Convergence quotient maps
by
D. C. Kent (Pullman, Wash.)

Introduction. In this paper we study quotient maps for conver-
gence spaces. The first three theorems describe the behaviour of the
decomposition series of a convergence space under eontinuous maps and
quotient maps. The last two theorems show the rather surprising equi-
valence of certain types of convergence quotient maps with such topolog-
ical notions as pseudo-open maps, almost open maps, and bi-quotient
maps.

1. Preliminaries. An extensive discussion of convergence spaces
can be found in [4], [5], and [6]; however, a brief summary of essential
results will be repeated here.

A convergence structure ¢ on a set S is a mapping from the set F'(S)
of all filters on § into the set of all subsets of 8 which satisfies the following
conditions: (1) # e g(%), all 2 ¢ S, where & is the principal ultrafilter con-
taining {z}; (2) if F and J are in F(8) and F < J, then ¢(F) C¢(3); (3) if
zeq(F), then z e g(F ~ &). The pair (8, ¢) is called a convergence space,
and x € ¢(F) is interpreted “F ¢-converges to 7. The filter Uy(2) obtained
by intersecting all filters which ¢-converge to « is called the q-neighborhood
filter at x. If Uy(w) g-converges to « for each point z in §, then ¢ is called
a pretopology, and (S, g) a pretopological space.

Starting with a eonvergence space (8, g), we define for each ordinal
number o a set function It defined recursively for every subset 4 of §
as follows:

I4) = 4;

IA) = {z e 4: A e Uga)}

I3(4) = (I3 4)), if a—1 exists;

I4) = ~ {Ig(4): o< a}, if ais & limit ordinal.
It is not difficult to show that

T4 ~ B) = Ij(4) ~ Iy(B)
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for all ordinals o and all choices of 4 and B, Indeed, I; has all of the
properties of a topological interior operator except idempotency. Since
any transfinite process of shrinking subsets of § must eventually terminate
there is a least ordinal number a = y, such that Iy 4) = IZ‘LI(A) for a,li
subsets 4 of 8; y, is called the length of the decomposition series for (8, q)
Let A(g) = {UCS: I(U) = U}. Then i(g) is a topology on § coa.;‘sel’-
than ¢, and indeed the finest such topology. The set {I3(4): 4 C 8} forms
the base for a topology which we call ¢(g); (q) is obviously finer than A(q)
but (]]ir(Q) may not be comparable with ¢ itself. ’
ext we introduce, for each point  in § and each ordinal nu
the. filter Vg(#) = {4 C8: » e IgA)}. The pretopology which hlagﬂzéﬁ(:;
a8 its neighborhood filter at each point # in § denoted ==(g). It ca.nabe
{shown that Vy{w) = V,(x); thus #*(g) (more often written merely as z(q))
is the finest pretopology coarser than ¢. Some propositions concernin;
the various topologies and pretopologies on § related to g are listed belowg.
< Mg <=(g) < plg)

LI 1< a< f<yg, then A{g) < mi(q) < #(g) < w(g).
3. w¥q) = A(g).
4. If o is a limit ordinal, then Vg(x) =" {Vg(z): ¢ < al.

The diagram given below is called the decomposition series for (8 q):
, )

[y

]

(9, q)——>-(S, n(q))—>->(S, :n“(q))—>...—>(;3’, l(q));
the arrows can be regarded as representing the identity mapping on §.

2. Continuous maps. Through i i i
\ ‘ . ghout this section, f will represent
% funetlTon mappfg a convergence space (S, ¢) onto an’other convergence
Zpa,ce % > ). IE F e F(8), then f(F) will denote the filter on 7' generated
Y {f(F): FeF}. 3 eF(T), then f(3) = {f {(6): @ e 3}is a filter on S.
DEFINITION 1. The function f is continmous if

to f(z) whenever F g-converges to . f(F) p-converges

PROPOSITION 1. (a) If f is a continu i
ous funection, 1t}
Vplf () for all @ in §. ! © then (e} >

(b) If p is a pretopol
s comny i; ‘ pretopology and f(Vy(x)) > Uy(f(2)) for all o ¢ 8, then |

Proof. V() = 5 & -
(7). (8)  f(Uel) = f(N {7 zeg(F)}) =N {f(F): :vgq(.dv“‘)}>

(b) Let xeg(F); then F > Vyz) and fF=f

Thus f(¥F) p-converges to 2, and f is continuous (Vel#)) = Vp(f (@)
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PROPOSITION 2. For each ordinal number a, the following statements
are equivalent:

(a) For each @ in 8, f(Vg(@) D Vp(f(2));

(b) For each AC T, f~(I5(4)) C I(f(4).

Proof. First, assume that (a) is true, and let = e fI3(4)). Then

fla) e To(A) = 4 e Up(f(w) =F7(4) «f (V5 (f(2))
= 7HA) e V(o) = w e I{f(4)) -

Next, assume thabt (b) is true and Tet A e Ug(f(x)). Then

fl@) e Ij(4) =z e FHI4) =2 e I3(f(4))
> F4) e Vi(o) = A « f(Vg(=)) .

TEROREM 1. If f s continuous, then for each & e S and each ordinal
number a,

FlVE@)) > VE(f(@) -

Proof. Induction on . For a==1, the resulf follows from Proposi-
tion 1. If  has an immediate predecessor, a—1, then ¥ e Up(f (#)) implies
() € Ip(V) = Ip(I3 (V). Thus ISV € Up(fix)), which implies thab
FHIZT (V) € Uglw). By Proposition 2 and the induction hypothesis,
I (V) € V(). Thus @ qu(I;“l(f“‘(V))) = T3 ~(V)), and so f7'(V)
€ V%(w), s desired. Finally, assume that o is a limit ordinal. Let V « Up(f(2));
then V e Uj(f(x)) for all o <a, and by the induction hypothesis, f~(¥)
€ UYx) for all o< a Bub F7UT) e[ {V5(@): o< o} = Vg(x), and the
proof is complete.

CoROLLARY. If f is continuous, then the decomposition series for (8, q)
is mapped continuously by f onto the decomposition series for (T,p). In
other words, in the diagram below, where the horizontal arrows represent
the identity maps and the vertical arrows represend f, all mappings are con-
tinuous.

(8, q)—>(S, ﬂ(q))—>...—>(8, n“(q))——>...—>(;5’, l(q))
} ¢

¥
(T, p)—(T, a(@)) ..~ (T, (p)) >~ (T A(2) -

3. Quotient maps. As in the preceding section, f will always
represent a mapping from (8, g) onto (T, p); thgse spaces will be assumed.
to be convergence spaces unmless otherwise designated.
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‘ :!)EFINI’IIION 2. The mapping f iy called a convergence quotient ma
11.5 p is the finest convergence structure on T relative to which fi ,
tinuous. ’

dDE'FINITI(?El“T 3. If (8,¢9) and (T,p) are both pretopological spaces
and p is the finest pretopology on T relative to which J is continuous
then f is called a pretopological guotient map. K

If “pretopology” is replaced b i ini
I s T ¥ ytopology” in Definition 2, th
one obtains the usual definition of a topological quotient mappmgi It eiI;

clear that quotl_en‘u maps, in any of the three senses described above
are always continuous. ’

con-

PROPOSITION 3. The following statements about [ ave equivalent:
(a) f is @ convergence quotient map;

(b) A filter 5 p-converges to vy i ; ;
bo y tn T if and only if there is x in f7°
and 3 eF(8) such that e q(3) and 37>ff(:l). e o in 710)

furthl(::ot ﬁit ./fkssunllle thé}t lf is a quotient map and let Y e p(F). Assume
; ‘ or all # € f™(y) there is no J e F(8) such th 00
parly . . 8 at » e g(3) and
gf Tf ((ii)f.inIégt :Sbfil’i})l; Sfugetlon Enaapplng F(T) into the set of a,llq su)bsets
2 t Uy ¢ p (%), then r(3) = p(e); if
(%) = p (%) if J = f(J) for some fil i i e
- = f ter J in F(S) which ¢-conver g

someF fale;:nent x JIJ; /7My), and otherwise r(J) = p(JG)——{y% e 0

irst we verify that » is a convergence stru .

ve _ : cture. In checki

three GOIL(?.IthIlS which define convergence structures R
our a.tten.tvlon to those filters which r-converge to 4 ’
agrees with p-convergence otherwise.

we can restrict
, sinee r-convergence

(1) y er(§), since e q() for all & /), and f(&) = .

2) L i
(2) Let X, < %, in F(T) and Y €7(X,). Then there is 3 e '(S) such

that J g-converges to som in 7!
and y er(3,). ¢ @inf y) and (3) < %,. But then f(3) < %,,

(3) This condition follows immedi
o C mediately from the fa
implies f(3n &) <® A § for all o ef‘l(y).y 1o fact that /7)<

. £ .
It is clear rom the constr uction of f (4} [y
) hat maps (S, q) continuous.

y clear that r is strietly fi
fact R o ctly finer that ».
g’c’ts contradiet the original assumption that f is a quoti At
(8, g) onto (T, p). & quotient map from

o -
y ther:::g:lz,;:f:ﬁ; ]i(;:dl;lont(b); then the continuity of f is obvious
structure r on T such that ing by f

of (8, ¢) om‘p (T, r) were continuous for » = p, then it i:lﬁxgaﬁ)p:;i ‘:)1;7{
ha

ges to y would necessarily 7-converge to v,

and we would have r — i
== p. Thus, give i i
structure on T relative to Whl.Gh’ fgl is neog:lbt)in, 'f:ml; fhe finest convengenco

Convergence quotient maps 201

PrOPOSITION 4. If f is a convergence quotieni map then, for each y € T,

Vp(y) = N {F(Vela)): 2 «f7 @)} -

Proof. The inequality < follows from Proposition 1. To establish
the other direction of the inequality, let A e f(Vy(@)) for each we F ).
T¢ 5 p-converges to y, then by Proposition 3 there is z e Fy) and
¢-converging to z such that J > f(%). Since J& > Ugl2), we have FHA) e,
which implies that 4 ef(%)C 3. Since each filter J which p-converges
t0 4 is finer than () {f(Vy(x)): @ e fX(y)}, then the result holds for U(y),
which is the intersection of such filters.

ProrosITioN 5. Let (8, ¢) and (T,p) be prelopological spaces. Then
a continuous function f is a convergence quotient map if and only if, for
each y T, there is e f (y) such that F0g(m)) = Vply)-

Proof. That F is a convergence guotient function under the given
condition is an immediate consequence of Proposition 3. If the condition
fails, then no filter & which ¢-converges to % € f_l(y) could map on Up(y),
and 50, by Proposition 3, Uy(y) could not p-converge to y.

ProposiTioN 6. Let (S, q) and (T,p) be pretopologies. Then f is
a pretopological quotient map if and only if f is continuous and, in addition,
V e Uply) whenever (V) e Uglw) for oll @ ().

Proof. Assume the given condition and let r be a pretopology on T'
such that f maps (§,p) continuously onto (T,r). If V eUr(y), then
FTUV) € Vg(w), all @ e y). Thus Uly) = ,(y) for all y ¢ T; this implies
that p =7, and so f is & pretopological quotient map.

Conversely, if f is a pretopological quotient map, then f certainly
is continuous. Consider ¥V C T such that f™'(V) e Ug(w) for all = e ).
Tf U(y) is the filter generated by such sets, and r the pretopology on T
obtained by setting Ur(y) = V(%) for all y, then it follows from Proposi-
tion 1 that f mapping (8, ¢) onto (T, r) is continuous, and, sinee f is
a pretopological quotient map onto (T, p), VUply) = Vxy). But each
member of V,(y) is clearly in Ur(y), and so p=r, and the proof is
complete.

TuporeM 2. If f is a quotient map, then f: (8, w(@)~>(Ts a(p))
is a pretopological quotient map, and f: (8, 4(9) (T, A(p)) is @ topological
quotient map.

Proof. Let us first consider the pretopological case. If r is & preto-
pology on T such that f: (S, sz(q))—>(1',r) is continuous and V € Ur(y)
for some y e T, then @ ef '(y) implies FTHV) eVglw). Thus Ve F{Vg=)),
all # € f(y) and, by Proposition 4, ¥ € Vp(y). Hence z(p) =1, a.ntd z(p)
is the finest pretopology on T for which the above mapping is continuous,
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Turning to the togological case, we begin by showing continuity.

If Uellp) a.n.d a.z:ef' (U),1 then f(z)=yeU, and U eUy(y). Thus

U e f (Vy(x)), which implies f~(T) € Vy(w), and £ () is A(g) - open. Further-

more, let > A(p) be a topology on T such that f: (S, M) (T, ) is
continuous, and let V be v-open. Ity ¢ V and « e f -t

] . y), then (V) e U,(z

and V e f{Uy(w)); since this is true for all ef“l(y),’ i)

VN {f(0@): @ ()} = Valy)
and ¥ is i(p)-open.

Exawerr 1. Let 8 = {w,x,y,2} and let T= {a, b
. i E = ¢}. Let ¢ be th
topology on 8 with neighborhood filters specified a,57 fo’llows: ! ’

b

Volw) =&, Vo(y)=1[y,2], Vale)=2, Volw)=/[w,z].

(Here [y, 2] denotes the filter on 8
generated by the set {y, 2}, etc.) Let
be the pretopology on T with neighborhood filters given7 1)5;: ) !

Vpla) =&, Up(d)=1[b,6], Vple)=T[a,c].

Let f e the function specified as follows:

fley=a, fly)=0b, fl)=fw)=c.
The following facts can be easily verified.
(1) f+ (8, 9)~(T, p) is a convergence quotient map.
@) f: (8, 9(0)) (T, ¢(p)) is not continuous.
(3) f: (8, 4(¢))—~(T, A(p)) is a topological quotient map but not
a pretopological quotient map.
(4) 7e <.
y nél;‘;hfa third conclusion of Exa..mple 1 shows that f: (8, »*(g)) (T, =*(p))
- e in general a pretopological quotient map for o> 1. Concerning
t ot}rth conclusion, we can readily see that the inequality y, >
ff g(;fs;lﬁ; é(;r convergence quotient maps by considering the projj’aectigg
Ty convergence space onto the trivial s isti
é rar pace constisting of
a.i:f;gle point; ‘thus we con'clude that convergence quotient maps dogngﬁ
g.t. any pre&etable relationship between y, and y, unless further con-
Wlelc;g; tarlf ugpﬁosed. Our next theorem displays such a condition. However
eed to establish a preliminary iti '
we firs proposition, t i
iy similar to that of Proposition 2 and willopbe onili;;teltlle proot of which

PROPOSITION 7. For each ordinal
about f are equivalent: e &

(a) F(VU3(z)) < V(f(2), ol @ e 8;

the following statements
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(b) For each A CT, f7{Ix(A)) D Ia(f ~(4));

(¢) For each BCS, f{I5(B)) C Li(f(B))-

DEFINITION 4. A convergence quotient map ¢ is said to be neighbor-
hood-preserving it, for each x e 8, f(Vq(®)) = Up(f ().

TaEROREM 3. If f is neighborhood-preserving, then:

@) f: (8, =(a) (T , n(p)) s meighborhood-preserving for all ordinal
numbers a;

@) f: (8, 9(@) (T, p(p)) is @ continuous function.

(3) Yo <va-

Proof. (1) Induction on a. For a = 1, the result follows immediately

from Definition 3. Next, assume that o is an ordinal number with an
immediate predecessor, and assume that the resul holds for a—1. Since f

is continuous, f(Vg()) > Vs(f(w)) is valid for all ordinal numbers a by
Theorem 1. Let ¥ e f(Ug(x)); then there is Ue j(x) such that f(T)CV.
Thus @ € I3(U) = I(Ig(7)) implies 157Y(U) € Vg(w), and hence f(Tg (7))
(V@) = Vp(f(a)). But then, by the induction hypothesis and Pro-
position 7, f(I (V) CI; ' (f(U)). Thus If (D) € Uplf(@), and f(a)
¢ Ip(f( 7)), which further implies that f(TU) € Vp(f(2)). It remains to eon-
sider the case where « is a limit ordinal; in this case flUg@) = Vp(f(=)
is assumed valid for all o < a and allw ¢ 8. Let ¥ e f(V3(x)), where f(T) CV
and U e UYw). Then, by the induction hypothesis, f{T) € Vp(2), all & < a.

Thus

F(O) e {05(f, @): o < a} = Vi{f()) ,

and the proof of (1) is complete.

(2) Let I,(4) be an open base set for ¢(p). Then, by Propositions 2
and 7, £ (In(4)) = Lo(f7'(4)) is ¢(g)-open.

(3) Let f: (8, n(@) (T, a2(p)) and f: (8, a#(g)) (T, #(p)) be two
distinet components of the translation of the decomposition series for
(8, ¢) into that of (T,p) I 2%(g) = af(g), then it is clear ‘that =*(p)
= xf(p), and this observation establishes the desired inequality.

Tt is interesting to mote that in Example 1, where all three parts
of Theorem 3 break down, the given function fis neighborhood-preserving
except at the single point 2. This suggests no significant weakening of the
conditions imposed in Theorem 3 can be found in the general case.

Let C(T) denote the complete lattice of all convergence structures
on T, and assume that p i the infimum of some sebt {ps} of convergence
structures on T. If (8,¢) is the direct union of the {{T, ps)} and f the
nataral projection of § onto T, then one can show without difficulty


GUEST


oy .o Kent icm

.
Fhat fisa convergence quotient map. Since a direct union of topologies
is a tc.)pology, it follows from Theorem 1, [5], that every convergence
space is & convergence quotient image of some topological space.

- 4. Topological implications. “Careful analysis and broad clag-
sification of entities that at first glance appear to be dissimilar are
juhe esse%nce of point-set topology and form its main task. Tt is elear that
%f one is to take this path, then it immediately becomes necessary to
invent new topological ideas and objects. This quotation is from g paper
by A. V. Arhangelskii, [1], and the purpose of this section is to classify
some of the various types of topological quotient maps which have i)een
studied by Arhangelskii and others as special cases of convergence quotient
maps.

In tlrfis section, unless otherwise indicated, we will consider f to
be a .contmuous mapping of a topological space (S, ¢) onto another to-
pologlca.l space (T, p). The term “quotient map” will mean “+topological
quo@ent map”. The four definitions that follow describe concepts which
are intermediate in generality between “quotient map’’ and “open map’’;

3

they are taken from references [1], [2], and [7 i i
- s 2], o and list g -
reing gt , [2], [7] isted in order of de

DEFINITION 5. f is hereditaril ient i -
. ly quotient if, for ea !
is a quotient map onto A. ’ o ACE AT

DEFINITION 6. f is pseudo-open if, for ea i i
) i ! y ch point ¥ in 7 and each
neighborhood U of f7'(y) in 8§, y is in the interior of f(o).

DEFINITION 7. f is bi-quotient if, whenev i
E ery e T and W is a coverin
of () be open. subsets of S, then f’initel i :
y). many f(U . )
some neighborhood of ¥ in i‘ Y VIO, W T e, cover

DEFINITION 8. f i almost open if, for e i i
' > ach y in T, there is 2 in f™*
with a base of open sets each elemer,tt of which i : : o
toon et which is mapped by f onto an
Definitions 5 and 6 are known to be equivalent (see [1]).

PROPOSITION 8. The following statements about I are equivalent.
(a) f is bi-quotient.
(b) If B is a filter base i 1
iy toff_l(‘%)‘f ase in T and y e T adheres to B, then some x € f~*(y)
(e} If & is an ulirafilier on T which
. - conver,
an ultr.aleter 3 on 8 which maps on F andp oot
Michael [7] has shown that (a) and (b)
of (b) and (c) is easy to verify.
) W.hen the spaces under consideration are to
immediately that the characterization of pretopol

, then there is
q-converges to some z e £ (y).
are equivalent; the equivalence

pological spaces, we see
ogical convergence maps
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given in Proposition 6 coincides with Definition 6, and that the characteri-
zation of convergence quotient maps given in Proposition 5 is equivalent
to Definition 8. Thus we have proved

TaEOREM 4. (a) f is a pseudo-open map if and only if f is a preto-
pological quotient map.

(b) f is almost open if and only if f is a cowvergence quotient map.

For the sake of completeness, it might be mentioned that f is open
if and only if f is neighborhood-preserving.

To obtain a characterization of bi-quotient maps, we turn to a type
of convergence structure which (like the mnotion of pretopology) was
defined by Choquet [3] in 1948.

DEFINITION 8. A convergence structure r on a set R is & pseudo-
topology if & r-converges to # whenever each ultrafilter J finer than r-con-
verges to .

ProPosITION 9. Let f map the pseudo-topology (8, q) onto the pseudo-
topology (T, p). Then p is the finest pseudo-topology on T relative to which f
is continuous if and only if f satisfies condition (c) of Proposition 8.

The proof of Proposition 9 is similar to that of Proposition 3 and
will be omitted. By analogy with Definitions 2 and 3, we will call any
function f which satisfies condition (¢) of Proposition 8 a pseudo-topological
quotient map.

THEOREM 5. A mapping f from a topological space (S, ¢) to & topological
space (T, p) is bi-quotient if and only if f is @ pseudo-topological quotient
map.
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