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the o,-sequence of closed sets is nested. If the w,-diameters go to 0 then,
gince (X, ) is w,-complete, by theorem 4.2 the intersection containg
a point, @. Tf the w,-diameters do not go to 0 then there exists a set A’
of diameter > 1, for some y < w, contained in the intersection. In either
case A #0@.

We complete the proof by showing that {A.} converges to A. This
is done by showing that for any § < w,, if y > ag41 then d,(4,, 4) < 1.

First: A C Ny,(4,) is true by the following argument: if # e A then
@ € Nipp(day, ) So there exists & ¥ € A“m such that eu(®, ¥) < Lpt1. Since
du( Ay, Aop) < Lpt1, We have that y € Ny,,.(4,) and so there exists a z¢ 4,
such that ouy,?) < lps1. Since gu(#,y) < Lpa<ls, bY the lemma,
0@, 2) < 1. If follows that @ e Ni,(4,).

Now A, C Ny,(4) is true by the proof below. Let o ¢ A,; then for all
8> p+1, since dud,, Ao) < lpt1, it follows that » € N1,(Aq). Hence

@ € Nypa(N1o{Aag) C Ny N1,(Aa)) C Nip(N1,(4ay). Therefore @ € Ny(Nr(4ay))

for all ¢ < w, becanse Ny (Aq) D N1(dy,) < 6. Sow E:ﬂ N N1 (Aap))
<apu

= -Nlﬂ(tg Nl;(Aa;)) = Nlﬁ(A)'

Sinee every Cauchy o,-sequence converges in (C, d,) it follows that
(C,d,) is w,-complete and hence, by theorem 1.4, (C, V) is complete.
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Realization of mappings
by
. K. Sieklucki (Warszawa)

1. Realization of a mapping. Let € be a category of pairs
(X, X,), where X,C X are metric spaces and morphisms are continuous.
Though many of the results of this section are valid for an arbitrary € we
ghall pay our attention mainly to the three following categories:

a) The category & of all metric pairs and all continuous mappings.

b) The category P of polyhedral pairs and simplicial mappings.
By a polyhedral pair (X, X,) we understand a finite polyhedron X with
a triangulation and a subpolyhedron X, of X in this triangulation. Simplic-
ial mappings are considered with respeet to the given triangulations.
However, the same polyhedral pair may have various triangulations.

¢) The category Mt of pairs of differentiable manifolds and differen-
tiable mappings. By a pair of manifolds (X, X;) we understand a separable
manifold X (with boundary or not) of class C* and its submanifold Xi;
a differentiable mapping is also of class C™.

As it is a frequent practice to do, we identify the pair (X, ) with
the space X alone. If (X, X,) is an object of €, then we call X, a sub-
object of X. An isomorphism h of an object A onto a subobject B of an
object X is called an 4mbedding of A into X. If such an imbedding exists,
the object ‘A is called imbeddadble in X. :

It A, B are subsets of a metric space X and f: A—B is a mapping,
then we define D(f) = suﬁ)g(m,f(m)).

€.

Let 4, B and X b: ohjects and let f: A—>B be a morphism. Let
h: B—>X be an imbedding of B into X. We say that the morphism f
ig realizable in Xrelh if there exists a sequence {fx} (called a realization
of frelh), where h,: A->X is an imbedding of 4 into X forn=1,2, ...,
such that BmD(f,) = 0 for f,= hfhs".

If an o%ject B is imbeddable in X and if a morphism f: A—B is
realizable in Xrelh for any imbedding & of B into X, then we simply say
that the morphism f is realizable in X. (%)

The definition depends on the category € under consideration and
we will always make it clear if a statement concerns a particular €. Usually,

() In [8] such a morphism has been called imbeddable in X.
21*
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we shall withdraw the name of the category and apply one of the adverbs:
topologically, simplicially, or differentiably in the case of the category
S, P, or M, respectively. If, however, an arbitrary € is being considered,
then we use the words objeet and morphism instead of space and mapping,
respectively.

Topological realizability of a continuous mapping f: A —Brelh is
a necessary but not sufficient condition for the existence of a topological
imbedding of the mapping cylinder of f which is an extension of . Another
notion which is in a relation to the given above was introduced by
M. MeCord [4] under the name of approximability by homeomorphisms.
However, the definition of McCord requires that A and B are subsets
of X and that the homeomorphisms h, can be extended over neighbor-
hoods of A in X. Thus his definition depends on the situation of A and B
in X and is not equivalent to ours even for polyhedra in Euclidean spaces.

We shall now prove some general facts about realizability of mor-
phisms. The definition implies directly the following

1.1. LeMma. If a morphism f: A— B is realizable in Xrelh and A'C A,
B’ C B are subobjects such that f(A’) C B', then f' = f|A': A'— B’ is realizable
¢n Xrelh|B'.

Proof. Indeed, if {hs} is a realization of frelh, then {hs| A’} is a re-
alization of f'relh| B’.

1.2. LemwmA. If f: A— B is an isomorphism and the object B is imbedd-
able in X, then f is realizable in X.

Proof. Indeed, it is sufficient to verify that f is realizable in Xrelh
for any imbedding & of B into X. But we can define h, = hf forn =1, 2, ...
and this evidently completes the proof.

1.3. LeMMA. If the morphisms f: A—B and g: B—C are realizable
in X, then the composition gf: A—>C 48 also realizable in X.

Proof. By the assumption, ¢ is imbeddable in X. Let h be an
imbedding of C into X. Let ¢ be a positive number and let us choose an
index n such that D(¢s) < /2, where {h,} is a realization of the morphism ¢
in Xrelh and g, = hghs". Let {hf} be a realization of the morphism f
in Xrelh,. Then there exists anm such that D(fn) < &2, Where fr, = hnfhin
Thus for any positive & there exists an imbedding y, = hf, of A into X
and a morphism ¢, = gnfm such that h(gf) = gnhuf = gnfmye = poxe and
D(p:) < D(gn)+D(fm) < £/246/2 = &. This proves the lemma.

1.4, LiemuA. If the set of imbeddings is dense in the mapping space X4
and there exists am imbedding of B into X, then amy morphism f: A—B
i¢ realizable in X.

Proof. Let h be an imbedding of B into X. By the assumption,
for any natural number 7 there exists an imbedding s of 4 into X such

@
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that o(hf(a), k(@) < 1jn for aed and n=1,2,.. Evidently {h.} is
a realization of the mapping f in Xrelh. .

1.5. COoROLLARY. Let f: A—B be a continuous mapping. If A, B are
separable, then f is topologically realizable in the Hilbert cube I°. If A, B
are separable, dim A < m and B is topologically imbeddable in the (2m—+1)-
dimensional cube I™ ™ (in particular, if AimB < m), then f is topologically
realizable in I™*. If A, B are polyhedra, f i¢ simplicial, dim A < m and B
is simplicially imbeddable in the eube I"™ (in particular, if dimB < m),
then § is simplicially realizable in I"™**. If A, B are manifolds, f is differen-
tiable, dim A < m and B is differentiably imbeddable in the Buclidean space
B (in particular, if dim B < m), then f is differentiably realizable in ™™,

Proof. The corollary is an immediate consequence of Lemma 1.4
and of the following theorems, respectively: the Urysohn Theorem ([5],
p. 120), the Menger-Nobeling Theorem ([6], p. 69), the polyhedral lemma
to the Menger-Nobeling Theorem ([7], 1.2), and the Whitney Theorem [9].

1.6. THEOREM. The set of morphisms f: A—B, where A is compact,
which are realizable in X is closed in the mapping space .

Proof. Let f: A—>B be a sequence of mappings realizable in X
and let f= limf®. Let h: B—~X be an imbedding and let ¢ be a positive

number. Then there exists an ¢ such that dist(hf, f') < £/2 and, since il
is realizable in Xrelh, there exists an imbedding hi of 4 into X such
that dist(f}, id) < &2 for fi = hfi(hj)™". Let us define &, = hj, f, = hf(h;)""-
Then f,= hfh;* and dist(f., 1d) < dist(f, f;)+ dist (7, id) < /2+2/2 = &.
Thus the proof has been completed.

An object A is called guasi-contractible to a point a, € 4 if the mapping
m: A-{a,} is & morphism realizable in Arely, where »: {ag}—~A4 is the
inclusion.

1.7. TEEOREM. If A is an object quasi-contractible to ay and B is an
object such that A x B is also an object, then any morphism f: A—B is
realizable in A xBreli,, where i, is the isomorphism of B onto (a,) X B
in A xB. )

Proof. Since A is quasi-contractible to a,, there exists a sequence
of imbeddings {fs} of A into 4 such that li.?dialm (Fn(4) v {as}) = 0.

Let us define the morphism hy: 4 —A X B by the formula: hn(a)= (@), f (@)
for acA, n=1,2,.. Since h, is an imbedding, so is hn. Next, let
us define the morphism fu: hn(d)—(a) x BCAXB by the formula:
falfala), f(@)) = (a0, f(a)) for (hn(a), f(a)) € Ba(4), m=1,2,.. Then
Q{fn(zn("'): f(ll)), (ﬁn(“): f(“))) = Q(En(“), ao) < dia.m(hn(A) v {a'o})i conge-
quently, Lim D(f,) = 0. Finally, we have fahn(a) = (ao, f(a)) = 4y f(a), and

this completes the proof.
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An object 4 is called wniformly quasi—oontractible if for every point
o e A the mapping n”: A—{a} is a morphism with a realization {hs}
in Arelss, where »%: {a}—A is the inclusion, and for each # the mapping
ha: Ax A—>A defined by hu{a’, a’’) = hy(a”) is & morphism.

1.8. THEOREM. Let A be am object in a multiplicative category and let A
be uniformly quasi-contractible. Let f;: A~ A be a morphism for j =1,2, ...
oo, M. Let ay € A be a point and let i, be the isomorphism of A™ onto A™ x (a,)
in A™. Then the product of mappings f=fyXfaX oo X fm: A™—>A™ is
realizable in A™V'reli,.

Proof. Wehave 4,f(a, dsy .., m)= (fl(al) s Jeol@2) 5 eoe s Frn@m) ao) for every

(@yy @yy <.y @m) € A™. Since 4 is uniformly quasi-contractible, there exists

a sequence of imbeddings {f7} of A into A such that limdiam (hz(4) v {a})
n

=0 and Fu: AXA-—>A, where hn(a’,a’)=hi(a'"), is a morphism for
each n. Let us define the morphism h,: 4™ A™" by the formula:
Bty gy ey Om) = (BR(a), ooy TP am), B *(ay), B(an)), where
(B1y gy vy Om) e A and n = 1, 2, ... We shall prove that ki, is an imbedding.
Since each coordinate is a morphism, it is sufficient to verify that the map-
ping is one-to-one. Let us suppose that hn(ai, as, ..., am) = kn(al, a7, ..., am).
Then, according to the last coordinates, we have hi(af) = h(ai), whence
a; = a;'. Consequently, according to the first coordinates, we have
a; = a3 and then, by induction, we get a}= aj for j=1,2, ..., m.

On the other hand, we have HmAl™(a;i,) = fi(ay) for j=1,2, ..

n

o T e
ey m—1, h’inh,. m(ay) = fn( ), h?h?(al) = a,, and this completes the
proof.

2. Realization in the plane. In this section we consider the
category & of all metric spaces and continuous mappings and the following
problem. Let 4 and B be two planar (i.e. topologically imbeddable in
the ?lane) continua. Give a necessary and sufficient condition that any
eontmu‘ous mapping f: A—B can be topologically realized in the plane.
A partial answer o this question is given by the following theorem

Let I denote a closed segment, let T denote a triod i.e. the unioﬁ
of three closed segments disjoint beyond one common end-point, let O
denote & eire_le, and let @ denote the union O U I, where 0 ~ I c’onsists
of an end-point of I. We write 4 t(o:p A’ to denote that 4 is topologically

jimbeddable in 4’. ! ! i i
able in 4’. If A&A and B&)B, then we simply write (4, B)
C(4', B').

top

. j.l. TeeorEM. Let A and B ‘be locally comnected comtinua and let
dim4d <1. A necessary amd suffwiem condition that every continuous

&
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mapping f: A—~B be topologically realizable in the plane is that either
(4,B)S (T, 0) or 4, B @D

Tn order to prove the necessity of the condition, we first prove the
following lemmas.

Let H denote the union of three closed 8egments I, I, I, such that
I ~nI,=0 and Iy~ I, I, ~ I, are the end-points of I,. Let K denote
the union of four closed segments disjoint beyond one common end-point.

2.9. LEMMA. Let C be a locally connected continuum. Then

(i) Oé.z;T if and only if either KtonC or HthDG or Otg.;O;

(i) 0 ¢ O if and only if TC C;

top top

(il € t(oz;) Q if and only if either K pr C or Ht% C;

(iv) Ot(g; I if and only if either T me O or O tE!:p C.

Proof. The sufficiency of the condition is obvious in any case. In
the proof of necessity we make use of the ramification theory for locally

connected continua ([6], section 46).
(i) Let K,H,O ¢ 0; then ord( <3, there exists at most one
top

point of ramification order 3, and ¢ is acyclic. This implies that O is
either a point or I or 7. )
(ii) Let T ¢ C; then ordC<2 and O is either a point or I or O.
top
(iii) Let K, H ¢ 0; then ord ¢ < 3 and there exists at most one point
top

of ramification order 3. If (¢ is acyelic, then by (i), O me T&, Q. Otherwise,
there exists exactly one simple closed curve in 0 and consequently ¢ = Q.
(iv) Let T,0 ¢ C; then ord0 <2 and € is acyclic. Hence C tg I.

top

0.3. LnMa. Let A and B be locally connected continua such that neither
(4, B)bg_'p(T, 0) nor (4, B)&)(Q, I). Then the pair (A, B) contains topologi-

“cally one of the following pairs: (I, T}, (#,I), (K, I), or (0,0).

Proof. We consider the four cases possible: 4 g Q, AgT and
34 P
BgQ, AgO and BgI, BgO. In any case an easy application of
top top top top

Lemma 2.2 gives the conclusion. .

Proof of Theorem 2.1. Necessity. Let us note that for any con-
tinuous mapping f: A'—>B, where (4, B')tg;(A, B) and (4',B)
= (I, T),(H,I),(K,I), there exists a continuous extension over A,
for the graphs are Absolute Retracts. The same is valid if (4’, B') = (0, 0)
and dim4 <1 ([6], 48. VI). If, however, (0,0)= (A’,B’)&](A,B) and
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dim A4 = 2, then also (K ,I)tg) (4, B), for 4 is locally connected. Thus,

by Lemmas 2.3 and 1.1, it is sufficient to give for each pair (4, B)
=({,T),(H, I),{K, I), or (0,0) an example of a continuous mapping
ft A—B which is not realizable in the plane rel to any imbedding of B
in the plane. Since the plame is topologically homogeneous with respect
to the graphs under consideration, it is sufficient to built such examples
for a particular imbedding h.

a). EXAMPIE. Let I = [~5,8], T=(-2,0), (2,0) v (0,0), (07 1)
and let ¢ be the inclusion of T into the plane. We define the piece-wise
linear mapping f: I—-T by the conditions: f(—58) = (—2,0), f(—4) = f(2)
=(=1,0), f(=3)=f(-1)=f{1)=F(8) =(0,0), f(—2)=f(4)=(1,0),
f(6) = (2,0), f(0) = (0,1). Suppose that {k,} is a realization of f in the
plane reli. Let an = hy(y) for vel and n =1, 2, ;Ehen for » sufficiently
large there exist in the plane two aresL’ = an’,dn, L = ay’, a and
a triod ¥ with the end-points a5°, an, a5, such that L', L, ¥ are mutually
disjoint and disjoint with h.(I) beyond the end-points. Thus hy(I) v
VI'uIl”v Y would be one of the Kuratowski’s curves imbedded in
the plane.

b). Exawere. Let H = (0, —2), (0,3) v (1, —5), (1, 6) v (0, 0), (1, 0)
I=10,5] and let ¢ be the natural inclusion of I into the z-axis of the
plane. We define the piece-wise linear mapping f: H->I by the conditions:
J0,-2)=f(,-b)=0, f(0,~1)=f(1,—4)=F(1,2)=1, f0,0)
=fl,=3)=f(1,1)=f(1,8)= 2, f(0,1)=f(1,—2)=75(1,0)=f(1,4)
=3, f(0,2) =f(1,-1)=f(1,5) = 4, f(0, ) = f(1, 6) = 5. Suppose that
{Ba} is & realization of f in the plane reli. Let a}* = hu(v, u) for (v, u)e H
and n=1,2,... Then for n sufficiently Iarge there exist in the plane
two disjoint triods: Y’ with the end-points a%™2, ai™®, a}® and Y with
the end-points az’, ay’, oz ™ which are disjoint with hn(H) beyond the
end-points. Thus h,(H) v ¥’ v Y would be one of the Kuratowski’s
curves imbedded in the plane.

¢). Examprr. Let K= {(-3,0), (7,0)uv (0,—9),(0,5), I=T0,86]
a.m} let. i be the natural inclusion of I into the ®-axis of the plane. We
define the piece-wise linear mapping f: K-»T by the conditions: f(—3, 0)
=f(7,0)=0, f(_210)=f(6’0)=f(0’*4)=1’ f(_170)=f(5y0)
= f0, =3) =f(0, —8) = f(0,1) = 2,  £(0, 0) = f(4, 0) = f(0, —2)
=.f(0; —6) = f(O, 2) = 3, f(3) 0) = f(lr 0) = f(07 "‘1) = f(ov '—7)
=f0,3)=4, f(2,0)=F(0, -8)=f(0,4)=5, f(0,—9)=f(0 5) = 6.
Suppose that {ha} is & realization of f in the plane reli. Let al* =’ Bn(, @)
for (v, u) e K and n=1,2,... Then for sufficiently large there ez’zist
in the plane two arbitrarily small aresD’ — a,;i“,«a;’;‘, I = a‘,’;T”"

. o mas a
which are mutually disjoint and disjoint with ha(EK) beyond the end-poi,nt:.

- © Realizati .
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Replacing the arca, ™, ay’ C koK) by L' and the arcad™, a2 C hy(K)
by L we get the same situation as in Example b and the reasoning of
that example can be continued.

d). EXAMPLE. Let O be the set of complex numbers z for which
|| = 1, let ¢ be the inclusion of O in the plane, and let f: 0—O0 be given
by the formula f(2) = 2% for z ¢ 0. Evidently degf = 2. Suppose that {A.}
is a realization of f in the plane relé. Then for # sufficiently large we have
(0, 0) ¢ hu(O) and, by the Borsuk Theorem on Disconnecting 0 from oo [3],
we get |degf| < 1.

Before we pass to the proof of sufficiency of the condition given by
Theorem 2.1 let us prove the following

2.4, LEMMA. Any continuous mapping f: @ —I is topologically realizable
in the plane. ’

Proof. Since the plane E” iy topologically homogeneous with respect
to closed arcs, it is evidently sufficient to prove that any continuous
mapping f of @ onto I is realizable in E’reli, where ¢ i3 the natural in-
clusion of the interval I = [0, 1] into the #-axis. Moreover, by virtue of
Theorem 1.6 and by the simplicial approximation theorem, we can assume
that the mapping f is simplicial in some triangulations of @ and.of I.
By the same reason, we can assume that f maps any 1-simplex of the
triangulation of @ onto a 1-simplex of the triangulation of I.

Let a%, at, ..., a1, a? = &° be those consecutive vertices in @ = 0w I
which lie in O and let «° = #° , #', ..., t* be those vertices in @ which lie in I.
Let 0=0" < b < ..<b =1 be the vertices of the triangulation of I,
where r = 2.

By a fold of the mapyping f we understand any sequence a?, ..., a”*#, ...
vy ot grtse where p > 0 and indices are reduced modp, such that
flarte) = f(art®—e) = f(ar+2+e) for a =0, 1, ..., p.

First of all let us note that if f has no folds, then it can be realized
in FPreli. Indeed, in this case p = 2r and there exigts 0 <v<p such
that f(a"**) = f(a"™*) = b* for a= 0,1, ...,7, where indices are reduced
modp. We can assume without a real loss of generality that 0 <» <.
Let n be a natural number. We define a function %, of the set of vertices

of @ into F* as follows: hj(a") = (b°, %), Ryfat) = (b“, %») fora=1,2,..
vy =1, Bp(a”%) = <b", %&) for a=1,2,..,7—1, k@) =Ry

2\ ., 1 .
= (b', %); (P = (f(t”),%—g’qe—n) for f=0,1,..,¢9. It is easy to

see that the piece-wise linear extension Ay, of ks, over @ is & homeomorphism
of Q into E? and that {k.} is & realization of f in HEPreli.
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We now procede by induction with respect to p. Let p = 2r. Since f
is onto, it has mo folds, and can therefore be realized in E’reld,

Tet us suppose that the conclusion is valid for all numbers s which
satisty the inequalities 2r < s <p —1 and we shall prove it for the number p.
Tiet a7, ey @778, oy 07T, L, @7 DR B fold of f. Let us choose two of

— —— —

the three aresL! = a7, avth, L* = arte, ar+%, I} = @+*, ¢>+% in O which
do nob contain the point a° in the interiors, then let us cut off their in-
teriors and identify the two end-points of each of them. Suppose that
the areL™, where 1 < &, < 3, has not heen canceled. The new triangula-
tion of Q has p—2" < p vertices in 0. Moreover, by the definition of
& fold, the mapping f induces in an obvious manner & mapping f' of @
onto T which is simplicial in the new triangulation of @. By the inductive
assumption, there exists a realization {hn} of f in EPreli. Let & be a positive
number and let D(if'hs ) < ¢/2 for some .

It is clear that we can replace the are (L™ by three arcs M k= gk, gt
(k=1, 2, 3) which are distant from hL(L*®) less than &2, are mutually
disjoint and disjoint with 74(0), and are such that at most one of them
meets h4(I). Then, by a suitable modification of hy on I we can achieve
that if h4(I) meets one of the arcs M ¥ (k=1,2,3), then the intersection
consists of the point hp(a®). Finally, we match pair-wise the end-points
of M* (k=1,2,3) and of hi(L*) in such a manner that hp(0)—hn(L*) v
v M v M* U M is again & simple closed curve which meets hn(I) only
at the point hs(a%). The construction naturally induces a’homeomorphism ki,
of @ into E® which agrees with %, on @—(L'v I* v L*) and maps the
aresI!, I*, I’ onto M, M?®, M® (possibly not in the same order). Since
evidently D(ifh;') < &, we infer that {h.} is a realization of f in EPreli.

Thus the proof is completed by induction.

Since I is an Absolute Retract, any continuous function f: A—I,
where ACQ, can be extended over . Thus TLemmas .l.l and 2.4
imply .

2.5. COROLLARY. Any continuous mapping f: A—B, where A, B are
continua satisfying (A, B) ton (@, I) is topologically realizable in the plane.

2.6. LEMMA. Any continuous mapping f: IO is topologically realizable
in the plane.

Proof. By topologiea.lAhomogeneity of the plane F* with respect
to simple closed curves, it is sufficient to prove that any continuous
mapping f: I—0 is realizable in E?rels, where 4 is the natural inclusion
of the unit circle in E*. In order to do this we define ,: I—E® by means
of the formula ha(z) = (1—%) -f(). Evidently h, is a homeomorphism

for each n=1,2,.. and {hs} is a realization of f in FPrel.

Proof of Theorem 2.1. Sufficiency. If (A,B)MCD(Q,I), then by

Corollary 2.5, any continuous mapping f: 4B is realizable in the plane.
Let us now suppose that f: A—B, where (4, B) tg) (T, 0). Since A is

contractible to a point, there exist continuous mappings ¢: A—I and
y: I—->B such that f = pp. It is now sufficient to make use of Lemma 1.3,
Corollary 2.5, Lemmas 2.6 and 1.1.

Since any mapping f of the segment I into the “‘condensed sinusoid”
8 is in fact & mapping of I into a closed arc, Theorem 2.1 implies that f
is topologically realizable in the plane. Thus the assumption of local
connectedness is essential for that theorem.

In connection with Theorem 2.1 the following problem can be raised.

2.7. PROBLEM. Which plane continua are images of the segment under
a continuous mapping realizable in the plane?

We shall now consider more exactly the case of mappings of a eircle
into itself. Namely, we shall prove the following

2.8. THEOREM. A continuous mapping f: 0—0 is topologically re-
alizable in the plame if and only if |degf| < 1.

Proof. Since the plane is topologically homogeneous with respect
to simple closed curves, it is sufficient to consider realizability reli, where
4: O—F® is the natural inclusion. Necessity of the condition is proved
by the same reasoning as in the proof of Theorem 2.1 (Example d). In
order to prove that the condition is sufficient we consider the two cases:

Oase 1. degf==10. Then there exist continuous mappings ¢: O—>I
andy: I—O such that f = pp. Now the conclusion follows from Theorem 2.1
and Lemma 1.3. :

Oase 2. degf= 1. It is clear that we can assume that degf=1.
By virtue of the simplicial approximation theorem and by Theorem 1.6,
it is sufficient to consider the case of an f which is simplicial in some
triangulations 0, and O, of 0. Let v be a vertex of 0, and let {wy, Wy .oy Wi}
= f~Yv). We can evidently assume that %> 1 and that v= (1, 0). Let L
be a lemniscate consisting of two circles L' and L” with a node u. For
each i=1,2,..,k+1 (modk) let M= ty, w1 C0; and M= 0—
—int M?%. Then for each ¢ there exist two simplicial mappings (with respect
to a triangulation of L): @i O,—L, wi: L—0, such that e(Mi) =1/,
@i MY) = L', gi(w?) = @i(Wis1) = v and f = pip;. The mapping yp; induces
two continuous mappings vi: L'—>0,, 97: L''—0,. It is clear that

k

|degyl <1 for i=1,2,..,k and D degy;= degf=1. Hence there
=1

exists an 4, such that degyi, = 1. On the other hand, degyi+ degyy
—=degf=1 for i=1,2, ..,k Hence degy;, = 0.
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Let ¢ be a positive number. Let a(d) be that branch of arctand which
satisfies 0 < a(®) < = Let (r,9) denote polar coordinates of a point in

2¢
the plane and let us define I = {(r,ﬁ): 0<d< 2, r= f-a(ﬂ)-}-l_g},

J={(r,vﬂ): —co <P < w,r:%ﬂ(ﬁ)—l—l—e}. By the covering homo-

topy theorem, there exist continuous mappings v': Ms,—I and v+ MY —J
such that f|Mi, = &', f|Mi; = &'’y where & H* —(0)—>0 is the radial
projection.

We define a mapping k. of O, into E* as follows. Let 6 be a real-valued
function. defined on O, such that 8(w;) = —1, 8(wy+1) = 1, and which
iy monotone on Mj, and on M7,. If p e Mi, and +'(p) = (r, ), then we

define h,(p)=(r+if.a(p),0); if peMy and (p)=(r,d), then we

define kp) = (r—%é(p) , 19). It is easy to see that A, is a homeomorphism

and that &h(p) = f(p). Since ¢(k(p), f(p)) < & the proof has been com-
pleted.

3. Mappings of cubes and of spheres. Let I=[—1,1] and
I"=IxI;X..xIn, where I;=1I for j=1,2,..,m. The natural
inclusion of the cube I™ into a cube I¥, where % > m, will be denoted
by i. Let Q"= {(®,, @, ..., ¥m) ¢ B™: @}+-a5+ ...+ a5 <1}. The natural
inclusion of the ball @™ into a ball Qk, where k& > m, will also be denoted
by 4. Finally, let §™ be the boundary of @"**; we also denote by i the
natural inclusion of §™ into EY, where & > m. '

3.1. THROREM. Any continuous (simplicial) maepping f: I™—I" is
topologically (simplicially) realizable in the cube I"™reli. Any differentiable
mapping f: Q"—Q™ is differentiably realizable in the ball Q*™reli.

Proof. Liet us note that the cube I™ is topologically (and even
simplicially} quasi-eontractible to the point 0. Since the categories &
and P are multiplicative, we can apply Theorem 1.7 and obtain the
conclusion. The category I is not multiplicative, however the open
ball intQ™ is & manifold differentiably  quasi-contractible to the point O
and the produet @™ x int@™ is again a manifold with boundary. Thus,
by Theorem 1.7, the differentiable mapping f: Q™—Q™ is differentiably
realizable in Q™ x intQ™reli,, where 4, is the natural inclusion of Q™ into
Q™ xintQ™. There exists, however, a diffeomorphism of Q" x intQ™
onto a submanifold of ™ which maps i,(Q™) onto #(@™) and this implies
the conelusion of the theorem.

Let us define the number ¢(m) to be the least natural number %
such that any continuous mapping f: I™~1™ ig topologically realizable
in the cube I"reli. Theorem 3.1 assures that 6(m) <2m for m=1,2, ...
On the other hand, we have the following
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3.9, LeMMA. Let X be a locally connected continuum and f: X—~X
a continuous mapping. Let us suppose that f(z') = f(«") for some &', 6" ¢ X
and that there exist open neighborhoods U’ and U'" of the poinis ' and x",
respectively, such that U ~U" =0 and fiU', flU" are homeomorphisms.
Then the mapping f cannot be topologically realized im Xrel identity on X.

Proof. (2) Suppose that {hs} is a topological realization of f in Xrelidx
and let y = f(#) = f(2"). We shall show that y < ky(U’) for suﬁﬁeiel'ltly
large n. Indeed, let assume that y¢ h{U’) for n = 1,2,.. S_n}ce
lim g (ha(2'), ¥) = 1i71bng(hn(x’), f(@)) =0, by local arewise connectivity

n

of X, there exist arbitrarily small arcs joining ha(2') with y for sufficiently
large n. Thus there exists a sequence pn ¢ Frin(U') = hy(FrU’) = ha(Fr U")
guch that limp, = y. Let pp = ha(u,), where u, e U’ for n=1,2, ...

n

Let us consider a positive ¢ such that if # « X and ¢(z, 2") < ¢, then
@ e U, Since f|U’ is a homeomorphism, there exists a 6_> 0 suc.h that
it we U’ and o(f(x), y) < 6, then ¢(w,a') < e. Let us consider an integer
number # such that o(f(us), hn(tn)) < 6/2 and o(ps,y) < /2. Then

U < W) 5 P tn)) - 0 (Bn{4n) , ¥) < 8/2+ /2 = 6. Hence g (un, ')
i(J;( a,'g(’iytlonsgt(l];(e;zl’y u(,, e))U’,eéontra.ry )to un e Fr U’. The contradiction
proves that y e ha(U’) for sufficiently large n.

By the same reason, y € ha(U") for suffigientlz large n. Thus
O+ ha(T") A ba(T") = ha(T' ~ T"), contrary to U'n U"=@.

The lemma we have just proved together with Theorem 3.1 imply
the following

3.3. COROLLARY. m-+1 << e(m) < 2m for m=1,2,..

Proof. Indeed, the mapping f: I"—I" defined by the formula
F(yy Ty oery Tn) = (&3 Tay oory Tm) FOT (@1, Tp, oy @m) € I™ satisties the assump-
tions of that lemma.

3.4. CoROLLARY. ¢(1) = 2.

‘We shall give an example allowing to improve one inequality of 3.3.

3.5. ExAMPLL. The mapping f: @ xI™—@" xI™ defined Dby the
formula f(2, @y, @y, ...y Tm) = (&8, &1, Ty -o.y Tm), Where z‘eQ“ is a qompl(?x
number and (@, @a, ..., @m) €I, cannot be topolzoglcally rea.llzed 31
Q* x I™"'reli, where i is the natural inclusion of @*xI™ info ¢ x ™t

Proof. Let us suppose that {hs} is a topological rea.liza{:ion of f in
Q@ x I™reli and let h, satisties the inequality of(ka(p), if(p)) < 1/8
for pe@*xI™ TFor every zeQ® such that [z] = 92712 et 9(2)
= inf{t: (22, 0, ..., 0, 1) € hs(@")}. Then exactly one of the points
Bu(2, 0, ..., 0), hn(—2, 0, ..., 0) can be joined in ha(€ x I'™) with the point

() A stronger formulation of the lemma announ ced in [8] is falge.
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(2,0,..,0,9(2)) by an are of diameter less than {. It can be proved
that this property defines a continuous selection of one point from each
pair (¢, —2), where |¢| = 27'#, which is evidently impossible and this
contradiction proves our property.

3.6. COROLLARY. m-+-2 < ¢(m) < 2m for m= 2,3, ...

3.7. COROLLARY. ¢(2) = 4.

In connection with 3.4 and 3.7 the following problem can be raised.

3.7 ProBLEM. Does the equality c¢(m) = 2m hold for each natural
number m?

From Theorem 1.8 we deduce the following
3.8, TEEOREM. If f;: I¥ ~I* is a continuous mapping for j = 1,2, ..., m,

then the product f=fi X foX «. X fm: I™ 1™ s topologically realizable
in I™¥¥rels, where 1 is the natural inclusion.

Proof. We have to verify that the cube I is topologically uniformly
quasi-contractible. It is, however, easy to see that for any point a, eI*

a 1
the formula hn(az)=—ﬁ(a2~a1)+a1, where a, e I* and n=1,2,..,

defines a topological realization {A%} of the mapping =™: I*—{a} in
T*rel the inclusion +*: {a,}—I*. Moreover, h%(a,) is a.continuous function
of the pair (ay, a,).

3.9. OoroLLARY. If fj: I—1I is a continuous mapping forj=1,2,..,m

then -the product f=fi X foaX .o Xfm: I"—I" is topologically realizable

3 1 . .. . .
in I reli, where ¢ is the natural indusion.

The property exhibited in this corollary plays a fundamental role
in the proof of the R. Bennet’s theorem [1] on imbedding of products
of chainable continua.

If mappings of spheres into spheres are being considered, the degree
of a mapping has an influence on its realizability in an Euclidean space.

‘The first part of Theorem 2.8 can be, by using of the same methods,
generalized to the following )

3.10. THEOREM. If a continuous mapping f: 8™->8™ can be realized
in B™'reld, then |degfl < 1. ‘

However, the converse theorem is not necessarily true as it is shown
by the following example.

8.11. BxaMPLE. Let p: I"—>I" be a continuous mapping which
cannot be realized in E™* (comp. Example 3.5). By making & suitable
pomeomorphism we can assume that ¢ maps the hemisphere 87 into
itself, vgherle 6”.)’5'= {(@ @y, ooy Bnts) € B™: @yy > 03, Leb m: §™—>87 be
the projection given by m(my, 23, ..., Tm, Tms1) = (B, T3, vvy T, |Imsa]) a0
let «: 8T—8™ be the inclusion. Then it is easy to see that the mapping

@
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f=ipm: S"—8" cannot be realized in E™*'reld, though degf = 0. Thus,
in. particular, there exists a continuous mapping f: §*—>§* of degree 0
which cannot be realized in H®reli. A slight modification of this example,
found by A. Trybulee, gives a mapping of degree 1 with the same property
concerning realizability.

4. Embedding of inverse limits. Let f: A—~B be a mapping
of metric spaces. We define the Lipschitz number of the mapping f as

{e (f(a'),f(a"))} .

e(a’y a”)

L(f)= sup

a,a'e
ot

Let f: A—~B be a morphism and let {ha} be a realization of f in a space
Xrel an imbedding % of B into X. We say that {hs} is a Lipschitz realization
it limsupL(fa) < 1, where fo=hfhy," for n=1,2, ..

4.1 THEOREM. Let {.Ai, (17'}, where aj: .A,'+1—>.Aj for ji=1, 2y ey be
an inverse system of objects and morphisms such that the inverse limit
A = Lim {4, o5} (not necessarily in the category) is compact. If thq mor-

phisms a; can be Lipschilz realized in a complete object X for j=1,2,...,
then A can be topologically imbedded in X.

Proof. By the assumption of realizability of e, in X, there exists
an isomorphism kb, of 4, onto a subobject B, of X. Then, by means of
induction, we use the assumptions to extend the inverse sequence {A;, aj}
to the following diagram: :

a ag o441

A4, A, Py PSSy
lm J,h’ lM l"ﬂt

- B B
B, B1 B, 2 B2 Bi 5 By 41

where %, is an isomorphism of 4; onto & subobject B; of X, ﬁ’ is a morphisnt},
hjas = Bihisa, D(fs) <27%, and L(f) <1+ 977 for j=1,2,.. This
implies, in particular, that the inverse limit B = Lim{By, B;} is home-

omorphic to 4. It is therefore sufficient to imbed B in X.
Tet us define a mapping h: B—~X as follows. If b= {b;} ¢ B, then

e(by, bj+x) = 9(/5'!---/31+k-1(bi+k),bf+k)<2"(M); thus {b;} is a Cauchy

. sequence in X and let h(b) = limby.

?
The mapping & is continuous. Indeed, if b= (b} eBlorn=10,1, ...
and limb” = b° in B, then limb}=3} for j=1,2,.. Consequently,

"
R(b%) = lim b} = limlimb} = limlimb} = limh(b").
i i n n 7 n
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The mapping % is one-to-one. Indeed, let b’ = {b7} and b" = {3y}
belong to B and let b’ % b"’. There exists a §o such that for j = j, we have
b} # bj . Consequently, .

o (B1(b5), Bi(bY)
o (87, 57)
whence ¢(81(5}), f1(bY)) < o (b}, ) (1+277) for j = jo-
Thus
0< By, by < (L4 27°) (L4 27%) L (14+27")- 0 (85, bY)  for j>j,.

<IL(f)<1i+277,

Writing p = H(1+2‘f) < oo we have 0 < p(bl,, b)) <

o(d",0") = Q(bioy bia)
V4

P-0(bj, bY), whenee

>0 for j>j,- But this implies that h(d") = limb;
1
;&hjmb, = h(b"). Since B is compact, we infer that h is a topological
imbedding of B into X and this completes the proof.
We shall now prove that the assumption of Lipschitz realizability

in Theorem 4.1 can be replaced by usual realizability in the case of the
polyhedral category. Let us begin with two lemmas.

4.2. LEMMA, Let P be a subpolyhedron of a polyhedron X. For any
&> 0 there exisis @ 8 > 0 such that for each subpolyhedron Q of X and o
simplicial mapping f: P—Q satisfying D(f) < 6 we have

olf(2), )
o’ 2”) te

for any two distinet points p’, p”’ which either belong to a common simplex
of P not degenerated by f or belong to disjoint simplexes of P.

Proof Let us suppose that p’, p"’ belong 1;0 a simplex $(Poy D1y ooy Pr)

and p' = Z'lfp pl= Zh’pf, where Z}.i iZﬂ.i = 1. Since the points
=0

f(p,), where = 0 1 , k, are hnearly independent, the function

k
@ (Roy Ay ieg A) = | .Z;) h-q;\ has a positive minimum x on the unit sphere

1

2 . . 4
ig,; Ji=1. Thus for D(f) sufficiently small we have Ié; Aipi| > p/2. On
the other hand,

k E
(@), 507 _ 12 W el | 3 aa]
(plypu) = k % , Where L‘:___.____.‘
|2 0i—x0pd | 3 0.pd S iz

T

B2

©
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k
and consequently > 1= 1. Thus
1=0

k
) | 2 A qi—p9)|
e(f(i(o)J;(p))\l+f=ok <1+k_}3_ i D(<s.
elp’, 1{1_%1‘2)’_! H

The conclugion follows, since P consists of finitely many simplexes.
Suppose now that p’,»" belong to disjoint simplexes of P. Then
there exists a positive u such that o(p’, p"’) > p. Thus

elf@),f»") o(f@), flo"))—elp', 0™ 25
e’ p") =i+ Y <ty i D<o

The conclusion follows.

4.3. Levma. Let P be a subpolyhedron of a polyhedron X. There exists
positive numbers 8, n such that if Q is a sub;polyhedron of X, f: P—Q is
a simplicial mapping satisfying D(f) < 6, 8", 8" are simplexes of P not de-
generated under f and having a nom-empty proper face s* as their inter-
section, and p’ s —g*, p" es'’'—s* then inf X (p',p,p",p) >

pes*

Proof. By compactness of ¢ there exists a positive number 5 such
that if ¢, are simiplexes of @ which have a non-empty proper face t*
as their mtersecmon, and if ¢’ e’ —1* ¢'' ¢t —1*, then mf x(0,0,0,9

> 2. It is now sufficient to use the assumption that f does not degener-
ate s’ mor s” (so it does not degenerate s*) and find a suitable ¢
replacing 27 by #.

4.4. THEOREM. Let {4;, o}, where ajz Ajp—A; for j=1,2,.., be
an inverse system of polyhedra and simplicial mappings. If the mappings a;
can be simplicially realized in a polyhedron X for j=1,2,.., then
A =Tim{4;, a;} can be topologically imbedded in X.

Proof. Making use of Lemmas 4.2 and 4.3, we extend, exactly in
the same manner like in the proof of Theorem 4.1, the sequence {4;, as}
to the following diagram:

my ua o

4, A, AT Ay

NN

; 1 B Bi-1 B1 Bi+1
-Bl BB Bj .Bj.}-l e

where for any j= 1,2, ... ks is a simplicial homeomorphism of 4; onto
a subpolyhedron B; of X, B; is a simplicial mapping, hja; = Bibgi1,

Fundamenta Mathematicae, T. LXV 22
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s elBiv), Bi(v7))
PO <27 ==, 5
which either belong to a common simplex of B; not degenerated
under B;_; or belong to disjoint simplexes of B;, and inf*<): (b5, B, 7, b)
besy

> > 0 for any points bj e §—s¥, by e s —sF, where s}, s/ are simplexes
of B; which are not degenerated under f;_, and have a non-empty proper
face s as their intersection.

Then, as in that proof, we define the mapping % of B = Lim {By, f;}

< 14277 for any two distinet points bj, by

into X by the formula h(b) = limby;, where b= {b;} ¢ B, and verify that
it is continuous. '

It remains to verify that h is one-to-one. Suppose that b’ = {bj}
and b"’ = {b7} belong to B and that b’ = b'". Then there exists a j, such
'that for j > j, we have bj 5= by. Let s; denote the carrier of the point bj
in B and s — that of by . Evidently f;_1(s) = $}_1, B(s7) = s7_,. Since X
is a polyhedron and any B; is a subset of X, the dimensions of B; are
bounded by dimX. Thus we can assume without any loss of generality
that for j = j, neither s nor s; is degenerated under f§;_;.

For any j one of the following possibilities holds:

() at least one of the simplexes s, s is a face of the other;

(ii)  the simplexes sj, s are disjoint;

- (iii)  the simplexes s}, sy have a non-empty proper face as their
intersection.

Moreover, sir.Lee Bi-1(85) = 81, Bi—1(sy) = sj_; and B;-, is simplicial
We can assume without any loss of generality that the same case (i), (ii)
or (iii) holds for each j > j,.

If one of @e cases (i), (i) holds, then by the construction of B; we have

o (B1(0), Bi(07))
o(b3, b7)

iyhglf) same caleulation as in the proof of Theorem 4.1 this yields h(b')
Lgt us now suppose that case (iii) holds for j > j,. Let s} be the in-
teI‘SB‘GfJIO]:‘L of s; with s7. We can evidently assume that bies;—8%, by esf —s)
for j >j,. Since s}, sy are not degenerated under Bi-1, ne;ther is sf.
L{oreover, we have f;_i(sf) = sf_;. There exists, therefore, an element
b* = {bf} € B such that b} es} for j>j,. For each of the pairs b}, b}
and by, b} case (i) holds, thus by the proved part of the theoremhwé
have h(d’) # h(b*) # h(b"). In order to prove that h(b') # h(b"') le’t us
suppose the contrary. Then li;ng(b;-,b;-')——- 0 but there exist positive

<1427,

©
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numbers 7', n"" such that o(bj,b}) > and o(bf,bf) > #" for j = jo.

This however implies that lim & (b7, bf, b7, bf) = 0 contrary to the
i

construction. This completes the proof of the theorem.

We shall now pass to applications of Theorem 4.1 to the category
of manifolds. Let M™ be a compact submanifold (possibly with boundary)
of the Buclidean space B*. Let & be a positive number and for each point
peM™let Q¥ ™(p) be the ball about p of radius & in the (k—m)- dimensional
hyperplane normal to M™. It is a well-known fact of the theory of dif-
forentiable manifolds that there exists 4> 0 such that Q5 ™(p')
A QF™p'"y= @ for p’ # p"’ and the natural retraction r; of T = Lﬂjl QF™p)

peM™

to M™ is a differentiable fiber mapping. We can consider s as a differen-
tiable mapping of a closed domain in E® into itself and let 7)(p) be the
derived linear operator at the point p e M™.

4.5. LEMMA. The norm of #i(p) at any point p e M™ is equal fo 1.

Proof. By the ortogonality of the projection onto M™, we can
choose an ortonormal basis at the point p with respect to which ry(p)
is represented by a diagonal matrix. The conslusion follows.

By the continuity of the norm and by compactness of M™, we infer
that for any positive & there exists a &> 0 such that |ry(p)l| <1+ for
De TE, Thus, a well-known theorem of functional analysis implies
directly -

4.6. LEmMMA. For any e> 0 there exists a 6 > 0 such that g(rs(p’), re(p”"))
<(+e)o(p’, ") for any p',p" e T5.
We shall use the lemma for the proof of the following

4.7. LevMa, If a differentiable mapping f: PP—>M"™ of compact
differentiable manifolds is differentiably realizable in the space Frrel an
imbedding h: M™->E", then f can be approwimated by differentiable mappings
of PP into M™ which are Lipschite differentiably realizadle in EFreln.

Proof. Let 4 be a positive number and let {hs} be a ditferentiable
realization of f in B*relh. By a small modification of s near the boundary
of B(M™) we can assume that for sufficiently large m, We have Tung(P”)
C T%, where T¥ denotes the tubular neighborhood of A(M™) in B*. Let dyy
denotes the natural deformation of T to 7% for 0< §< 7. It is easy to see
that the sequence {d,inhn,} is & differentiable realization of the mapping
B 1, hyorelh. Moreover, by Lemma 4.6, it is a Lipschitz realization. On
the other hand, h~'r,h,, converges to f as » converges to 0.

Using a differentiable manifold K" instead of the space E* and re-
placing normal lines by geodetics in & Riemannian metric we can easily
generalize Lemama 4.7 to the following

22*
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4.8, Lmva. If a differentiable mapping f: P*—M™ of compact dif-
ferentiable manifolds is differentiably realizable in o differentiable manifold
K*rel an imbedding h: M™ K" then f can be appomimated by differen-
tiable mappings of PP into M™ which are Lipschite differentiably realizable
in K*relh.

Theorem 4.1 and Lemma 4.8 together with the approximation theorem
of M. Brown ([2], Theorem 3) imply the following

4.9. THEOREM. Let {4;, a;}, where a;: App—A; for j=1,2,.., be
an_inverse system of compact differentiable manifolds and  differentiable
mappings. If the mappings a; can be differentiably realized in a differen-
tiable mamifold M for j=1,2,..., then the inverse limit A == Lim{dy, as}
oan be topologically imbedded in M.

In the case of the differential category Theorem 3.1 can be easily
generalized to the following

4.10. TEEOREM. Any differentiable mapping f: Q" —Q™ is differen-
tiably realizable in Q™.

Proof. Indeed, let h: @Q"—>@Q™ be a differentiable imbedding. We
can evidently assume that A(Q™) CintQ*™. Since Q™ is contractible to
a point, the tubular neighborhood of k(Q™) is a trivial fibre bundle and
is, therefore, diffeomorphic to @™ x @™ By a suitable adaptation of the
radii in the tubular neighborhood, we can assume that it is diffeomorphic
to @™ and that h(Q™) is mapped onto the canonical ball ™ in Q™" under
this diffeomorphism. Now we apply the corresponding part of Theorem 3.1.

Theorems 4.9 and 4.10 give thé following

4.11. CoroLLARY. Let {QF, o;}, where a2 QFa—QF for j=1,2,...,
be an imwerse sysiem of m-dimensional balls and differentiable mappings.
Then Lim{Q;, a;} can be topologically imbedded in Q™™

Making use again of the theorem of M. Brown [2] and of the Weier-
strass Approximation Theorem, we deduce the following

4.14. COROLLARY. Any m-cell-like continuum can be topologically
imbedded in Q"™
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