n and o(J) > su(J). Thus B,
is dense in J. Let #* consist of those I ¢ 4 such that I CJ and o(I) *g gzh(I).
We note first that if 4 € Epn nJ, I et and € ICJ, then I e A". Thus,

A* forms a Vitali Cover for J. To see this, let z eJ. Let S be a clo§eaId
sphere centered at 4 and contained in J. If IC S, and # fI, then o(I)

< ru(I). For, it instead o(I) > ru(l) and if I' is a translate of I of suffi-

ciently small magnitude, then o(I') > ru(I'). In particular, sinceJ f;:g
is dense in J, I’ may be so chosen that y ¢ I’ for some ¥y € Bpgn N

’ : # .
I' CJ. Bui this is impossible since such an I’ must be in a'k .‘Thus, tthe
family #* is a Vitali Cover of J. Since # possesses the weak Vitali property,

. *
. there exists (taking a = 7/s) a sequence {I} of sets in 4" such that w(J)

=u(UIn < uln< -:;M(J). Therefore  o(J) = o(UT) < X o(Tr)

<2 ru(Ir) < su(J), the equality following from th.e fact that o is abso}u‘;(;?;
continuous with respect to w. But this contradicts the fact tha ‘
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5o chosen that o(J) > su(J). It follows that By, is nowhere dense and
that B is of the first category. Analogously, we can show that the et
{s: D,o(w) > Dyo(n)} is of the first category, and the theorem is established
for upper derivates.

The part of the theorem dealing with lower derivates can be proved
in a similar fashion, taking into account certain obvious changes in the
definitions of the sets E, B, and J. There is one nontrivial difference,
however. The analogous string of inequalities becomes o(J) = o(UIy)

> 2 6(Ih ) > Yru(Iz) = ru(J), contradicting the choice of J. Now, the
s

fact that the sequence {I;} can be 30 chosen that the firgt inequality

appearing in this string, o((JIx) 2% D o(Iy) is valid depends on the fact

that £ possesses the weak Vitali property with respect to o. That this is
the case is a consequence of a result of Hayes and Pauc ([3], p. 245):
if & differentiation basis differentiates an integral o a.e. to its Radon-
Nikodym derivative, and possesses the weak Vitali property with respect
to u, then it also possesses the weak Vitali property with respect to o.

This completes the proof of Theorem 1.

Remark. We note that the weak Vitali property with respect to o
was used only in the part of the proof dealing with lower derivates. For
positive functions, this property is not necessary for upper derivates.
Thus, we can drop the requirement that 4 differentiates o to f a.e. if
we are interested only in upper derivates and we are dealing with positive f.

TEEOREM 2 below is stated in a two-dimensional setting for simplicity.
As stated, the theorem would be false in Hy for N = 3. Nonetheless,
it iy easy to see from the proof of this theorem, that there exist valid
higher dimensional analogues which ean be obtained by suitably re-
stricting the types of allowable continua. The theorem would be valid
in By if the term ‘“non-degenerate continua” were suitably restricted.

In this connection, see the comment immediately following the proof of
Theorem 2.

THEOREM 2. Under the same hypotheses as in Theorem 1 (in H,),
any collection of pairwise disjoint mon-degenerate comtinua contained in
the set A:={w: Do(a) < Dyo(m)} or the set A,= {w: D,o(w) > Dyo(n)}
must be at most denumerable. )

_ Proof. Tt suffices to prove the Theorem for 4. Fix I, e £ and let 4,
be the family of sets homothetic to I,. Thus #,C #, and 4, satisties the

several hypotheses put on #. Throughout thig proof, we shall deal with 4, °

rat]‘le.r th.a,n all of 4. For each pair of rational numbexs r < s and each
positive integer n, let Eys be the set {z: o)< ru(l) if m el ey, 6(I)
1

<1n}~{o: o(d) > su(l) if sl ey, 6(I)< 1/n}. Then A, C \J Eron-

7,80
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Sinee any two sets in 4, are homothetic, there exists a direction 6
guch that if T ey, @ £ I,y ¢ I, then the line segment determined by =

and y points in the direction 0. Let L be a fixed line whose direction is
perpendicular to the direction 6. Let K be any non-degenerate continuum
contained in A4,. The set K cannot contain a line segment perpendicular
to L (ie., in the direction 6). To see this we need only observe that
K C \JFBron, 80 if K contained such a segment §, there would exist a triple
(r,s,n) such that § ~ B would be non-denumerable. There would
then exist two points © e 8 By and 4 € § ~ By and an I e £, such
that 6(I) < 1/, wfI and y 2eI. But the foregoing implies that o(I)

< ru(I) and algo that o(I) > su(I), a contradiction since r< s. Thus K

cannot contain a segment perpendicular to L. Therefore, the projection
of K onto I is a non-degenerate interval. Now suppose A, contains non-
denumerably many pairwise disjoint non-degenerate continua I,: y el
where I" is a non-denumerable index set. Bach of these projects onto
a non-degenerate interval of L. Thus, there is a point z ¢ I which lies in
non-denumerably many of these projections. Sinee these continua K,
are pairwise disjoint, the points which project onto 2 are distinet. For
each y el let m, be such a point. It follows that there exists a triple
(r,s,n) such that the set By~ {2,: y e I'} is non-denumerable. There
exist two points # and y in this set and an I e #), such that 6(I) < 1/n,
mleI and yeI. Bub, as before, this implies o(I) < ru(I) and also o(I)

> su(I), & contradiction.

The proof of Theorem 2 is complete.

A word about extending Theorem 2 to N -dimensional space. The
proof of Theorem 2 shows that if by “degenerate conﬁnua,” we mean
any continua whose projection onto some (N —1)-dimensional hyperpla:,ne
has empty interior, then Theorem 2 remains valid, .the proof lnvolw?:lg
only minor modifications to the proof we gave. This comment applies
in particular to the case N = 1, giving us Young’s Theorem.

Remark. Theorem 2 shows that the set 4, = {#: Dio(2) < Dyo(a)}
cannot contain a non-denumerable collection of pairwise disjoint non-
degenerate continua. This set can, of course, be nontdenumem})le. pet,
for example, & consist of the family of all squares in E .hzwmg sides
parallel to the coordinate axes. Let In—?m mean that @ is in the lower
right-hand corner of I and 6(I4)—-0. Let I,>o mean that o is the lower
left-hand corner of I, and &(I,)->0. Let f be the characteristic function
of the right half plane (i.e., in rectangular coordinates, {(&,7): §>‘0}).
Then Dyo(z) = 0 and D,o(a) = 1 for all @ = (€, 7) such that &= 0. Thus

Ay = {(& n): &= 0} _ .
We ’note also that the set B = {z: D;o(w) < Dyo(w)} can confain
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non-denumerably many pairwise disjoint non-degenerate continua, Thus,
let P be the usual Cantor set. Define a function g of a real variable ag
follows: g(z) = 0 if # ¢ P; ¢ is continuous on [0, 1]; if (a,‘ b) is an interval
contiguous to P, and ¢ is the midpoint of (a, b), then ¢ is linear on [a, ¢]
and on [e, b] and 2¢(c) = b—a. It is easy to verify that g is absolutely
continuous, that D"g < 0 on P and that DYg> 0 on P. TFurthermore,
if D denotes any Dini derivative of g, then |Dg(&)] < 1 for all &« [0, 1]
Let f be defined by f(§) = g(é)+&. Then f is an increasing absolutely
continuous function. Finally, define F' and o by F(&, )= uf(£) and
o(I)=F(+hy n+h)—F (&, n-+h)—F(E+h, )+ T (&, n), where I is the
square with sides parallel to the coordinate axis and having prineiple
vertices (¢, ) and (45, n+h). Then the extension of ¢ to the clags of
Lebesgue measurable sets is an absolutely continuous measure. Let 4
denote the family of squares with sides parallel to the coordinate axes
and let I, red (Ln —;w) means (I,)->0 and z is in the lower right-hand

(lower left-hand, resp.) corner of I,. Then for every o = (6,m), 0 < £,

Dyo(w) = D™f(&) while Dyo(5) = DTf (). Thus B consists of {(&, n): £ P}
This set is a non-denumerable family of lines.

4. On extensions to other settings. Thus far, our setting has
been that of a certain type of differentiation basis in By with two dif-
ferent notions of convergence. One can also consider related questions
on setitings dealing with two differentiation bases. Busemann and Teller [2]
developed a theory in By in which a differentiation bases i3 a family
of bounded open sets which (for some of their theorems) is closed under
homothetic transformations. Convergence of a sequence {I,} of these
sets to a point means only that » ¢ I, for each n and that 6(In)~>0. The
position of # in I, is unimportant. Many authors have extended the theory
to arbitrary measure spaces. The first of these was de Possel, who con-
sidered differentiation bases in abstract measure Spaces with an abstract
notion of convergence. Now, in such settings, one might ask questions
of the following type: if #; and #, are different differentiation bases on
the same space, what can Dbe said about the sets where the derivates
relative to #4; and #, are different? The results one gets depend heavily
on the particular notion one considers. We do not attempt here to in-
vestigate the question fully, but we do make two remarks.

Remark 1. Theorem 1 carries over to the Busemann-Feller setting
with only minor modifications in the proof. Thus, if #, and #, are two
different differentiation bases on Ey which possess the weak Vitali property,
then the set {D,o # D,0} is of the first category. The classical setting
is the one in which #, consists of the oriented squares and s, congists
of the two-dimensional intervals. There exist positive summable func-
tions f whose integrals have upper derivates with respect to o, every-

©
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where to oo ([6], p. 133). On the other hand, the derivatives relative
to 4, must equal f a.e. Our Theorem 1 (in the Busemann-Feller setting),
together with the remark immediately following the proof of that theorem,
shows that for such an f, the upper derivate with respect to £, is equal
to + oo on a residual set. Thus, for such an f we have D,o(x) = Do (x)

= f(x) ae. and D;o(w) = +oco on a residual set (of measure 0).

Remark 2. Theorem 1 is not valid in the general de Possel setting.
For example, let &, be the differentiation basis of open spheres in Ey
with {I»}— meaning, as usual, that z ¢ I, and 6(I»)—0. Let S denote
the closed unit sphere in Hy and let R be a zero measure residual subset
of By ~8. Let #, consist of all sets which are either open spheres or the
union of two open spheres one of which contains the origin and let {In} >
mean that @ eI, and 6(Tn) 0 if ¢ R, u(I,)—>0 if zeR. Let f be the
characteristic function of S and ¢ be the integral of f. Then #, and A,
both possess the weak Vitali property, and for # ¢ B, D,o(x) = 0 while
D,o(x) =1. Thus D,o < Dyo on a set of the second cabegory.
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