H. Patkowska

308

- [5] D. S. Gillman and J. M. Martin, Countable decompositions of E^{*} into points and pointlike arcs, Amer. Math. Soc. Notices 10 (1963), pp. 74-75.
 - [6] S. T. Hu, Theory of retracts, Detroit 1965.
- [7] C. Kuratowski, Sur le problème des courbes gauches en topologie, Fund. Math. 15 (1930), pp. 271-283.
 - [8] Topologie II, Monografie Matematyczne 21, Warszawa—Wrocław 1950.
- [9] S. Mardešić and J. Segal, A note on polyhedra embeddable in the plane, Duke Math. J. 33 (1966), pp. 633-638.
- [10] On polyhedra embeddable in the 2-sphere, Glasnik Matem. 1 (21) (1966), pp. 167-175.
- [11] H. Patkowska, On the one-point union of crumpled cubes, Bull. Acad. Polon. Sci. 15 (1967), pp. 849-853.

Reçu par la Rédaction le 10. 1. 1968

Structure of self-dual torsion-free metric LCA groups*

by

M. Rajagopalan ** (Madurai, India) and T. Soundararajan (Urbana, Ill.)

Since Pontrjagin [3] and Van Kampen [5] introduced the notion of the dual of a locally compact Abelian group, many examples of self-dual LCA groups have been given in the literature. However, the structure of all self-dual LCA groups has been an open problem till to-day (see [1]). As a matter of fact, there is even no conjecture about how a self-dual LCA group should look like. In this paper we give the structure of all metric self-dual LCA groups which are torsion-free as abstract groups.

Notations and Conventions. All topological spaces occuring in this paper are taken to be Hausdorff ones. We usually follow [7] for notations and concepts related to topological groups which are not defined here. We write LCA group as an abbreviation for a locally compact Abelian group. The dual of the LCA group G with the usual topology is denoted by \hat{G} . We use the additive notation for groups. If $H \subset G$ is a subgroup of the LCA group G, then H^{\perp} denotes the annihilator of H in \hat{G} . R^n denotes the usual Euclidean group $(n \ge 0)$. If p is a prime, then J_p denotes the group of all p-adic numbers and I_p the group of all p-adic integers with the usual topology. (We use the symbol \oplus for topological direct sums). The definition of a local direct sum of LCA groups is given in [1], [6] and [4]. But we prefer to repeat this definition here for the sake of completeness.

DEFINITION 1. Let (G_a) be a family of LCA groups indexed by a set A. Let $H_a \subset G_a$ be a compact and open subgroup of G_a for each $a \in A$. We define the local direct sum $\sum_{\alpha \in A} G_{\alpha}$ of the family (G_a) with respect to (H_a) of subgroups as follows:

$$\sum_{\alpha \in A} G_{\alpha} = \left\{ (x_{\alpha}) \middle| \ (x_{\alpha}) \in \prod_{\alpha \in A} G_{\alpha}; \ x_{\alpha} \in H_{\alpha} \right.$$

for all $a \in A$ except possibly for a finite number of indices.

^{*} An announcement of the result presented here appeared in [4]. The main theorem there should have been only for the metric case instead of for all the groups.

^{**} This author was partially supported by a NSF grant No. NSFGP5370 while this work was being done.

310

The group addition in $\sum G_{\alpha}$ is taken to be coordinatewise addition. We note that $\prod H_{\alpha} \subset G$. By declaring $\prod H_{\alpha}$ with its product topology to be open in $\sum_{\alpha \in A} G_{\alpha}$ we get a natural topology τ for $\sum_{\alpha \in A} G_{\alpha}$, so that $(\sum_{\alpha \in A} G_{\alpha}, \tau)$ is an LCA group.

DEFINITION 2. An element x_0 of an LCA group G is said to be *compact* if the closed subgroup generated by x_0 in G is compact.

DEFINITION 3. An element x_0 of an LCA group G is called topologically p-primary if $p^nx_0\to 0$ as $n\to\infty$.

DEFINITION 4. A map $T: G_1 \rightarrow G_2$ between two LCA groups G_1 and G_2 is called a topological isomorphism if it is a group isomorphism and a homeomorphism. In this case we write $G_1 \simeq G_2$. An LCA group G is said to be self-dual if there exists a topological isomorphism between G and G.

Remark 5. Let \mathcal{T} be a collection of primes. For each $p \in \mathcal{T}$ let K_p be an index set. For each $p \in \mathcal{T}$ and $i \in K_p$ let J_p^i denote an LCA group which is topologically isomorphic to J_p . Let H_p^i be a compact and open subgroup of J_p^i for all $p \in \mathcal{T}$ and $i \in K_p$. Then we can form the LCA group $S_p = \sum_{i \in K_p} J_p^i$ with respect to (H_p^i) . Now each S_p contains $A_p = \prod_{i \in K_p} H_p^i$ as a compact and open subgroup. So we can again form the local direct sum $\sum_{p \in \mathcal{T}} S_p$ with respect to (A_p) . We call this group $\sum_{p \in \mathcal{T}} S_p$ as $\sum_{p \in \mathcal{T}} (\sum_{i \in K_p} J_p^i)$. We call such groups the local direct sum of J_p 's. By 25.34 (b) of [1] on page 422 we see that $\sum_{p \in \mathcal{T}} (\sum_{i \in K_p} J_p^i)$ is always a self-dual LCA group. Moreover such groups are torsion-free.

IEMMA 6. Let G be an LCA group of the form $R^n \oplus D \oplus \hat{D} \oplus \sum_{p \in \mathfrak{T}} (\sum_{i \in K_p} J_p^i)$ where \mathfrak{T}, J_p^i and K_p are as in Remark 5 and D is a torsion-free divisible group with the discrete topology. Then G is self-dual and torsion-free. If D and K_p are countable for all p, then G is metrisable.

Proof. This follows from Remark 5 and the standard theorems on duality.

The rest of the paper is devoted to proving the converse of Lemma 6 in order to get the structure of self-dual torsion-free metric LCA groups.

LEMMA 7. Let G be an LCA group which contains a compact, open subgroup H. Let G be torsion-free and let G|H be isomorphic to the group $C(p^{\infty})$ for some prime p. Then there exists a closed subgroup $A \subset G$ such that A+H=G and $A \simeq J_p$.

Proof: Consider $H^{\perp} \subset \hat{G}$. Then H^{\perp} is the dual of G/H and hence is topologically isomorphic to I_p (see [1]). Let x_0 be a monothetic generator of H^{\perp} (see [1] for the definition of a monothetic generator). We claim first of all that \hat{G} is a divisible group. Indeed, suppose that $q\hat{G} \neq \hat{G}$ for some prime q. Now $q\hat{G} \supset qH^{\perp}$ and so it is an open subgroup of \hat{G} . Thus

the annihilator of qG in G (being the dual of $\hat{G}/q\hat{G}$) contains a non-zero element of finite order. This is a contradiction. Thus \hat{G} is divisible, and hence we have a sequence $x_0, x_0/p, x_0/p^2, \ldots$ in \hat{G} . Then the group J generated by H^\perp and $x_0/p, x_0/p^2$... is topologically isomorphic to the p-adic number group. J is now open and divisible and hence is a topological direct summand. Consequently G contains a p-adic number group A. This is obviously not contained in H and its image in G/H, being divisible, is $G(p^\infty)$. Thus A+H=G.

LEMMA 8. Let G be a torsion-free LCA group and let p be a fixed prime. Let G contain an open subgroup J which is a local direct sum $\sum_{i \in S} J_p^i$ of a family (J_p^i) of LCA groups indexed by a set S. For each $i \in S$ let $J_p^i \simeq J_p$. Suppose further that G contains a family (D_a) of closed subgroups D_a indexed by a set K such that the following hold:

- (1) $|K| \leq |S|$.
- (2) $D_a \simeq J_p$ for every $a \in K$.
- (3) The algebraic subgroup generated by the set $J \cup (\bigcup_{a \in K} D_a)$ is G.

Then G is \simeq to a local direct sum of p-adic numbers.

Proof: Let $\sum_{i \in S} J_p^i$ be the local direct sum with respect to the compact open subgroups H_p^i of J_p^i and let $H = \prod_{i \in S} H_p^i$. Then H is compact and open in J and hence in G. Thus, for any D_a , $H \cap D_a$ is compact and open in D_a , so that for any $y_a \in D_a$ there is an integer n such that $ny_a \in H$. Thus for any $y \neq 0$ of G there is an m such that $my \in J$ and $my \neq 0$. Now $\prod_{i \in S} J_p^i$ is a divisible torsion-free group containing J and so there is a homomorphism of G into $\prod_{i \in S} J_p^i$ which is an identity on J. This homomorphism can easily be verified to be an isomorphism and also unique. Thus we can consider G to be a subgroup of $\prod_{i \in S} J_p^i$ (as an abstract group only).

For each J_p^i we shall suppose that J_p^i is generated topologically by $a^i, a^i|p, a^i|p^2...$ with a^i a monothetic generator of H_p^i .

We can then define a continuous character χ^i in $\prod J_p^i$ with its product topology as follows: χ^i on $\prod_{j \neq i} J_p^i = 0$ and $\chi^i(a^i) = 0$ and $\chi^i(a^i|p^n) = 1/p^n$, $n = 1, 2, 3 \dots$ We can define $(1/p^m)\chi^i$ for each m by $(1/p^m)\chi^i(a^i|p^n) = a^i|p^{m+n}$. This collection $(1/p^m)\chi^i$, $m = 0, 1, 2 \dots$ distinguishes any two points of J_p^i . Each $(1/p^m)\chi^i$ is a continuous character of G when restricted to G. We denote this restriction by $((1/p^m)\chi^i)G$. Let us consider the group generated in G by all $((1/p^m)\chi^i)G$ for all $i \in S$ and all non-negative integers m. This group distinguishes any two points of G. If K_i is the closed group generated by the set of all $\{((1/p^m)\chi^i)G\}$ if $j \neq i$, m non-negative integers, then the

closed subgroup L_i generated by $\{((1/p^n)\chi^i)G | n \text{ varying}\}$ and K_i are topologically independent. Let M_i be the closed subgroup generated by χ^i in L_i . Then M_i is compact and open in L_i and $H^{\perp} = \prod M_i$. Also each L_i is \simeq to J_v . It follows that $\sum L_i$ with respect to the groups M. is a closed subgroup of \hat{G} . Since it is dense in \hat{G} , we get \hat{G} is a local direct sum of p-adic numbers. Consequently G is a local direct sum of p-adic numbers.

LEMMA 9. Let G be a torsion-free LCA metric group with a compact and open subgroup $H = \prod E_n$ such that each $E_n \simeq I_p$. Let $\{D_n\}$ be a sequence of closed subgroups in G, each isomorphic to Jp, such that the family $F_n = D_n \cap H$ generate a dense subgroups of H. Then we can find closed subgroups \Hn such that

- (1) each $H_n \simeq I_n$;
- (2) Hn are topologically independent,
- (3) $H = \prod H_n$,
- (4) each H_n is contained in a group generated by a finite number of the F_n .

Proof. Let us consider F_1 . Since $F_1 = D_1 \cap H$, F_1 is a pure subgroup of H, and so H/F_1 is torsion-free. Thus the annihilator of F_1 in \hat{H} is a divisible subgroup and so splits \hat{H} . So F_1 is a topological direct summand of H. We can assume that $H = \prod E_n$ with $E_1 = F_1 = H_1$. Thus H_1 has a generator $h_1 = (e_1, 0, 0, ...)$, where e_1 is a generator of E_1 . The open set $(pE_1, E_2 \sim pE_2, E_3, E_4, E_5, ...)$ in H has to intersect F, the algebraic group generated by $F_1, F_2, ...$ Let $(pa_{21}, e_2, a_{23}, ...)$ be an element in the intersection. Since $H_1 = F_1 \subset H$, we can take this element to be $(0, e_2, a_{23}, ...)$. Let us write $h_2 = (0, e_2, a_{23}, ...)$. Here $(0, e_2, 0, 0, ...)$ is a generator for E_2 . Let H_2 be the closed subgroup generated by h_2 . Since $h_2 \in \{F_{i_1}, \dots, F_{i_m}\}, H_2$ satisfies condition (4) of the Lemma.

Again the open set $(pE_1, pE_2, E_3 \sim pE_3, E_4, E_5, ...)$ intersects F, and so we get an element $(pa_{31}, pa_{32}, e'_3, a_{34}, ...)$ We can take a_{31} to be 0, so that we have $(0, pa_{32}, e'_3, a_{34}, ...)$. Now H_2 is a compact subgroup of Hand is $\simeq I_p$. The projection of pH_2 on E_2 is a compact (closed) subgroup of E_2 containing pe_2 and hence contains pE_2 . Thus there is an element in pH_2 whose projection on E_2 is $(0, pa_{32}, 0, 0, ...)$. This element has the form $(0, pa_{32}, pb_{33}, pb_{34}, ...)$ since it belongs to pH_2 . Subtracting this element from $(0, pa_{32}, e'_3, a_{34}, ...)$, we get an element $h_3 = (0, 0, e_3, c_{34}, ...)$ where $e_3 = e_3' - pb_{33}$, $c_{34} = a_{34} - pb_{34}$, ... Now $e_3 \in E_3 \sim pE_3$, and hence $(0,0,e_3,0,0,...)$ is a monothetic generator for E_3 . Let H_3 be the closed subgroup generated by h_3 . Since $h_3 \in F$, H_3 satisfies conditions (1) and (4).

Proceeding thus by induction, we get a sequence of elements $h_1 = (e_1, 0, 0, ...),$ $h_2 = (0, e_2, a_{23}, ...)$, (Let us write $c_{23} = a_{23}$ for uniform notation), $h_3 = (0, 0, e_3, c_{34}, ...),$ $\dot{h}_n = (0, 0, ..., 0, e_n, c_{n,n+1}, ...),$

and a sequence of groups $H_1, H_2, ...$ such that each $H_n \simeq I_p$ and each H_n satisfies condition (4) of the Lemma.

We assert the following:

The groups $H_1, H_2, ...$ are topologically independent.

Suppose that H_i is not independent of the remaining, i.e. $H_i \cap \operatorname{Cl}\{H_1, \ldots, H_{i-1}, H_{i+1}, \ldots\} \neq 0$, i.e. their intersection is some $p^k H_i$. In particular, the element $x = p^k h_i$ is a limit from the other groups. Let (x_n) be a sequence from $\{H_1, \ldots, H_{i-1}, H_{i+1}, \ldots\}$ converging to $p^k h_i$. Then $x_n = y_n + z_n$, $y_n \in \{H_1, ..., H_{i-1}\}$ and $z_n \in \{H_{i+1}, ...\}$. Since $\{H_1, ..., H_{i-1}\}$ is a compact subgroup, we can have a subsequence (y_{n_m}) converging to some $y \in \{H_1, \dots, H_{i-1}\}$. So the sequence (z_{n_m}) converges to $x-y \in \{H_1, \dots, H_i\}$ Now every element in (z_{n_m}) has the first i coordinates equal to zero. Hence in x-y the first i coordinates are zero. But $x=(0,0,...,p^ke_i,e_i,e_{i+1},...)$. So $y = (0, 0, ..., p^k e_i, d_{i,i+1}, ...)$. Now $(y_{n_m}) \rightarrow y$.

Consider the open set

$$(p^{k+1}E_1, p^{k+1}E_2, ..., p^{k+1}E_{i-1}, E_i \sim p^{k+1}E_i, E_{i+1}, ...).$$

This must ultimately contain all the (y_{n_m}) . So this open set intersects $\{H_1, ..., H_{i-1}\}$ for which the algebraic group generated by $h_1, ..., h_{i-1}$ is dense. So this open set contains an element $n_1h_1+n_2h_2+...+n_{i-1}h_{i-1}$. Hence

We conclude that each n_i is a multiple of p^{k+1} , so that the *i*th term in $n_1h_1+n_2h_2+...+n_{i-1}h_{i-1}$ is also a multiple of p^{k+1} and thus does not belong to $E_i \sim p^{k+1} E_i$. This is a contradiction.

The algebraic group $\{H_1, ..., H_n, ...\}$ generated by $H_1, ...$ is dense in H. We show that every element $(0, 0, ..., e_n, 0, 0, ...)$ is a limit point of this group. Consider an open set $(p^{k_1}E_1, p^{k_2}E_2, ..., e_n + p^{k_n}E_n,$ $p^{k_{n+1}}E_{n+1}, \ldots, p^{k_i}E_i, E_{i+1}, \ldots$ containing $(0, 0, \ldots, e_n, 0, 0, 0, \ldots)$. It is enough to show that this intersects $\{H_1, ...\}$.

Start with the element $h_n=(0,0,\ldots,e_n,c_{n,n+1},\ldots)$. Then consider $h_{n+1}=(0,0,\ldots,e_{n+1},\ldots)$. By suitably choosing m_1 we get $c_{n,n+1}-m_1e_{n+1}$ ϵ $p^{k_{n+1}}E_{n+1}$. Then $h_n-m_1h_{n+1}=(0,0,\ldots,e_n,(c_{n,n+1}-m_1e_{n+1}),\ldots)$. Now we can start with this element, consider h_{n+2} and repeat the process. Proceeding thus, we prove our assertion.

Now $H_1, ..., H_n, ...$ is an independent family and $\{H_1, ..., H_n, ...\}$ is a dense subgroup of H. It follows that $H = \prod H_n$.

This completes the Lemma.

ILEMMA 10. Let G be a torsion-free self-dual LCA group. Then $G = R^n \oplus H \oplus D \oplus G_1$ where R^n $(n \ge 0)$ is the Euclidean vector group with usual topology, D is a divisible torsion-free Abelian group with discrete topology, H is the dual of D, and G_1 is a self-dual LCA group which is totally disconnected and torsion-free.

Proof. Now let \hat{G} be the dual of G. Let $\sigma: G \rightarrow \hat{G}$ be a topological isomorphism. Let G_0 be the connected component of identity of G. Then $G = G_0 \oplus S$ where S is a totally disconnected group (see 25.30(c), p. 418 of [1]). Now $G_0 = E \oplus H$ where E is a closed subgroup of G isomorphic to some R^n $(n \ge 0)$ and H is a compact and connected group. Then $\hat{G} = \hat{E} \oplus \hat{H} \oplus \hat{S}$. Now let \hat{G}_0 be the connected component of identity of \hat{G} . Then $\hat{G}_0 = \hat{E} \oplus \hat{F}$ where \hat{F} is a compact connected group. By considering the projection of \hat{F} on $\hat{E} \oplus \hat{H}$ we get $\hat{F} \subset \hat{S}$. Since $\hat{S} \subset \hat{G}$ and since \hat{G} is torsion-free, we find that \hat{S} is torsion-free. Therefore $\hat{S} = \hat{F} \oplus \hat{G}_1$. So $S = F \oplus G_1$ where G_1 is the dual of \hat{G}_1 and F is the dual of \hat{F} . Therefore $G = E \oplus H \oplus F \oplus G_1$. Now $G_1 \subset S$ and hence is totally disconnected. \hat{G}_1 is clearly totally disconnected. Hence all elements of G_1 are compact. From this it follows that $H \oplus G_1$ is exactly the set of all compact elements of G. In the same way $\hat{F} \oplus \hat{G}_1$ is the set of all compact elements of \hat{G} . So the isomorphism σ maps $H \oplus G_1$ onto $\hat{F} \oplus \hat{G}_1$. Since σ is also a homeomorphism, we must have $\sigma(H) = \hat{F}$. (Note that H is the connected component of 0) in $H \oplus G_1$.) Hence σ induces a natural topological isomorphism between $H \oplus G_1/H$ and $\hat{F} \oplus \hat{G_1}/\hat{F}$. But $H \oplus G_1/H \simeq G_1$ and $\hat{F} \oplus \hat{G_1}/\hat{F} \simeq \hat{G_1}$. Hence it follows that G_1 is self-dual and already G_2 is totally disconnected. This establishes the Lemma.

IEMMA 11. Let G be a self-dual totally disconnected torsion-free LCA group. For each prime p let G_p be the closed subgroup of all topologically p-primary elements of G. Let H be a compact open subgroup of G and $H_p = G_p \cap H$ for any prime p. Then G is the local direct sum $\sum_{p \in S} G_p$ with respect to the compact open subgroups H_p ; where S is the set of primes for which $G_p \neq 0$. Moreover, each G_p is self-dual.

Proof. We observe that every element of G is compact. Now, adopting the proof of Theorem 1 on p. 86 in [6], we get $G = \sum G_p$. There-

LEMMA 12. Let G be a totally disconnected self-dual torsion-free metric LCA group. Then G is isomorphic to $\sum_{p \in \mathfrak{F}} \sum_{i \in K_p} J_p^i$ where \mathfrak{F} is a collection of primes and K_p is a countable index set for each $p \in \mathfrak{F}$ and $J_p^i \simeq J_p$ for each $p \in \mathfrak{F}$ and $J_p^i \simeq J_p$ for each $p \in \mathfrak{F}$ and $J_p^i \simeq J_p$ for each $J_p^i \simeq J_p^i$ for each $J_p^i \simeq J_p^i \simeq J_p^i$ for each $J_p^i \simeq J_p^i \simeq J_p^i$ for each $J_p^i \simeq J_p^i$ for each $J_p^i \simeq J_p^i$ f

Proof: Now, by Lemma 11, $G = \sum_{p \in \mathcal{P}} G_p$ where \mathcal{T} is a collection of primes, and G_p is topologically p-primary and self-dual for all $p \in \mathcal{F}$. Since G_p is torsion-free, totally disconnected, and self-dual, we conclude that the compact (metric) open subgroup H_p is of the form $\prod E_a$ where a varies over a countable index set K_p and each $E_q \simeq I_p$. Moreover, G_p/H_p is a direct sum $\sum_{i \in S} L_i$ where each $L_i \simeq C(p^\infty)$ and $|S| = |K_p|$. We claim that G_p is a local direct sum of p-adic numbers: By Lemma 7, to each L_i we can find a closed subgroup $J_i \simeq J_p$ such that the image of J_i is L_i under the canonical map Φ from G_n to G_n/H_n . Let $F_i = H_n \cap J_i$. Clearly the family (J_i) is independent (algebraically only). If J is the subgroup generated by all the J_i , then $\bar{J} = G_n$ itself. Otherwise G_n/\bar{J} is compact (since it is the image of H_p), which implies that \hat{G}_p has elements of finite order. Since H_p is compact and open and J is dense, we have $H_p = \overline{H_p \cap J}$. If $|S| < \infty$, it is easy to see that G_p is a topological direct sum of a finite number of p-adic number groups. So we can assume $|S| = \kappa_0$, and then the conditions of Lemma 9 are satisfied by G_p . Hence $H = \prod H_n$, and we find from the proof of Lemma 9 that each of these H_n can be extended to a p-adic number group J'_n in G_p and that G_p contains the local direct sum $\sum J'_n$ with respect to H_n . This local direct sum $\sum J'_n$ is an open subgroup of G_n since it contains H_n .

Now $G_p|H_p$ is a direct sum $\sum \Phi(J'_n) + \sum_{\beta \in M} D'_{\beta}$ where $|M| \leq |K_p|$ and where each $D'_{\beta} \simeq C(p^{\infty})$. To each D'_{β} we can find by Lemma 7 a closed subgroup $D_{\beta} \simeq J_p$ such that the image of D_{β} is D'_{β} . Now Lemma 8 completes the proof considering $\sum J'_n$ and the D_{β} .

THEOREM. Let G be a torsion-free metric LCA group. Then G is self-dual if and only if G is of the form $R^n \oplus D \oplus \hat{D} \oplus \sum_{p \in \Gamma} (\sum_{i \in K_p} J_p^i)$, where Γ is a subset of primes and for each $p \in \Gamma$, K_p is a certain countable index set and $J_p^i \simeq J_p$ for all $i \in K_p$ and $p \in \Gamma$ and D is a torsion-free divisible countable discrete group.

Proof. The sufficiency has been established in Lemma 6. The necessity follows from Lemmas 10 and 12.

Addendum (August 14, 1969)

THEOREM. Let G be a torsion-free LCA group satisfying any one of the following conditions:

- (a) G is separable.
- (b) G satisfies countable chain condition, i.e. any family of disjoint open sets in G is countable.
 - (c) G is σ-compact.
 - (d) G is Lindelöf.
- (e) Any uncountable family of open sets has an uncountable subfamily with non empty intersection.

Then G is self-dual if and only if G is of the form mentioned in the preceding theorem.

Proof. If G is of the form mentioned in the preceding theorem then it is self-dual by Lemma 6. Suppose now G is self-dual. Then $G = R^n \oplus A$ where A has a compact open subgroup H. $\hat{G} \simeq \hat{R}^n \oplus \hat{A}$ where \hat{A} has a compact open subgroup H^{\perp} which is the dual of the discrete A/H. Let G satisfy anyone of the conditions (a)—(e). Observe that (a) \Rightarrow (b) and (c) \Rightarrow (d). We assert that A/H is countable. If not, $A = \bigcup Hx_n$, a set union of disjoint cosets and I is an uncountable set. Each of these

cosets is open in A. If we now consider $\{R^n + Hx_a\}_{a \in I}$ we easily arrive at a contradiction. So A/H is countable. Now $\hat{G} \simeq \hat{R}^n \oplus \hat{A}$ where \hat{A} has a compact open subgroup H^\perp which is now the dual of the countable discrete group A/H. Hence H^\perp is metrizable. Since G is isomorphic to \hat{G} , by a similar reasoning we get \hat{A}/H^\perp is countable. Hence H, the dual of \hat{A}/H^\perp is metrizable. Since H is metrizable and A/H is countable discrete and hence metrizable we get A is metrizable. Already R^n is metric-Hence G is metrizable. Then the preceding theorem completes the proof.

References

- [1] E. Hewitt and K. A. Ross, Abstract harmonic analysis, New York (1963).
- [2] I. Kaplansky, Infinite Abelian groups, University of Michigan Press, Ann. Arbor (1954).
- [3] L. Pontryagin, Topological groups, Princeton University Press, Princeton (1958).
- [4] M. Rajagopalan and T. Soundararajan, On self-dual LCA groups, Bull. Amer. Math. Soc. (1967).
- [5] Van Kampen, Locally bicompact Abelian groups and their character groups, Ann. of Math. 36 (1935), pp. 448-463.
- [6] Y. A. Vilenkin, Direct decomposition of topological groups, A. M. S. Translations, vol. 8, series 1, (1962), pp. 79-185.
 - [7] A. Weil, L'integration dans les groupes topologiques, Hermann, Paris (1951).

UNIVERSITY OF ILLINOIS, Urbana, Illinois MADURAI UNIVERSITY, Madurai, India

Reçu par la Rédaction le 23. 1. 1968

Results on ω_{μ} -metric spaces

by

F. W. Stevenson (Oberlin, Ohio) and W. J. Thron (Boulder, Colorado)

§ 1. Introduction and preliminary results. A linearly ordered abelian group is a set A, together with a binary operation \cdot , and an order relation >, such that (A, \cdot) is an abelian group (A, >) is a linearly ordered set and the following condition is satisfied: if a > b then ac > bc. The group A has character ω_{μ} iff there exists a decreasing ω_{μ} -sequence converging to 0 in the order topology on A. Here ω_{μ} denotes the μ th infinite cardinal number. Cardinal numbers are considered as initial ordinal numbers and each ordinal coincides with the set of all smaller ordinals. The power of ω_{μ} is denoted by κ_{μ} . We will be concerned with only that ω_{μ} which represents the least character of A and it is easily shown that such an ω_{μ} must be a regular cardinal number.

Let X be a set and ϱ a function from $X \times X$ to $(A, \cdot, >)$ such that

- (i) $\varrho(x,y)=0$ iff x=y,
- (ii) $\varrho(x,y) = \varrho(y,x) > 0$ if $x \neq y$,
- (iii) $\varrho(x,y) \leq \varrho(x,z) + \varrho(z,y)$,

then ϱ is called an ω_{μ} -metric and (X, ϱ) is an ω_{μ} -metric space. Sikorski [10] has done the most extensive study of ω_{μ} -spaces; other references include Hausdorff [3], Cohen and Goffman [1] and [2], Parovicenko [6], and most recently, Shu-Tang [7].

The ω_{μ} -metric ϱ on X induces a topology \mathcal{C}_{ϱ} on X; a base for the topology consisting of sets of the form $N_a(x)$ where $N_a(x)$ = $\{y \in X : \varrho(x,y) < a\}$, $a \in A$, and a > 0. Also ϱ induces a uniformity \mathcal{U}_{ϱ} on X: a base for the uniformity consisting of sets U_a where U_a = $\{(x,y): \varrho(x,y) < a\}$, $a \in A$, a > 0. It is easily shown that the ω_{μ} -metric topology and the ω_{μ} -uniform topology are identical.

An ω_{μ} -additive space is a topological space (X, \mathcal{C}) which satisfies the condition that for any family of open sets \mathcal{F} , of power $< \aleph_{\mu}$ it follows that $\bigcap \mathcal{F}$ is an open set. Clearly every topological space is an ω_0 -additive space. It is easily shown that if (X, ϱ) is an ω_{μ} -metric space then $(X, \mathcal{C}_{\varrho})$ is an ω_{μ} -additive space. Sikorski defines the following concepts on an ω_{μ} -additive space (X, \mathcal{C}) . The space (X, \mathcal{C}) has a basis iff it has a base