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Addendum (August 14, 1969)

TaporEM. Let G be a torsion-free LCA group satisfying any one of the following
conditions:

(a) @ is separable.

(b) G satisfies countable chain condition, i.e. any family of disjoint open sels in
@ is countable.

(¢) @ is o-compact.

(d) G iz Lindelof.

(e) Any uncountable family of open seis has an uncountable subfamily with mon
emply intersection.

Then G is self-dual if and only if G is of the form mentioned in the preceding
theorem.

Proof. If Gis of the form mentioned in the preceding theorem then it is
self-dual by Lemma 6. Suppose now G is self-dual. Then &= R"® A where A has
a compact open subgroup H. & ~ B*@®.4 where 4 has a compact open subgroup H*
which is the dual of the discrete A/H. Let G satisfy anyone of the conditions (a)-
(). Observe that (a)=- (b) and (c) = (d). We assert that A/H is countable. If not,

A =\ Hato, & set union of disjoint cosets and I is an uncountable set. Each of these
a€l

cosets is open in A. If we now consider {B"+ Hua}aer We easily arrive at a contra-
diotion. So A/H is countable. Now & ~ R"@A where 4 has a compact open sub-
group HL which i8 now the dual of the countable diserete group 4/H. Hence HL is
metrizable. Since & is isomorphic to &, by a similar reasoning we get A/HL is count-
able. Hence H, the dual of A/HL is metrizable. Since H is metrizable and A/H is
countable discrete and hence metrizable we get 4 is metrizable. Already " is metric-
Hence G is metrizable. Then the preceding theorem completes the proof.
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Results on o,-metric spaces
by
F.W. Stevenson (Oberlin, Ohio) and W. J. Thron (Boulder, Colorado)

§ 1. Introduction and preliminary results. A linearly ordered
abelian group is a set 4, together with a binary operation -, and an order
relation >, such that (4, -) is an abelian group (4,>)isa linearly ordered
set and the following condition is satisfied: if @ >b then ac> bo. The
group A has character w, iff there exists a decreasing w,-sequence con-
verging to 0 in the order topology on A. Here o, denotes the uth infinite
cardinal number. Cardinal numbers are considered as initial ordinal
numbers and each ordinal coincides with the set of all smaller ordinals.
The power of w, is denoted by x,. We will be concerned with only that w,
which represents the least character of A and it is easily shown that
such an w, must be a regular cardinal number.

Let X be a set and ¢ a function from X x X to (4,

() e(,y) =0 iff z=y,

{il) elx,y)=e(y,®)>0if z#y,

(iil) e(x,y) < e(z,2)+elz,9),
then ¢ is ealled an w,-metrie and (X, o) is an w,-metric space. Sikorski [10]
has done the most extensive study of w,-spaces; other references include
Hausdorff [3], Cohen and Goffman [1] and [2], Parovicenko {6], and
most recently, Shu-Tang [7].

The w,-metric ¢ on X induces a topology © on X; a base
for the topology congisting of sets of the form N,») where Na(z)
={yeX:o(w,y)<a}, acAd, and a>0. Also ¢ induces a uniformity
U, on X: & base for the uniformity consisting of sets U, where Ua
= {(, ¥):0(%,¥) < a}, @ ¢ A, a > 0. It is easily shown that the w,-metric
topology and the w,-uniform topology are identical.

An w,-additive space is a topological space (X, ) which satisfies
the condition that for any family of open sets , of power < x, it follows
that M) ¥ is an open set. Clearly every topological space is an wo-additive
space. It is easily shown that if (X, o) is an w,-metric space then (X, )
is an w,-additive space. Sikorski defines the following concepts on an
w,-additive space (X, B). The space (X, B) has a basis iff it has a base

-,>) such that
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of power &,; (X,®) is separable iff there exists an everywhere dense
subset ¥ of X of power < s,; (X, B) is compact iff every w,-sequence
in X has a convergent w,-subsequence; (X, B) is w,-bicompact iff every
open cover of X has a subcover of power < &,. For an w,-metric space
(X, o) Sikorski gives these definitions: (X, ¢) is totally bounded iff for
any ae A, a > 0, there exists a subset ¥ of X of power < x, such that
Li)rN o) = X; (X, p) is complete iff every Cauchy w,-sequence converges.
ve

A Cauchy o,-sequence is an w,-sequence {z,}; satisfying the condition
that for all a> 0, a e A there exists a < w, such that if 5,y > a then
o(@g, 7)) < an

Sikorski states some theorems relating these topological and uniform
concepts. We give a more complete list below, omitting the proofs since
each is a straightforward generalization of the proof of the standard
topological theorem. For Sikorski’s terms: basis, separable, compact,
w,-bicompact, totally bounded and complete, we will use; w,-countable,
w,-separable, w,-compact (for both compact and w,-bicompact since they
are equivalent by theorem 1.3), w,-totally bounded, and w,-complete,
respectively.

If ¢ is an w,-metric on X then:

TemorEM 1.1. (X, B,) 48 o,-separable iff it is w,-countable.

TEEoREM 1.2. If (X, @) 18 wu-totally bounded then (X, B,) 18 w,-8e-
parable.

TEEOREM 1.3. The following three statements are equivalent on (X, G,):

(i) Bvery w,-sequence in X has a comvergent w,-subsequence in X.

(ii) Bvery open cover of X of power %, has a subcover of power < 8,.

(iif) Ewery open cover of X has a subcover of power < R,.

THEOREM 1.4. (X, p) i8 w,-complete iff (X, Us,) s complete in the
uniform sense. .

THROREM 1.5. If (X,B,) is w,-compact then (X, o) 18 w,-complete
and wy-totally bounded.

The converse of Theorem 1.5 is true for u = 0. Sikorski has shown
that for accessible regular cardinals the converse is not true in general;
specifically: if u = »+1, if o, is regular, and if 2% = x,,; for a < » then
there exists an w,-metric space which is w,-complete, w,-totally bounded,
but not w,-compact. (See [10] pp. 132, 133). For inaccessible cardinals
the converse of Theorem 1.5 remained an open question.

§ 2. A counterexample for an w,-compactness theorem
for inaccessible cardinals. In 1964 Monk and Scott [6] showed
that if w, is the first uncountable inaccessible cardinal then 2% is mot
“w,-compact” in the w,-product topology, B,. The set 2°# is egsentially

©

&
lm Results on w,-metric spaces 319

the set of all w,-sequences of 0’s and 1’s; the term “‘w,-compact” is
identical to Sikorski’s term “w,-bicompact” which is equivalent to Si-
korski’s term ‘‘compact”’; the w,-product topology on 2% has a base
made up of the sets G= where o € 2°, T is a subset of w, of power < Xy,
and y € G iff the sequences « and y agree on all coordinates in 7.

Sikorski had studied the space of w,-sequences of 0°s and 1’s, which
he denoted by D,, along with the metric ¢, where o(z,y) =0 iff s =y
and o(®,y)=1/§ if 2 %y where 1/, e W, and &, is the first ordinal
where the sequences z and y differ. Here W, denotes the least algebraic
field containing the set of all ordinals a < w,; see [9]. Sikorski showed
that (Dy, o) is w,-coraplete for all u and (Dy, o) i3 w,-totally bounded
for all w, which are inaccessible cardinals so, in particular (D, o) is
w,-complete and w,-totally bounded for the first inaccessible cardinal wy.
Now it is easily shown that G, is identical to B, and hence the result of
Monk and Scott that (D., B,) is not w,-compact resolves the open ques-
tion referred to in § 1.

Perhaps a conceptually simpler w,-metric than the metric o is
the one we define below; it too induces the topology G, on D,. Let
out Du X Dy—>D, be such that o(x,y)=(0,0,..) iff =y and o(z,y)=1.
if # # y where a is the least ordinal at which the sequences # and y differ
and 1, is the w,-sequence which is 1 in the ath coordinate and 0 elsewhere.
Given that D, is a subset of the ordered abelian group (J,, +,>) where J,
is the family of all w,-sequences of integers, + is coordinatewise addition,
and > is lexicographic order, it is easy to show that g, is an w,-metric
on D,. It is also easily shown that (Dy, 0,) is w,-complete for all u and
(Dyy 04) is w,-totally bounded for all w, which are inaccessible. Now Ty,
is identical to B, so if w, is the first uncountable inaccessible cardinal
(Dy, ou) provides us with an w,-metric space which is w,-complete and
wy-totally bounded but not w,-compact. Thus:

THEEOREM 2. It is not necessarily true for inaccessible cardinals that
an w,-complete, w,-totally bounded w,-metric space is w,-compact.

The same space (Dy, ou) also provides us with an example of a w,-me-
trie space which is w,-compact, and perfect, and is of power 2. It is
true that every compact, perfect metric space has power 2 but Sikorski
noted that he knew of no example of a compact, perfeet w,-metric space
of power > x,.

§ 3. A w,~metrization theorem. Sikorski remarks that every
w,-additive, w,-countable topological space is w,-metrizable. This is
a generalization of Urysobhn’s metrization theorem. Shu-Tang [7] generalized
the Nagata—Smirnov metrization theorem with this result: If (X, G)
is a regular (topologically speaking) w,-additive space then (X, ) is
w,-metrizable iff there exists a x, basis for 6. The range space of Sikorski’s
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w,-metric is W, and the range of Shu-Tang’s w,-metric is the family
of w,-sequences of real numbers.

We give a metrization theorem for uniform spaces.

TEwa. Let (X, W) be a uniform space with a linearly ordered base
(U, < U, iff U2 U, for Uy, Use U). Let w, be the least power of such
a base. Then there ewists an equivalent well ordered base of power N,.

Proof. Let B be a linearly ordered base of least power. So
B = {B.: a<< w,} (here a<< f does not imply that B.D By). Let Ve, = Q B,

N assap
and let U= {V,: ¢ < w,}. Olearly now, a< g does imply that V. Vj,
go we have a well ordered set U.

We now show that U is equivalent to B.
(i) Clearly, for any B., we have V,C B..

(i) Let V,, be given. Suppose there does not exist a f < w, such
that Bs CV,,. Since B is linearly ordered this would mean that for all
B> a, there exists an a < a, such that B,C Bs. Therefore {B.: aa<ag}
is & linearly ordered base for (X, ). But the power of ¢, is less than &,
because a, < o, and this contradicts the assumption that s, is the least
power of all linearly ordered bases of . This contradiction establishes
that for each V,, there exists a B, such that B, C7V,,. Hence, U is a base
for U.

THEOREM 3. A separated uniform space (X, W) is w,-metrizable iff
(X, W) has a linearly ordered base and x, 18 the least power of such a base.

Proof. If (X, W) is w,-metrizable then by definition there exists
8 wyu-metric o, such that the uniformity U,, induced by g is identical
to U. But clearly U, has a linearly ordered base (in fact, well ordered)
given by U, where U, = {(#,¥): o(#, y) < o} and {g.} is the w,-sequence
converging to 0 in the group (4, -,>) of character w,. Since w, is the
least eharacter of 4, 8, is the least power of a well ordered base. Since
every linearly ordered bage has an equivalent well ordered base, 8, is
the least power of any linearly ordered base.

Now suppose that (X, U.) has a linearly ordered base of least power x,.
If p= 0 then a standard result gives us that (X, W) is metrizable and
hence w,-metrizable. Suppose x4 > 0 and let the linearly ordered base
U = {Va &< w,} be of power 8,. We may assume, by the lemma that U
is well ordered. Since (X, W) is & uniform space there exists an augmented
family of pseudo-metrics {oi: i eI} such that (X, [g]) is identical to
(X, ). So for all a < w, there exists g,, and &, such that U, (&) C V.
Let (Ju, +,>) be the ordered group defined in § 2. This group has char-
acter w,. This follows easily because {l.: a < w,} I8 an w,-sequence

converging to 0 and no «,-sequence converges to 0 for » < u because w, is
a regular cardinal.

&
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We define g: X X X—dJ, as follows: [o(z, ¥)](a) =0 if g;(z, y) =0,
otherwise [o(z,¥)](a) = 1. Actually, the exact range space of ¢ is D,.

TFirst we show that p is an w,-metriec.

(i) Clearly o(x,y) = 0 for all %, y ¢ X (0 here is the w,-0-sequence).

(i) Clearly ¢(z, )= 0.

(iii) Suppose x z=y. Since U i3 separated there exists an e < w,
such that (#,9y) ¢ Va; hence gz, y) = & > 0.

(iv) Clearly o(z,¥y) = ¢(¥, ®).

(v) Since [o(z, )+ e(y,#)](e) =0 implies [g(x,y)](e)=0 and
[o(y, #)](a) = 0 which in turn implies that [o(», 2)](a) = 0 we have that
olz, y)+ oy, 2) = o(x,2).

Now we show that U = U,. Let us note that {Uy,: a < w,} is a base
for UW,.

Suppose that V,eU is given. Then U, (e.) CVa. We also have
Uy (ea) D Uy, because if (#,9)e U, then pi(2,y)=0<¢e, and 80
(@, 9) € Uy, (e4). Hence Uy, CVa.

Suppose that U,, is given. For each Ugfﬁ(l/n), B < a there exists a
Vg such that Ve is contained in U, (1/n) where y(8,n) < w,.
Now there exists a y < w, such that V,C(\ {Vyem : B < e, n < og},
because there are only K, entourages of the form Vs where
8, = max(|al, &) and o, < w, because a < w, and w,< w,. (Here |a]
denotes the power of a.) We conclude the proof by showingsthat V, C Uy,.
Let (z,%)eV,. Then iz, y)<1l/n for all n < w, and f< a; hence
0ig(@,y) = 0 for p< a; that is, g(w,¥)(f)= 0 for f< o Bub this just
means that g(x, y) < 1. or, equivalently, (#,¥) e Us,.

In a sense this is a generalization of the theorem that a uniform
space is metrizable iff it has a denumerable base; because if (X, W) has
a denumerable base {Ux: k=1, 2, ...} then it has an equivalent linearly

k
ordered base {Vi: k=1,2,..} where V; = p Usg.
1

The fact that D, is the exact range space of ¢ is important. Sier-
pitiski [8] proved that D, is order complete and therefore lubs and glbs
of sets in D, exist. Furthermore D, is order complete as a subset of J,.
Hence we may generalize metric concepts such as diameter of sets, distance
between sets and the Hausdorff metric on closed sets, which depend
upon the completeness of the real number system.

§ 4. Generalized metric concepts, and Hausdorft v,-metric
spaces. A uniform space with linearly ordered base of leagt power X,
will be ealled an L, space. The u-distance, o, between sets A and B in
an I, space is defined by o(4, B) = gib{eu(z,¥): ved,y ¢ B} where g,
is the w,-metric defineable by theorem 3. The u-diameter, d, of set A
in an I, space is defined by d(4) = lub{es®,y): ©,y ¢ A}.
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We should note here that since an w,-metrie space need not have
a Tange space which is order complete, the concept of wu-distance and
u-diameter as well as the Hausdorff u-metrie (which will be defined
later) are not defineable unless you congider the IL,-space induced by
the given w,-metric space, with the metric g, of theorem 3. In this sense,
p-distance, u-diameter, and the Hausdorff u-metric are *L,-concepts”
and are therefore defined on L,-spaces.

The following three theorems are generalizations of familiar theorems
“for metric spaces. The proofs are analogous to the metric case and are
therefore not included.

TeEoREM 4.1. Let o denote the u-distance between sets on an Ly space
‘(X ’ cu’)

(i) If A~ B=0 then o(A,B)=0.

(i) If A ~ B O and A is closed and B is w,-compact then o(4,B)>0.

TerorEM 4.2. An I, space is complele iff every nested w,-sequence
.of closed sets whose u-diameters go to O contains exactly one poini.

TEEOREM 4.3. An L, space is complete iff it is closed in every L, space
“in which it can be uniformly isomorphically embedded.

Let C be the set of all non-emtpy closed sets in the metric space (X, g).
Define d: C x C->non-negativereals as follows: d(4, B) = glb{e: A C N.(B)
.and BCN,(AZ}. Here N (4) = zLEL N.(#). Then d is a metric and (C, d)

is called the Hausdorff metric space associated with (X, ¢), If C is the
set of all non-empty cloged sets on uniform space (X, W), the Hausdorff
‘uniform space (C, V) associated with (X, U) is defined as follows:
Y= {Vy: UeU} where Vy={(4,B): BCU(4) and AC U(B)}. The
“following relationships hold between a Hausdorff space and its associated
space. See [4] for proofs of these theorems. (X, ¢) is totally bounded,
.(complete), (compact) iff (C, d) is totally bounded, (complete), (compact);
(X,W) is totally bounded, (compact) iff (C, V) is totally bounded
(compact); if (C, V) is complete then (X, W) is complete, the converse
is not true in general.

We now define a Hausdorff L,-space as follows: given an I,-space
(X, W), let p, be the induced w,-metric (by theorem 3), let d,(A, B)
= glb{a e Dy: ACNyB), BCN,(A)} where A,BeC, then d, is an
w,-metric; letting U, denote the linearly ordered wuniformity induced
by du we define (C, U,) as the Hausdorff T,-space associated with (X, W)-
Tt is straightforward o show that the Hausdorff L, uniformity is iden-
tical to the ordinary Hausdorff uniformity associated with <. The

relationships holding between L,-spaces and their associated Hausdortf
_L,-spaces are given below.

TueEorEM 4.4. The L, space (X, W) is complete iff (C, V,) is complete.

e ©
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TrEEOREM 4.5. If (G, V,) is w,-totally bounded then (X, W) is
w,-totally bounded. The converse is true if w, is an inaccessible cardinal, but
the converse is mot true when w, is an accessible regular cardinal.

THEOREM 4.6. If (C, Tay) is w,-compact then (X, Ba,) 48 w,-compact.
The converse s not true if w, 18 am accessible cardinal.

Whether the converse of 4.6 is true or not for inaccessible cardinals
has not yet been determined.

A counterexample to the converses of theorems 4.5 and 4.6 is the
space (D,, ‘UJ,_,”/D,) where D,C D, and z e D, iff # =1, for some e < w,.
Here we assume w, is a regular accessible cardinal and » is such that
v< p, 2% =8, Olearly D, is w,-compact sinee it has fewer than
%, points. But the associated Hausdorff L,-space (C, V) is not w,-totally
bounded. This follows because every subset of D, is closed, hence there
are 2V > 8, members of C, and the Hausdorff distance du between any
two sets 4, B in C is > 1,,. :

The affirmative parts of the theorems 4.5 and 4.6 are straight for-
ward and will not be included here. Theorem 4.4 is perhaps the most
interesting of the results and the proof is provided below.

LevMA. Suppose that o2 X x XD, is an w,-metric defined on X.
Then:

(i) If el®,9) <1py ey, 2) <1y, and y > B then o(@,2) <lp.

(ii) N1,(N15(A)) = Ny, (4), for y= 8, ACX.

Proof. (i) Suppose that o(z,y)<1s and e(y,2)<1,. Then
(e(m, ) (a) =0 for all a<f and (ely,2)(a)=10 for all a<y. Now
y > B 30 we have {¢(z, ¥)+ e(¥, 2)) (a) = 0 for all a < . Therefore (=, 2)
<o, 9)+ely,?) <lp-

(i) Clearly Ny,(4)C Ny,(IN1,(A)). Suppose that x e N1,(N1,(4)); then
there exists a y e Ni(4) such that ¢(z,¥) < 1,. Since y e N1,(4), there
exists a 2 € A such that p(y, 2) < 15. By part (i) if follows that o(x, 2) < 1s;
hence, # € N1,(4).

Proof of theorem 4.6. If (C, V) is complete then (X, W) is
complete by the known result for uniform spaces.

Suppose that (X, W) is complete. Then it follows from theorem 1.4 that
(X, ou) i w,-complete (where g, is the w,-metric indueing WU,). Let {44}
be a Cauchy w,-sequence in (C, d,). For each § < o, there exists an az < w,
guch that o> g and for y,6> s we have d&,(4,,4s)<1s. Let 4
= m N, lp(-Aaﬂ)-

B<wp
We first show that A s=@. Consider the w,-sequence of closed sets,
N,,(4,,). By construction, if y > § then N 1(4ag) D Au, . Now, by the lemma,

Nip(Aep) = N1y (N1,(4ay)) D N1,(As,) and hence Ny,(4,,) D §3,(4,,). Therefore

Fundamenta Mathematicae, T. LXV 21
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the o,-sequence of closed sets is nested. If the w,-diameters go to 0 then,
gince (X, ) is w,-complete, by theorem 4.2 the intersection containg
a point, @. Tf the w,-diameters do not go to 0 then there exists a set A’
of diameter > 1, for some y < w, contained in the intersection. In either
case A #0@.

We complete the proof by showing that {A.} converges to A. This
is done by showing that for any § < w,, if y > ag41 then d,(4,, 4) < 1.

First: A C Ny,(4,) is true by the following argument: if # e A then
@ € Nipp(day, ) So there exists & ¥ € A“m such that eu(®, ¥) < Lpt1. Since
du( Ay, Aop) < Lpt1, We have that y € Ny,,.(4,) and so there exists a z¢ 4,
such that ouy,?) < lps1. Since gu(#,y) < Lpa<ls, bY the lemma,
0@, 2) < 1. If follows that @ e Ni,(4,).

Now A, C Ny,(4) is true by the proof below. Let o ¢ A,; then for all
8> p+1, since dud,, Ao) < lpt1, it follows that » € N1,(Aq). Hence

@ € Nypa(N1o{Aag) C Ny N1,(Aa)) C Nip(N1,(4ay). Therefore @ € Ny(Nr(4ay))

for all ¢ < w, becanse Ny (Aq) D N1(dy,) < 6. Sow E:ﬂ N N1 (Aap))
<apu

= -Nlﬂ(tg Nl;(Aa;)) = Nlﬁ(A)'

Sinee every Cauchy o,-sequence converges in (C, d,) it follows that
(C,d,) is w,-complete and hence, by theorem 1.4, (C, V) is complete.
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Realization of mappings
by
. K. Sieklucki (Warszawa)

1. Realization of a mapping. Let € be a category of pairs
(X, X,), where X,C X are metric spaces and morphisms are continuous.
Though many of the results of this section are valid for an arbitrary € we
ghall pay our attention mainly to the three following categories:

a) The category & of all metric pairs and all continuous mappings.

b) The category P of polyhedral pairs and simplicial mappings.
By a polyhedral pair (X, X,) we understand a finite polyhedron X with
a triangulation and a subpolyhedron X, of X in this triangulation. Simplic-
ial mappings are considered with respeet to the given triangulations.
However, the same polyhedral pair may have various triangulations.

¢) The category Mt of pairs of differentiable manifolds and differen-
tiable mappings. By a pair of manifolds (X, X;) we understand a separable
manifold X (with boundary or not) of class C* and its submanifold Xi;
a differentiable mapping is also of class C™.

As it is a frequent practice to do, we identify the pair (X, ) with
the space X alone. If (X, X,) is an object of €, then we call X, a sub-
object of X. An isomorphism h of an object A onto a subobject B of an
object X is called an 4mbedding of A into X. If such an imbedding exists,
the object ‘A is called imbeddadble in X. :

It A, B are subsets of a metric space X and f: A—B is a mapping,
then we define D(f) = suﬁ)g(m,f(m)).

€.

Let 4, B and X b: ohjects and let f: A—>B be a morphism. Let
h: B—>X be an imbedding of B into X. We say that the morphism f
ig realizable in Xrelh if there exists a sequence {fx} (called a realization
of frelh), where h,: A->X is an imbedding of 4 into X forn=1,2, ...,
such that BmD(f,) = 0 for f,= hfhs".

If an o%ject B is imbeddable in X and if a morphism f: A—B is
realizable in Xrelh for any imbedding & of B into X, then we simply say
that the morphism f is realizable in X. (%)

The definition depends on the category € under consideration and
we will always make it clear if a statement concerns a particular €. Usually,

() In [8] such a morphism has been called imbeddable in X.
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