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Finitely additive measures and the first digit problem*

by
Richard Bumby and Erik Ellentuck (New Brunswick, N. J.)

1. Introduction. In his paper [4], R. 8. Pinkham attempts to
give a theoretical justification of the remarkable empirical conjecture that

(1) the proportion of physical constants whose first significant digit lies
between 1 and n, where 1< n <9, i8 logy, (n+1).

His approach consists of imposing ‘reasonable’ conditions on the distribu-
tion F(x) of physical constants so as to yield (1) as a result. Two separate
such considerations are given. In the first he argues that if every physical
constant were multiplied by some real number ¢ > 0, the resulting distri-
bution F'(#/c) should agree with F(z) regarding all data concerning first
significant digits. This property of F'(x) is called scale invariance. Then
in ([4], th. 1) it is shown that if the distribution F(«) of physical constants
is scale invariant and continuous, then (1) holds. His second argument con-
sists of showing that (1) approximately holds independent of the specific na-
ture of F () and depending only on well-known statistical parameters associ-
ated with F'(z). In ([4], th. 2) bounds on this approximation are estimated in
terms of the variation of the density function f() associated with F(x).

Our interest in this problem stems from the fact that several in-
vestigators have raised such questions as ‘what is' the probability that
2 natural number has property ¢%’ In this context we agk what is the
probability that a natural number has a first significant digit which lies
bhetween. 1 and %, where 1<n < 9. Our first task consists of giving
a ‘reasonable’ definition of probability for natural numbers. This definition
will then be tested against various sets of numbers to see whether it gives
results which are in accord with our intuition. Finally, using a modified
notion of seale invariance, we compute the probabilities of various sets
asgociated with (1)

We use the following notation. Let ¥ = {1,2, 3, ..} be the set of
natural numbers, K the real numbers, and Rt the non-negative real

* This paper is a report on some moonlighting performed by the authors while
receiving support from the National Science Foundation via contracts GP 4368 and
GP 5786, respectively. :
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numbers. Natural numbers will be denoted by lower case Latin letters, and
real numbers by lower case Greek letters from the beginning of the alphabet.
Use [«] for the greatest integer < a. Subsets of N or R will be denoted
by upper case Latm letters and sets of such subsets by upper case German
letbers. ‘' and ‘' will be reserved for measures, and sets of measures
will be denoted by upper case script letters. f: A —B will have its usnal
meaning and f: 4~B will mean that fis a one-one function mapping 4
onto B. We use |4] for the cardinal number of the set 4. In our applications
it will always be finite. We use ~ for intersection, v for union, — for
difference, @ for the empty set, and P (4) for the set of all subsets (power
set) of A. Also let A+ = {a+f: aec A} and AB = {af: a ¢ A}. Intervals
in R will be denoted in the usual way, for example [0, 1] is the unit closed
interval. Intervalsin N will receive ‘N’ as a subscript, thus [1, 2]y = {1, 2}
and [1, 2)x = {1}. The letter I will be exclusively used to denote intervals.
Let 1 be the ordinary Lebesgue measure in K.

2. Invariant measures. Let A C P(N) be a o-algebra and
u: A—>R" a countably additive measure function. If u(N)= 1, then .u
is called a probability measure. Now a reasonable condition for the notion
‘pick a number at random’ is that we are equally likely to pick one number
as another, ie., {m} W and u({m}) = u({n}) for m, n ¢ N. Clearly .this
condition is incompatible with 4 (N) = 1 and countable additivity. Since
countable additivity seems least necessary among the preceding conditions,
we replace it by finite additivity. But then we may take A to be simply
an algebra which contains each {n} for n e N. However, by a result of
Tarski (ef. [5]), every finitely additive measure defined on U can be ex-
tended to one defined on 3 (V). Thus there is no loss of generality in agsuming
A = P(N). For the purpose of this section we define a measure to Dhe
a function u: P(N)—~R* which satisfies (i) u(d w B) = u(4)+ u(B) for
A,BC N,A ~ B=@,and (ii) u(N) = 1. Let A be the class of all measures.
Now finite additivity, u(N)=1, and p({m}) = u({n}) for m,n ¢ N all
“together imply that u {n} =0 for n ¢ N. Thus we say a measure iy non-
atomic if it satisties (iii) u({n}) = 0 for every n e N. Let N bhe the class
of all non-atomic measures

By sacrificing countable additivity we have been able to gain
something—our measures are defined for all sets. This means that these
measures will determine ‘integrals’ for which all bounded functions will
be integrable. Each integral is then a continunous linear functional on the
nqrmed space Leo(N) of bounded real valued functions on N. Since we
wish to emphasize the measures rather than their associated linear
functionals, the latter will be denoted f..du. The continuity of these
linear functionals follows from

@) 'glba f(n) < [ fdu < Tub, f(n).

icm

©
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From (2) it also follows that [1du= 1. A linear functional L with this
property gives a measure u defined by u(4) = L(x4) where yi(n)=1
if ned,yan)=0ifn ¢ A. One now has an explicit one-one correspondence
between measures and certain linear functionals. The set of all measures
can be topologized by relativizing the weak* topology on the dual of Loy(X).
This makes the set of all measures into a compact space. A class of measures
will be said to be closed if it is closed in this topology.

Let CC M be a class of measures. For any set 4 C N define C(4)
= {u(A): peC} We say that 4 is C-measurable if C(4) contains exactly
one element, i.e., if all measures of C assign the same value to 4. It is
also useful to define C(f)= { f fdu: n eG} for any function f. (Note:
C(A) = C(x4).) We shall be interested in determining these sets for
various clagses of measures. The classes that interest us are all conver,
ie., if w,us€C and 0<a<1, then the measure » defined by »(4)
= au(A4)+ (1 —a)us(4) is also in C. In this case C(f) is always an interval.
In particular, if we can find u, g, € C with uy(4) = 0, py(4) = 1, then
G(4) =0, 1]. Measures of this type are most easily obtained using ultra-
filters. Thus in [5] Tarski finds a measure u ¢ N’ by taking a non-principal
ultrafilter U C P(N) and defining
(3) pA)=1if Aell, pu(d)=0if 4¢U.

To illustrate this let us compute A6(4) and N(4) for all sets 4.
Clearly, 6 and N are convex classes of measures. 6(@) = 0, Jo(N)=1,
and for every other set we can find ultrafilters 1, containing 4 and ",
containing N —A. Defining u, and u, by (3) gives m(4) =1, u(4)=0.
Hence M (A)=1[0,1] unless 4 =0 or A =N. If A is finite, N'(4) =0,
and if ¥ —A is finite, N°(4) = 1. For other sets 4, we can construct non-
principal ultrafilters to prove N (4)= [0, 1]. )

Let U be an ultrafilter and let x4 be the measure defined by (3). If f
is any bounded function, we can form [fdu. This value is easily seen to
be characterized by

for all £>0:{ If fcl,ul<s} u

and so qualifies to be called M —limf.

We shall now apply the notion of U-limit to the problem of con-
structing measures with given properties. For these constructions we shall
assume that we have a fixed non-principal ultrafilter .

Let us look once more at the notion ‘pick a number at random’.
Notice that for ueN, p(¥N-41)= u(N). Another reasonable condition
for this notion is that the preceding property hold good for every 4 C N.
Thus we say that a measure u is translation tnvariant if u(A+1) = ,u(A)
for every A C N. Let 6 be the class of all translation invariant measures.
Clearly, G C N. )

3*


GUEST


36 . R. Bumby and E. Ellentuck

Tt is sometimes useful to use the natural numbers to ‘code’ any
countable set. The given countable set may admit certain mappingg
which we would expect to be measure preserving (e.g., translations of the
integer lattice in some Euclilean space). These mappings are encoded
into mappings defined from N to N.

To accommodate this generalization, let g: N — XN be any function
and let g=3(4) be the complete inverse image of A. A measure p is called
g-invarient it M(g-l(A)) = u(d) for every A CN. Let J, be the class of
all ¢-invariant measures. If g has no finite orbits, then J, C N. Subsumed
under this definition are JG (take g(n) =) and B (take g(n)==n+1).
J, is readily seen to be a closed convex (but possibly empty) class of mea-
sures. Let us take a closer look.

Let g: N—N be any function fixed throughout the following
discussion and let f: ¥ —R be a bounded function. In order to compute
pounds for ,(f), let us define f™ by

(4) F™m) = (1ym) ) flgF(n)

k=0

where g* is the k-fold iterate of g. Then

THEOREM 1. J; is non-emply and

3(f) = [liming,glbsf™(n), limsupslub,f™n)] .
Also
limsupmlub, f™(n) = glbnlab, f™(n) ,

and if 3;C N, this is equal to glbmlimsup, F™(m). (And similarly for the
lower bound.)

Proof. We first demonstrate the existence of a measure u for which

f fdp = limsupylub, f™ (@) .

Let 4™ Dbe the measure for which u{™(4)= kjm where k is the number

of terms of thgn)sequenee 8 = <n, g(n), ..., " (n)> which are clements

of 4. Clearly u%™ e A and f™(n) = [fdu."™. We can now choose sequences
m,n: N—N such that

lim f™(n(s)) = limsupmluby f™(n)

while lim;m(s) = oco. Using our fixed non-principal ultrafilter U we define
a measure u by

u(A) = U —lim, uS8P(A4) for all A C N,
Since '
[P0 A)) — ™ 4) < 1m and  Tim, 1/m(s) = 0,

©
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this gives u eJ;. The same construetion also gives the lower bound so we
have shown that 3,(f) is at least as big as we claim. To complete the proof
it is only necessary to show that

[fau < glbmlubaf™(n)  for pely

and that lub, can be replaced by limsupn if u €3, ~ N°. These quantities
are clearly no larger than the attainable upper bound so all conclusions
of the theorem follow from these facts. If peJg,

Jtan= [f@)an.

Consequently
[fan= [f™au < tuba f™(n) .

The latter may be replaced by limsupa f('")(n) if peN. Since this holds
for all m, the result follows (cf. [3], § 5). g.e.d.

We are particularly interested in the case g(n)= n-+1. The class Jg
now becomes the class B of translation invariant measures. We shall
now apply Theorem 1 to various examples to see how well G-measures
are in accord with our intuition of randomness.

ExampLus. Let A C N be a set such that for each n e N, 4 has exactly
one element in common with {27, 2n-+1}. Then u(4)=1/2 for all peT.
Consequently there are sets, which many logicians would say are non-
constructible, that are B-measurable. Likewise, Theorem 1 applies
directly to the generalized arithmetic progression B = {{an+pl: ne N}
for real a > 1, B giving u(B) = 1/a for every peT. The proviso a>1
is necessary to insure that we do not get the same [an+ B8] from two
different #’s. In general translation invariance is much more restrictive
than simply giving these intuitively correct values on the arithmetic
progressions. We can see this by using a modification of the usual Lebesgue
technique. Start out with the Boolean algebra of all finite unions of
arithmetic progressions endowed with the 1/a measure and define inner-
outer measures and measurable in the usual way. Let g be the restriction
of outer measure to the measurable sets. Let the set H consist of those
even numbers m for which there is an integer n satisfying 4n* < m < 4n°+
4 4n 44 and those odd numbers m for which there is an integer n satisfying
4nP 4 dn-+4 < m < 4(n41)% Since it has the form of our first example,
G(H) = {1/2}. On the other hand, every generalized arithmetic progression
is easily seen to meet both H and its complement. Thus it is not Lebesgue
measurable for it has outer measure 1 and inner measure 0.

Let 4 C N be a set such that there are intervals {n, n-m)y C 4 for
arbitrarily large. m. Then by Theorem 1, G(4)= [a,1]. If N—A has
this property, then B(4)= [0, f], and if both do, then B(4)= [0, 1]
We can apply this result to the set P which congists of all natural numbers
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. oo
whose decimal expansion begins with a 1, i.e., P = {J[1 0%, 2.10%y, to
. k=0

obtain B(P)=[0,1]. Thus we see that translation invariant measures
are inadequate to settle the problem of the distribution of first significant
digits. That will be the central problem of the next section.

An easy application of Theorem 1 shows that both the primes and
the squares are B-measurable with meagure 0. A more interesting case is
that of the square free integers § for which B(S) = [0, 6/=*]. We prove
this result by a slight extension of the usual discussion of § (c¢f. [2], ch. 18).
The sets Q, = {n: n =% 0 (mod p*)} for various primes p are unions of
arithmetic progressions. Thus u(Qp) = 1—(1/p*) for ueB. Furthermore,
the Chinese Remainder theorem tells us that w(@p, N ... Q) =
(L= (1/p}) .o (1 —(1/p%). Hence u(8) < [L{L—(1/p") = 6/=" It is easy
to find intervals of any length in N —8, so u(8) = 0 is possible. In the
standard discussion it is shown that 6/=* is the agymptotic density of S,
ie., = limm #{™(8). Thus B(S) must be [0, 6/n].

3. Scale invariance. Thé main purpose of this section is a clarifica-
tion of the first digit problem. Although all of the necessary apparatus
for such a discussion has been made available in the preceding section,
it turns out that a less restrictive notion of measure enhances our presenti-

" tion. A seb A C R* is called diserete if for each n ¢ N the set A ~ [n, n--1)
contains only finitely many elements. In this case we can form the function
Yan)= |4 ~n[n,n+1)]. We say that a discrete set A is sparse if ¥,
is a bounded function. Let © be the class of all sparse sets. Every measure
u € induces a set function p: S-—>R* which is given by the integral

(3) p(d) = [Wadp.

It is clear from the properties of the integral that ¢ is a finitely additive
set function and that @(A)= u(4) for A (' N. Consequently we can
think of ¢ as an extension of u to a more comprehensive class of sets. We
are particularly interested in this extension when u e B. In this case not
only is g translation invariant, but it has a stronger property (c¢f. lemma 1)
which implies translation invariance. For 4, B C B" we say that B is
& distortion of A if there exists a function f: A~B such that |f(x)—w|
is a bounded function. It is clear that this notion is an equivalence relation
;.md that if 4 @, then so does B. We say that ¢: SR iy distortion
invariant if p(A4) = p(B) for every distortion B of A. Then we have
Lemua 1. Buvery @ given by (5) for ueS is distortion invariant.

- Proof. Let 4, Be G and f: A~ Bwith |f(z) —a| a bounded function.
Since g(x) = [f(#)]—[#] is also bounded, it assumes only finitely many
valu(.as, 8aY; g1, -, Jr. Partition 4 into sets A= {red: g(@)= g for
1<i<k If By = f(4), then the Bys form a partition of B such that

©
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Ypin) = Pin—g:) for 1<i<h Since €, it follows from (5) that
o(4i) = (B:) and then by finite additivity that e(4) = ¢(B). q.ed.

Conversely we have

Lemua 2. If ¢: R is a finitely additive distortion invariant set
function normalized by ¢(N) = 1, then for some p € G we have p(A) = [Widu
for every A e@. -

Proof. If u is the restriction of ¢ to P(N), then clearly u ¢G. For
any set 4 ¢ S, ¥y is bounded and thus can assume only finitely many
values, $ay @y, ..., as. Partition N into sets Si = {neN: Pun)= ai}
and A into sets di= {wed: we[n,n+1) and neS} for I<i<Ek
Then by the distortion invariance of ¢, ¢(di) = ;g (Si) = a:u(Si) and
consequently ‘

k
gd)= > ap(8)=[Wadu. qed
i=1

The combined content of lemmas 1 and 2 gives us the natural ex-
tension of measures u € G to all of G and justifies the following definition.
A distortion imvariant measure is a finitely additive, distortion invariant
set function p: G—R*, normalized by u(N)=1. We identify these
measures with the measures from which they arise by (5) and let G be the
class of all distortion invariant measures.

A subset 8 C R¥ is called measure inducing if §—[0,1) can be ex-
pressed as a disjoint union of intervals Sy, 8, ... such that for every 4 C
consisting of exactly one point from each 8, A € S, and for every measure
weB, u(A)=0. A necessary and sufficient condition that S be measure
inducing (cf. th. 1) is that for each interval I C R" of length t, I has non-
empty intersection with at most f(¢) of the S¢’s where f is some function
such that lim, F(£)/t = 0. It is sometimes convenient to deseribe subsets of ¥
as 8 ~ N where § is a subset of 7. When § is measure inducing, this
description has the following property.

TarOREM 2. If 8 is measure inducing and p € G, then for every a >0
we have u(8 ~ N)= au(8 ~ a¥).

Proof. We give separate proofs for (6) and (7) below from which
our theorem follows. For 8, u, and o as in our hypothesis

(6) u(8 ~ alN) = np(S ~ nal) for nelN.

Consider any one of the intervals 8; of which 8 is composed. The number
of elements in S ~ a(nN) and S; ~ a(nN+k), where 0 <k <n, differ
by at most one and consequently for fl@)= a+k f(z) e S~ a(nlN+k)
except for at most one element of 8i ~a(nN)y and f~ Yz) € 8i ~ a(nN)
except for at most one element of 8;n a(nN-+%). Combining these

" observations for all the S; and using the measure inducing property of 8,
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we can express S~ a(nN)=T, v T, and 8§ na(nN+k) = Tyv T, as
disjoint wnions where f: T,~T, is a distortion and consequently u(T))
= u(Ty), where u(Ts) = u(Ty) = 0. Thus § ~ a(nN) and 8 ~ a(nN -+ k) have
the same meagsure. Since § ~ oV is a disjoint union of the § n a(n 4-k)’s
for 0 <k < m, (6) follows immediately.

Now suppose that o = p/g is a rational number. Then by two applica-
tions of (6),

au(8 ~ aN) = (plg) (8 ~ (pjg) N) =
= (1q) u(8 ~ (1/g) N) = (¢/g) (S ~ (g/g) N) = u(8 ~ N).

Thus the statement of our theorem holds for rational a. Finally for a, > 0
we show

(7) a< B implies u(S~BN)< u(8~al).

Consider any one of the intervals §; of which § is composed. Between
any consecutive members of ANV we can find at least one member of alN.
Consequently the function f(#) = a[z/a] assumes values in a, is one-one
when restricted to § ~ AN, and is a distortion since —a << f(x)—a < 0.
Finally we note that f(z)e 8i ~ aN except for at most one element of
8i ~ BN. Combining these observations for all §; and using the measure
inducing property of §, we see that we can express Sn N =T, v T,
as a disjoint union such that 7, is a distortion of a subset of 8§ ~ aV and
#(T,) = 0. This proves (7). Now the functions (1/a) 4 (8 ~ N) and x (8 ~ al)
are both monotone decreasing functions which assume the same value
for rational a. Since the former is continuous, they must have the same
value for every a, i.e., u(8 ~ N)= au(S ~ o). q.e.d.

Taking § = R* (which is clearly measure inducing), we see that au(aN)
= u(N) =1, a result which generalizes the example {{an]: ne N}, a1
o.f the last section. Notice that if u € B, then for every a > 0 the set func-
tion u’ defined by u'(4) = au(ad) is also a member of 6. u'(N) = u(N)=1
wl?ich. means that if we take a uniformly distributed set such as N, and
thin it out by multiplying by a >0, we get u(alN)= (1/a)u(¥). Now
we believe that another reasonable condition for the notion ‘pick a number
ab random’ is that the preceding thinning property holds for every set
4 € @. This prompts us to define a new class of measures. ‘

A measure u ¢ G is called scale invariant with respect to a > 0 if u(A)
= apu(ad) for every A e S (i.e., if u treats all sets as it must treat N).
Let G, be the class of all measures, scale invariant with regpect to a. Weo
say that u is scale invariant if it is seale invariant with respect to o for
favery a > 0 andlet 8 be the class of all scale invariant measures. Existence
is guaranteed by the Markov-Kakutani fixed point theorem (cf. [1]
D. 456). It is also useful to have an explicit construction for such measm‘csi

©
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If ue®, let u™ be defined by

n—1

() = (1) Y au(akd)

k=0

and
y(4) = U —lim, u™(4)

for our fixed non-principal ultrafilter . » is then seen to belong to §,.
If 4 € Sp, then v € S ~ S.. This causes » to be seale invariant with respect
to all ¢"f" for integers m, n, so a suitable choice of a, § gives measures
which are scale invariant for a dense set of positive real numbers. If p
satisfies
(8) u(ddy<p(d) for 6=1,

then so will the measures constructed from it in the manner just deseribed.
A measure which satisfies (8) and is scale invariant for a dense set of positive
real numbers is scale invariant for all real numbers.

In pumber theory, subsets of N are often measured by asymptotic
density. If # denotes the class of measures u for which

n

[ fau <luba(im) Y F(k)
k=1
for all bounded functions f, then these studies can be considered as being
an investigation of the classes s and &~ N = & ~ G. All measures in s
satisfy (8), and we would like to conjecture the converse. At any rate,
the above shows that £~ 8 # 0.

We conclude our paper with a discussion of the first digit problem
(¢f. (1)) for which the following notation will be helpful. Let C be the
unit circle in the complex plane and A the Lebesgue measure on ¢ nor-
malized so that A(C) = 1. Use ares to measure angles centered at the
origin so that the complete angle about a point is 1. Measure angles in
the counterclockwise sense starting from the z axis. The mapping e: R—~C
defined by e(8) = exp (2wif) maps every interval of length 1 in R onto €
in a measure preserving fashion. Now we have the following

TuworREM 3. Let U be an arc in O, §> 0 an arbitrary real number
and 8= {xeR": e¢(logew) e U} If O ¢ R* where logs(0) is irrational and
weSg, then u(S ~N)= A(U). .

Proof. First note that 68 is a set which can be expressed in the
same way that S is except that its corresponding arc U’ is obtained by
rotating U through an angle of 2xlogs (8). Let U™ De obtained from U
by rotation through an angle 2krlogs(6) and observe that this converts S
into 6°S. Since logs(0) is irrational, the multiples 2krlog(f) are dense
on O (cf. [2], ch. 23) and consequently we can find ares U™ as close as we
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please to any desired position. 8, as well as its multiples 68, is measure
inducing since limy(logs(t)/t) = 0. Hence w(0%8 ~ N) = 0" u(6"8 ~ 0" W)
= 6"#(0"(6’ ~N )) = u(8 ~ N), the final equality following because ue §,.
Let PM = 08 ~ N, a set of integers which corresponds to the arc u
all P having the same measure with respect to u. Now consider p, g e N
such that (pfg) < A(U). By a simple geometric argument this imﬁlies
that we can find ¢ ares U™, &k ¢ 4, such that every point of € belongs t6
at least p of them. Correspondingly every m ¢ N belongs to at least p of
the ¢ sets P®, ke A. For n e N let B, be the set of m ¢ N which helong
to exactly n of the P, ke 4. Then we have ;

P = > w(P?) = D nu(Ba) = p .
e == ’
Thus .(p/q) < u(P"). Proceeding in exactly the same way we can show
that it 2(U) < (plg), then u(P®) < (p/g). It Wwe combine these results,
we see that u(8 A N)= u(P9) = A1(U). qed.

» C(')ROLLARY. If Py is the set of natural numbers whose first significant
digit lies between 1 and n, 1 <n <9, and pe 8 (in fact to any 8, where
logi, 0 is irrational), then u(Pp)= logy(n+1).

Eroof. For we can describe Py = S, ~n N where 8, is the set of all
o el such that 0 < e(logy®) < logy, (n+1). q.e.d.
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Metrizability of trees *
by
Carl Eberhart (Lexington, Ky.)

Introduction. It is a well-known result that dendrites (acyclic
Peano continua) can be alternatively defined as metrizable continua in
which each pair of points can be separated by a third point. L. E. Ward,
in [6], generalized the notion of dendrite by removing the metrizability
condition in the second definition, and called such objects trees. He then
showed that many properties of dendrites carry over to trees. In this
paper we shall be concerned with establishing properties of trees which
vield metrizability theorems. The principal results in this connection
are 1.6, IIL.1, II1.2, and IIL.5.

1. Separable trees are metrizable. By a continuum we mean
a compact connected Hausdorff space. A continuum is hereditarily wni-
coherent provided the intersection of any two of its subcontinua is connected.
A tree is a locally connected hereditarily unicoherent continuum. An are
is a continuum with precisely two non-cutpoints.

In Whyburn [7], pp. 88-89, several properties of metric trees (= den-
drites) are established. L. E. Ward showed in [6] that a number of these
properties carry over to the nonmetric case.

For the rest of this section X will denote a tree. Proposition I.1 is
due to Ward.

11. PropositioN. For each » and y in X, [z,9]1=) {0 w,y¢C
and C is a subcontinuum of X} is an are with endpoinis x and y.

Proof. It follows from the hereditary unicoherence of X that [z, ¥]
is the only subcontinuum of X irreducible between z and y. Suppose

e (2, y) = [z, yN{z, y}. I [#,y]\¢ were connected, then z and y would
lie in the same component of X\z. But this is impossible since the com-
ponents of open sets in locally conmected continua are continuum-wise
connected ([1], p. 110). Hence [z, y] is an arc.

1.2. ProPOSITION. If C is a component of X\p, then [z, p) = [z, pI\P
C C for each x in C.
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