X-spaces
by
Keid Nagami (Matsuyama)

0. Introduction. P-spaces due to XK. Morita [8] is a Dasic and
the most important concept in the theory of produet spaces. A perfectly
normal space and a countably compact space were shown to be two trivial
examples of P-spaces by K. Morita [8], Theorem 3.2 and Corollary 3.4.
Beside these spaces the following are non-trivial examples of P-spaces:

(a) Paracompact Hausdorff spaces which are complete in the sense
of E. Cech (Z. Frolik [3]).

(b) M-spaces (K. Morita [8]).

(¢) Paracompact p-spaces (A. Arhangelskii [1]).

(d) M*-spaces (T. Ishii [4]).

As a matter of fact the second concept is a generalization of the
first and the last three cases are the same with each other for paracompact
Hausdorff spaces (cf. A. Arhangelskii [1], K. Morita [8] and [9]). The
purpose of this paper is to introduce X-spaces, which are P-spaces and
offer a concept of real generalization of M -spaces, and study several
features of those. The following are some of their features.

(i) If a space X is a countable sum of closed Z-spaces Xi,
i=1,2,..., then X is a X-space.

(i) If X4, 4=1,2,..., are paracompact X-spaces, then J[X; is
a paracompact Z-space.

(iii) If {X.} is a locally finite closed covering of a space X and
each X, is a X-space, then X is a Z-space.

(iv) If f1 X—Y is a quasi-perfect mapping onto, then X is a X-space
if and only if ¥ is a X-space.

(v) If X is a regular Z-space and § is a paracompact Gs-set of X,
then § is a X-space.

(vi) Bvery regular space with a o-locally finite net is a Z-space.

(vii) If X is a paracompact P-space and Y is a paracompaet X-space,
then X x ¥ is paracompact.

K. Morita [9] constructed a non-M-space X which is the sum of
two closed M-spaces. So the property (i) is remarkable and convenient
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to handle X-spaces. All spaces considered in this paper are Hausdorff
spaces. All mappings are continuous. A mapping f: X—Y is quasi-perfect
if f is closed and f '(y) is countably compact for’ every point y in Y. If
moreover every f(y) is compact, then f is perfect. The index 7 runs always
through positive integers.

Section 1 gives definitions and related observation which will be
needed for the next section. Section 2 illustrates a location of X-spaces
among other classes of spaces. Further properties of Z-spaces will be
given in Section 3 and the last Section 4 offers applications of Z-spaces
to preduet spaces.

1. Preliminaries.

1.1. DEFmvaTION. Let F be ‘a covering of a space X and 2 a point
of X. Then we set

Cla,F)={F: 2cFeF}.
A X-net of o space X is a sequence {5} of locally finite closed coverings
satisfying the following condition:

It K;DK,D.. is a sequence of non-empty closed sets of X such
that

K, C O(m, 5‘—1)
for some point x in X and for each ¢, then

NE#0@.
If we set

Cl@)= Clz, 59),

then it is to be noted that every C(x) is closed and countably compact.
A strong Z-net is a X-neb such that each C(z) is compact. A space X is
a Z-space or a sirong X-space, if X has respectively a X-net or a strong
Z-net. Clearly every paracompact X-space is a strong X-space.

1.2. DEFINITION (*). A X-net is a o-nef, it () =  for each- point .
A space is a o-8pace if it has a o-net.

o 1.3. Levwa. Let {F:} be a Z-net of a space X. If for each i 16, is a locally
finite closed covering of X refining F, then {3} is a Z-net of X.

14, LmmumA. Let X be a Z-space. Then X has o X-net {F:} which
satisfies the following:

o (9 In our previous paper [10] we name a Paracompact space having a o-locally
finite net a o-space. It is evident that a space is a ¢-space in the present definition if
and only if it has a o-locally finite net. In [10] a @-net was defined as a o-net in the
present sense with an additional condition which we ghall name a spectral o-net. Please

pardon the anthor for this confusion, while we have much benefit for these simple
expressions.
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(i) Bvery F: is (finitely) multiplicative.

({i) Fi={F(a...qs): ayy ey e Q).

(iil) Boery F(oy...as) is the sum of all F(dy... ti0i11), Gip1 €.

(iv) For every m e X there exisis a sequence aiy sy .., € Q such that if
C(z) C U with U open, then .

C@)CF(ay...as) C U

for some 4.

Proof. Let {#;} be a Z-net of X. Let 3; be the collection of all
finite intersections of elements of J¢;. Then X is & locally finite multi-
plicative closed covering of X. Set

JG; = {H;(a{): ai € Ai} .
Let Q be a set containing all 4; whose power |2 is the supremum of all |4;].
If we seb

H{(af) =0 for ai € .Q—Al 3
then we can express ¥} as
¥, = {Hia): ael}.

Set

Flay...o) = O Hy(ay) .

i<t

. Fim= {F(tgeer @0)t gy oeey @5 €2}
Sinee F; < (vefines) i, {Fi} is, by Temma 1.3, a X-net sa.tisjfying ’fh.e
conditions (i), (ii) and (iii). Let = be an arbitrary point of X. Since X; is
multiplicative, there exists an a; <2 such that

Oz, 7)== Hila) -
Then it can easily be seen that the sequence aj, o, ... satisfies the con-
dition (iv).

1.5. DEFINITION. A Z:net {F;} with the property in Lemma 1.4
is spectral. If the power of the index set Qism, thenitisa spectral X (m)-net.
A space is a Z(m)-space if it has a spectral Z(m)-net. A strong Z(m)-space
is now easy to be understood. o

A space is & X(1)-space or a strong E(l)-spacfs if and only if it is
respectively countably compact or compact. It is ewdentf from the above
construction that a space X is a X(m)-space if and qnly it X has a X-net
{Fi= {Fi(a): aeA}} such that |4 <m for each 4. ‘

1.6. THEOREM. If 2 < m < R, then a space X is o X(m)-space if
and only if X is a X(2)-space. o

Proof. Since the sufficiency is evident, we merely prove the necessity.
Let {¥:} be a spectral X(m)-net. Then we can write as

3‘]‘= {Fﬁ:ij = 17 2: "'} .
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Set
Fo={Fij, X} .
Then we obtain a X-net”
(Fyi,i=1,2,.}.
Consider this {F;} as {J6;}. Starting from {Je;} we obtain a spectral Z(2)-net
as in the proof of Lemma 1.4,

o 1.7. LEMMA. l.Jet f: X=X be a quasi-perfect mapping and F a locally
f}mte closed collection of X. Then f(F) is a locally finite closed collection
of Y.

This is proved by A. Okuyama [12].

) 1.8. TaroREM. Let f: X—Y be a quasi-perfect mapping onto. Then X
is a X-space if and only if Y is a X-space.

Proof. Suppose that X is a X-space. By Lemma 1.4 there exists
a spectral Z-net {F;} of X. By Lemma 1.7 every () is a locally finite
closed covering of Y. To see {f(F3)} is a Z-net of ¥ let L, DL,D ... be
a sequence of non-empty closed sets of ¥ with T

L:C Ofy, f(54)

for some point y in ¥ and each 7. Take an arbitr i i !
0 . T an arbitrary point
there would exist an ¢ with v T

Iy~ Cly=0a,
then there would exist a § with
M) Olo, F)=0.
Let % be the maximum of ¢ and j. Then
T nCe,5)=0.
Sinee 33 is multiplicative, there is an element F of 5 % With
F=C(w, Fy).
Then Iy ~ f(F) = @ and hence
Lio Oy, f(52) = @,
& contradietion. Thus f~(L;) ~ O(z) # & for any ¢ and
Ny =0

by the countable compactness of C(z)
) . Hene
{f(F0}is a Z-net of ¥ and Y is a X-space. ® (15040, Theretore

Conversely suppose that ¥ is a Z-space. Let {3} be a spectral X'-net

of Y. Then each f(%) is a locally finite closed covering of X. To see
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{fHIC)} is & Z-net of X let KD K,D ... be a sequence of non-empty
closed sets of X such that
K:C Cla, D)
for some point z in X and for each i. If there would exist an ¢ with
fE)n Oy =09,
then there would exist a j with
fE)n Oly, %) =0 .
Let % be the maximum of ¢ and j. Then
FEr)~ Oy, ) =0
Tet H be an element of ¥ with H = C(y, ¥;). Then
EenfNE) =0,
which would imply
Exn O(w;f_l(xk))z a,
a contradiction. Therefore
JE)n Cly) #+0
for any ¢ and [ f(K:) # @ by the countable compactness of C(y). Choose
a point ¥, in [ f(K:). Then
N f—l(?h) #0
for any ¢ and hence
NEK:i#9
by the eountable compactness of ). Thus X is a Z-space and the
theorem is completely proved.
1.9. CoROLLARY. Let X be a Z-space and Y be a compact space. Then
XxY is a Z-space.
Proof. Since the projection of X x ¥ onto X is perfect, the assertion
is trivially true by Theorem 1.8.
1.10. CororrArY. Let X be a space and {X.} a locally finite closed
covering of X. If each X, is a Z-space, then X is a X-space.
Proof. Let B be the topological disjoint sum of X,. Then E is evi-
dently a X-space. Let f: E—X be the natural mapping. Then f is quasi-
perfect. Thus X is a X-space by Theorem 1.8.

1.11. DEFINITION. A space X is a pre-o-space if there exists a quasi-
perfect mapping of X onto a o-space Y.
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Clearly every pre-c-space is a X-space by Theorem 1.8. Recall
that a space X is an M-space if and only if there exists a quasi-perfect
mapping of X onto a metric space (cf. A. Arhangelskii [1] and K. Mo-
rita [8], Theorem 6.1). Since every metric space is a o-space, every
M -space is pre-o. However there exists a pre-o-space which is not an
M-space by Example 2.3 below. Furthermore there exists a Z-space
which is not pre-o¢ as will be shown in Example 2.4.

2. Location of X-spaces.

2.1, ExXAMPLE. A paracompact o-space which is not an M-space.
Consider a paracompact o-space X due to E. Michael [7], Example 12.1,
which is not metrie. Then X is not an M -space, since every paracompact
o-space which is an M-space at the same time is always metric by
A. Okuyama [11].

2.2. BxAMPLE. A paracompact M-space which is not a o-space.
Let Y be the product of m copies of the closed unit interval, where m > .
Then it is an M -space. Since every open set of a o-space is an F,, Y is
not a o-space.

2.3. EXAMPLE., 4 paracompact pre-o-space which is neither a o-space
nor an M -space. Let X and Y be the spaces given in Examples 2.1 and 2.2
respectively. Then X x Y is the desired. Let #: X X ¥ X Dbe the pro-
jection. Since = is perfect, X x Y is pre-o. Since every closed subset of
an M-space is an M-space, X x ¥ is not an M -space. By an analogous
reason for a o-space, X X ¥ is not a o-space.

2.4. BExaMPLE. A paracompact X-space which s not a pre-o-space
but a countable sum of closed pre-o-spaces. Let P be the space consisting
of all ordinals less than or equal to the first uncountable ordinal w, with
the order topology. Then P is compact. Let P;, i=1,2, ..., be copies
of P. Let J be the sum of all P; where o, is one and only one common
point of Py and P; with ¢ j. When ©eJ —{w,}, a neighborhood base
of # in J i a neighborhood base of # in P; with x ¢« P;. For o < w,, let
Pya) be the set of all ordinals in P; greater than «. Set

U(aya...) = | Pi{ai) . ’
The collection of all possible U(a;@,...) is & neighborhood base of w, in J.
Then J is regular. Since J is o-compact, J is a paracompact Z-space.
Since each Py is & closed pre-o-space in J, J is a countable sum of closed
Pre- o-spaces.
To prove J is not pre-o assume the contrary. Then there would exist
% quasi-perfect mapping f of J onto some o-space X. Since every closed

set of a o-space i8 a G, f(f(wy) would be a closed @, containing ;.
Hence there would exist a sequence ay, a,, ... such’ that

U{na...) Cf_l(f(ﬂ’l)) .
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The countably compact set f'l(f(cul)) would contain a closed subset

{a;+1, a1, e}
which is not countably compact, a eontradiction. Thus J is not pre-o.

2.5. Remark. K. Morita [9] constructed a space X which is not an
D -space but the sum of two closed M -spaces. Thus the finite sum theorem
is not true for M -spaces. However his space is not normal. The finite
sum theorem for normal M -spaces is always true by J. Suzuki [13],
Theorem 2. It is worth enough to point out that J is a paracompact non-
M-space which is the countable sum of closed J-spaces Pi. Here is
another remark: J is not an M*-space as can be seen by analogous ar-
gument to 2.4.

2.6. THEOREM. Every M*-space is a X-space.

This is evident if we recall the definition of I*-spaces: A space X
is an M*-space, if X has a sequence {} of locally finite closed coverings
guch that two propositions K;DK,D.. and Star (¢, Fi) DK #0,
i=1,2,.., imply [ Ki+ @. This type of sequence is itself a Z-net
of X. i

2.7. THEOREM. Hvery ZX-space is a P-space.

Proof. Tet X be a Z-space and {Fi} a spectral Z-net of X. Let

{Glagoai): gy oy aiel, i=1,2,..3
be a system of open sets of X such thab
@(ay...a)) C G{ay... €iqis1)
for each sequence a, ¢, ... Set
Floy..a)= J{FeFi: FCG(og...ai)}-
Then it is a closed set which is contained in G(ay ... ). Suppose that

U GFlay ... az) = X.

To prove the corresponding sum

UF(a . ai)

12
covers X assume the contrary. Then there would be a point # of X sueh
that
zeX—JF(g..a).
1
Since F; is multiplicative, we can set
.F i = 0 (w, 97';) .
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for a suitable element F; of ;. Since {¥;} is spectral, ;D F,D ... Since
Ki=F—G(ag...o00) # 9,
we obtain () K; # @. On the other hand
NEKCX~— L‘j Glay...as) =0,

a contradiction. The proof is completed.

3. Further features of X-spaces.

3.1, Lemwma. Let .{.‘F 1} be a Z-net of a space X. Let {K¢} be a collection
of ‘olosed sets of X with the finite intersection property such that for some
point & and for each i there ewists a j with K,;C O(w, F). Then N Ki#0

3.2. THEOREM. Let X be a space and {Xi} a closed ’ .

0 covering of X
that each X is a Z-space. Then X is a X-space. o sk
Proof. Let
{3‘_@','1 j"—" 1, 2, ...}
De a X-net of X;. Set
Fhi={X} v &y,

Let us prove {F;: i,j=1,2,..}isa %

‘ : -net of X, Let {K: ¢,/ =1,2

be a family of el of X wi inite i on o 2

o y of closed sets of X with the finite intersection property such
K;;CO(z, 53) !

jiE)rt:s-(l);nJe point ‘in X, f(?r.ea.ch ¢ and for each j. Choose a & with 2 e Xy.
et L be an arbitrary finite intersection of {K;}. Then for every j

LnKkiC 0($,$ky)= G(my‘Tkj)C-Xk

and hence L ~ Xy + 9. . el e .
orty. By Lomma k?j Thus {K;}|X has the finite intérsection prop-

o

NEin Xy #0

1,f=1
and the theorem is proved.

It is to be noted that the sum
2 th
by Example 2.4. corem £

3.3. CorOLLARY. If a s
) . pace X has a closed covers
each TX{ is countably compact, then X is o Z-space ing {Xi} such that
his is evident from Theo )
proof. Set rem 3.2. But

Or pre-g¢-spaces iy not true

we can give a simple direct

Fi= {Xl_, ...,Xi, X} .

Then {F} is clearly & Z-net of X. X is actually a X(2)-space

@
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3.4, COROLLARY. If X is a CW-complex, then X is a Z-space.

Proof. As is well known X is the sum of closed metric spaces Xi.
Sinee each X; is a Z-space, X is a X-space by the sum theorem.

3.5. COROLLARY. If X is a totally mormal X-space, then every open
set @ of X is a Z-space.

Proof. By the definition X is totally normal if and only if X is
normal and every open set G admits a locally finite (in @) covering WU
each element of which is an open F,-set of X. Let W= {U.: a e A} be
such a covering. Sinee each closed set of X is of course a Z-space, each U,
is a Z-space by the sum theorem. Since & is normal as a relative space,
there exists a covering {Fa: a € A} of G such that FoC U for each ae 4
and each F, is closed in G. Since U, is already a Z-space, Fe is a XZ-space.
Since {F,: a e A} is locally finite in @, G is a Z-space by Corollary 1.10.

3.6. TumormM. Let {Xi} be a sequence of strong X-spaces. Then [x
is a strong X-space.

Proof. Let

Fhji=1,2,.}
be a strong X-net of X;. Set
Flliyoni) = FL X xFLx [ [ X
T kpity
Then it is a loeally finite closed covering of [1X:. Let us prove that
{F (Ggnig)t Gs=1,2,... for s=1, vy fii=1,2,.3

is & Z-net of []Xi. Tet = (v, @, ...) be & point of [1X; and

%= {K(iy..q5): s =1,2,.. for s= 1,0,d,5=1,2,.3

a collection of closed sets of []X: with the finite intersection property
such that

K (iy...3) C Oz, F (iyeri9))
for each sequence f, ..., i7. Bvidently

o@) =[] 0d
for every point &’ = (%1, @2, ... of [] X:. Hence C(a') is compact for every
point a'.

Assume that there exists a finite intersection I of elements of J
with '

LnC@)=9.

Fundamenta Mathematicae, T. LXV 12
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By the compactness of () there would exist an n and open sets G D O(mi)
for =1, .., n such that

Lr\(ﬁ(}'ix Tx)=0
i=1 i=n+1

Choose ji for i=1,.., 7 such that
G:D Clas, Fi) D O(a) .

i1

Then
n([] o siyx [] X)=0.
i=1 i=n+1
Since
Ofa, F (i) = [ ] Olar, 8% [] X,
=1 T=n+1
then

LAO@,F(Grda)) =9,
a contradiction. Thus
LnCx #9.
Hence [ {K: K X} # 0O and the theorem is proved.

3.7. THEOREM. Let X be a reqular X-space and Y be a paracompact
‘subset of X with the expression ¥ =) Gy with every G open. Then X is
a X-space. ’

Proof. Let {F;} be a Z-net of X. Let {V'} be a collection of open

sets of X covering Y such that {V'} refines {Gi}. Let % be a locally finite
(in ¥) closed covering of ¥ refining {V}|Y. Set

L= A (Fil ).
Then {£s} is a Z-net of ¥ as follows. Let & be a point of ¥ and {K} a eol-
lection of closed sets of ¥ with the finite intersection property such thatb
K CO(m, %) ‘
for each 4. Since X;C C{=z, F4),
NEK:i#9.
Choose & point y from this intersection. Then y e K; C & for each i and

hence y € ¥ ~ K, for each 4. Since K; is closed in Y, then y  K; for each 1,
proving {1\ K; = @. The proof is finished.

3.8. LEMMA, Let F= | Fi be a o-locally finite closed covering of
a space X, where each 5 is a locally finite closed collestion. Let & be a point
of X and {Fi(w)} be the subcollection of F which consists of all elements of &
containing x. Let the following condition be satisfied:

©
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If {Ki} is a collection of closed sets of X with the finite intersection
property such that K; C Fy(x) for some point @ and for each ¢, then (1) Ki # O.
Then X has a X-net.

Proof. Set
Jey = {X}v Fy.
Then {#;} is a Z-net.
3.9. THEOREM. Let A be an Fys-set of a Z-space X. Then A is a X-space.
Proof. Set
A= 4, =4y,
i i
where each 4;; is a closed set of X such that Ay C Ay ;4. for each j. Let
{Fs} be a Z-net of X. Seb
Fijr = Fildjr
= J{Fmd: i,j,k=1,2,.}.
Then 1€ is 4 o-locally finite closed covering of 4. Let # be a point of 4.
Set
{Helk: zeH}={H,, H,, ..} .
Let {I{s} Le the collection of closed sets of A with the finite intersection
property such that K;C H; for each 4. Let ji be the smallest integer of j
such that @ € 4. Let {I;} be the collection of all elements of {J 5 con-
taining x. Set
E= (I Ay b=1,2,.., §=ji, 1=1,2,..} = {Ly, Ly, ...} -
Then ,
{He}=¢l4.
Since C(x, ) contains a finite intersection of elements of ¢,
NE:+#0.
Choose a point y from this intersection. Since
yenf;CﬁE;CﬁE“
then
yedy; for jzjiandi=1,2,..
Thus y € 4; for each 7 and y is a point of 4. Hence

ye) K
and the theorem is proved by Lemma 3.8. The proof is completed.
3.10. LEMMA. A normal space X is strongly normal (i.e. countably
paracompact and collectionmwise normal) if and only if the following con-
dition in X is satisfied: ‘
12%
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For each locally finite closed collection {Fa: a € A} there ewisis a locally
finite open collection {G.: o€ A} such that F, C G, for each ae 4.

This was proved by M. Katétov [5].
3.11. TemwmA. Let X be o reqular strong X-space and
{37{ = {Fiut ae A;,}}
o strong Z-net of X. If there emists, for each i, a locally finite open covering
Usg = {U{a: o€ A;}
of X with Fiu C Uiy a € Az, then X is paracompact.

Proof. First we assume that each F; is multiplicative without loss
of generality. Let § be an arbitrary open covering of X. Let §(x) be a finite
subeollection of § covering C(z). Set

Gz)= UJ{G: GeS(x)},
¥ = {¢(z): eX},
Fi={FeFr F<B}={Fiu aeBi}.

Since C(x, Fi) C G(x) for some ¢ and F; is multiplicative, | J 5 covers X.
For each Fy e i let G(zs) be an element of J& with 7y, C G (@), Set
V«;.,:: U;GK\G(C&','U), asB;,
= J{8@u)Vis: aeBs, i=1,2,..}.

Then £ is a ¢-locally finite open covering of X refining 8. Thus X is para-

compact by E. Michael [6].

3.12. TamoREM. If X ds a collectionwise mormal, strong X-space,
then X 1is paracompact.

Proof. Since X is a P-space by Theorem 2.6, X iy countably para-
compact by K. Morita [8], Theorem 3.10. Thus by Lemmas 3.10 and 3.11,
X is paracompact. *

3.13. TemorEM. If {X;} is a sequence of paracompact X-spaces
then [[ Xy is a paracompact X-space.

Proof. Let {F;: j =1,2,...} be a Z-net of X; and {W: j=1,2,..}
a sequence of locally finite open covering of X such that every CLL}' is

in one-one correspondence with ¥} as stated in the condition of Lemma 3.11.
Then .

{ﬁlx X Fh % H Xk}
EZj+1
is a strong X-met of []X; as was shown in the proof of Theorem 3.6.
Moreover every

. .
Fix . xFyx H X
k=i+1

©
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is in ‘good’ one-one correspondence with a locally finite open covering

WS, X o X W, x H X,

k=j+1

Hence by Lemms 3.11 [] X; is paracompact and the proof is completed.

3.14. CoroLLARY. If {Xi} is a sequence of paracompact pre-c-spaces,
then [[X; is a paracompact pre-c-space.

Proof. []X; is paracompact by Theorem 3.13. Let f; be a perfect
mapping of X; onto a o-space ¥;. Then []f; is a perfect mapping of [ X;
onto [] Y:. Since [] ¥ is a o-space by Theorem 3.6, [] X is a pre- o-space.

3.15. THEOREM. Let X be a paracompact X-space. Then X is a o-space
if and only if the diagonal 4 in X x X s a Gs-set.

Proof. Since the sufficiency is evident, we prove the necessity.
Let {Fi} be a Z-net of X. Let {G} be a sequence of open sets of X x X
with

4= Gi.
For each point & in X choose an open neighborhood Ui(x) with -
Uqlz) x Uslw) C G4. Let ¥ be a locally finite closed covering of X which
refines {Us(»): » ¢ X}. Set

Li=F¢ AN B,

Then {f;} is a Z-net of X by Lemma 1.3. If C(z, |J L) would contain
a point #' different from =, then there would exist an » with (z, 2') ¢ Ga.
Let L be an element of £, with {#, '} C L. Choose Us(z'") with L C Ugn(z").
Then (2, %) € Un(e”’) X Un(z"’). On the other hand Un(a") X Un(@”) C Gn,
a contradiction. Hence C(z, | L) = o« for each point # in X and the
proof is finished. :

This theorem is to be compared to & metrization theorem due to
A. Okuyama [11] and to C. Borges [2], Theorem 8.1: A paracompact
M-space is metrizable if and only if the diagonal is a G;-set. There may
not be an elegant metrization theorem for X-spaces, because of the
character of X-spaces itself such that they generalize M-spaces haxnd_
o-spaces at the same time. For the convenience of the reader let us give
the following which is not elegant at all: A X-space X with a Z-net {F, i}
is metrizable if and only if X is an M -space and {J ¥ has a subcovering
each element of which is metrizable. This is a direct comsequence of
Okuyama~—Borges’ theorem. The condition for X to be an M-space cannot
be dropped, since any CW-complex is a Z-space satisfying the last con-
dition. ‘

3.16. THEOREM. Let X be a space and X,, X,, ... & sequence of subsets
of X. If each X; is a strong Z-space, then [) X; is a sirong X-space.
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Proof. (i) Let wus prove first that X; n X, is a strong X-space.
Let {Fri: i=1,2,..} be a spectral strong X-net of Xy for k=1, 2. Set

=({ AN Fu)Xin X,.
k=12
To see {F;} forms a strong X'-net of X; ~n X,let K; D K,D .. be a sequence
of non-empty closed sets of X, ~ X, sueh that
K;CC(x, 54)
for some point # in X, n X, and for each 7. Set
:m Oz, Fra}, k=1,2,

= Oz, F4) .
Since
Oi(z) ~ Oyf@) C O(, Fri) » O, Foi) = C(a, Fs)

for each i, Cy(x) ~ Oy(x) C O(x). Since it is evident that C(x)C Cy(z) n
 Oy(x), we obtain

C(x) = Cy(x) n Cylix) .
Thus C(x) is compact.

Let K: be the closure of K; in X;. Set
E=NK;.

Since K;C C(z, F14) for each 4, K is not empty. To prove X ~ C(z) £ O
assume the contrary. Since K C (y(#), then K n Cyz) =@. Since K

and Cy(x) are compact and all spaces considered in this paper have been
assumed to be Hausdorff, there exists an open set U in X such that

Cx)CUCUCX—K.
Since {Fe:} is a spectral Z-net of X,, there exists a j with
G(.’T/, :7:27') CU.

Since K;C C(x, F2), K; C U and hence K; C U. Therefore K C U C X —E,
& contradiction. Thus we obtain K ~ C(x) # @. Since Clx)C X, n X,,
then Kin~ C(x) = Ki~ C(z). Therefore

NE}nCle)=FEnCx)#=0
Thus we know that X, ~ X, is a strong Z-space.

(ii) By the above observation every finite intersection of X8 is

a strong X-space. Thus we assume without loss of generality that
XD X,D ... Set

Y= Xi.

©
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Let {Fi: j=1,2,..} be a spectral strong X-net of X; such that
Fao>Fe> ..,
F1y > Fop >
Set
Fi=54|Y.
Let us prove {F4} is a strong X-net of Y. Let K, D K, D ... be a sequence
of non-empty closed sets of ¥ such thatb

KiCOy, 54

for some point ¥ in ¥ and for each .
Now C(y) and Cy(y) can be defined naturally. Since (| C(y, Fu)C ¥,

M Cuy)CN Cly, Fu) = Cly, FulX) = Cly).
Since it is evident that O(y) C Cily), we obtain
0y =N Cdy).

Thus C(y) is compact and hence closed. Let K be the closure of K; with
respect to X; and set

:ﬂK{i.

Then K’ is not empty for any j and K*D KD ... Since K’ is a closed
subset of Cj{y) and C; (y) is closed in X, K is closed in X. To prove
E'~ Cly) £ O for any j, assume that there would exist an m Wlth
K™~ C(y) = @. Then there would exist an n with K™~ Culy) =
Choose an s with s > m, s> % and with

E" C(?],fﬂs)=®
Then
K nCly,TFu)=9,
yielding
K°CEKiCC(y,Feu) CX—K°,
a contradiction.

Set )
: E=NK.
Since K’ ~ C(y) # O for any j, then
TEnO@y)#9.
Since ) _ ;
Ein0yCEinCy)=EnCy)CE:in 0(),
then ’

En~Cy)= (h E) ~ Cly) = (1) K)o CW) -

Thus () K; # @ and the proof is completed.
3.17. Remark. In view of Theorems 3.2 and 3.16 one may expect
that if X;, X,, ... are strong X-spaces contained in a space X, then | J X;
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may be a Z-space. But it is not the case by E. Michael’s celebrated
example. Let T be the unit interval, J the rationals in I and K the irra-
tionals in I. Let L Dbe the space obtained by retopologizing I in such
a way that every seb of type U vV, with U open in I and with VC K,
is a basic open set in L. Then L is a hereditarily paracompact space, J is
an F,-set of I and K is a Gs-set of L. J and K are strong ZX-spaces,
while J v K is not a P-space as is well known and hence not a X'-space.

3.18. Lmavra. Let X be a regular space, X, a subset of X having
a strong X-net {Fi} and z a point of X,. Set

Bi=F; v {X},
Oy = Ol=, F4),
O@)y=) Oz, %&).

Then Cy(x) = C(z). If Ky D K,D ... i8 a sequence of non-empty closed sets
of X with

K;C G(a: y J€¢)
for each i, then [ K; # @.

Proof. Let y be an arbitrary point of X —C,(2). Choose an open
set U of X with
Om)CTUCTUCX—{y}

and a j with

Cl,7)CU.
S%nee G (a‘;) C C"(w, ¥;) C U, C(z) does not contain y, proving C(z) C Cy().
Sinee it is evident that Cy(x) C C(z), we obtain C)(z)= C(»).
) To prove the rest assume that K; ~ Oz, F;) = @ for some 4. Since X
is regular, there iz an open set ¥V of X with

C@)CVCVCX—K;.
Choose a j with j =>4 and with C(z,F;) CV. Then C(z, 3;) CV, yielding
.Kj C G(SD, Jej) c X—Ki y

a contradiction. Thus K; n O{z, Fi) + @ for each §
proot is finished. o ch i and () K # 0. The

‘3.19. me. Let X be a regular space. Let X, or X, be a subset of X
h‘av:mg. respectively a strong X-net {F1:} or {Fas} such that each Fy; is locally
finite in X. We name a Z-net with this additional condition a special Z-net
Then X, X, has a special strong Z-net {Fi}. .

Proof. Set
Ry = Frv (X},
i = ;i A Jegi,
Fi=RyX, u X
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Then J¢; is a locally finite closed covering of X. Let K; D K,D ... be a se-
quence of non-empty closed sets of X; v X, such that

K;CC(w, F4)

for some point » in X, v X, and for each i. When <X,

C(z, F1) C C(z, %) C Oz, F1y) .
Thus

KiC Oz, 81| X, v Xy)
for each 4 and hence [ K; # @ by Lemma 3.18. When z ¢ X,, we obtain
M K: # O too.
To see {7} is strong let # be an arbitrary point of X,. Then
m Oz, 53) Cﬂ G’(m, ;) Cm G(%‘, Kis) -
N Oz, %)= Clw, 51;) C Xy

by the preceding lemma, () O(z, F) is compact and the proof is finished.

3.20. TrmorEM. Let X be a perfectly mormal strong X-space. Then
each Borelian set of X is also a strong Z-space.

Proof (by transfinite induction). (i) Let o be an, arbitrary ordinal
less than the first uncountable ordinal o, Let us define the families Bos
and B, inductively. Let $o, be the family of all open sets of X and Bos
the family of all closed sets of X. If a > 0, let Bor or Bas be respectively
the family of all sets B of type:

Since

B=C}B¢ or B=ﬁB¢,

i=1 =1
where
Bie Bpo v Bps s
Bi<a, i=1,2,..
Set

354 = ‘%w: w 3.’)(,; )
B=u {Ba: a< ).
Then $ is the family of all Borelian sets.

(i) Let P(a) be the following proposition:

Hach set in B, has a special strong Z-net.

Clearly every closed set has a gpecial strong Z-net. Since every
open set & is an F,-set, the method in the proof of Theorem 3.2 can be
applied and @ has a special strong X-npet. Thus P(0) is true. Liet a be an
ordinal with 0 < a < o, and pubt the transfinite induction assumption
that P(B) is true for each B less than a.

(iii) Let D be an arbitrary element in $s. Then in the same fashion
as in the proof of Theorem 3.16, D can be proved to have a special strong
Z-net.
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Let E be an arbitrary element of 3. Then E can be-expressed as:

E={JEB;, where H;eBy, pi<a.
By Temma 3.19 we can assume without loss of generality that
B CE,C..,
h<p<..
{Fou:j=1,2,..}
l)];i sf;(.}%ﬂ AsE-ong 2~net. of E;. We assume here without loss of generality
i j=1,2,..} is spectral. This assumption is possible if W)e

construct a spectral X-net from a speci
: cial Z- ;
a8 in the proof of Lemma 1.4. Set P net by fhe standard way

Xy = Fy v {X},
W=\ {lu: s <, 1<},
£i= J@,;]E,

Then J¢; is a locally finite clo i :
; sed cov
s 2 Epesial sireng Fot ot o ering of X. Let us prove that {L;}

(iv) Let ;D K,D ... 1
such that T e & sequence of non-empty closed sets in B

Let

EiC Oz, &)

for some point # in E and £ ;
. or each i. ¢ i
each i greater than or equal to & i. Choose a & with « ¢ . Then for

Thus K¢CC((I},§;¢)CG(IE, J€¢)C0(m,J€M).
K;C ; 3
Notice that (@K, ik
' {gki: §= k, 76—}-1, ...}
is & strong X'-net of By, since {Fra: i=1,2
b b

It we apply Lemma 3.18, we obtain: -~} Was taken to be speotral.

NK:#@.

Therefore ik
NE:#@.

Set i=1

Olz) = ﬂ Oz, L),
Ci(z) = Q Gz, y),
Cilo) = N Oz, 5y).

-+ ©
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Then by Lemma 3.18
Oi(w) = Ciw), i=Fk,k+1,..
Let p be an arbitrary non-negative integer. Then

G(CL‘,J@;;.H,)CO({E, J€k+P,q) ’ q= 17 “"k+p1

O(w, Rriptr) CO@, Rerpirpsr)y T=1, 2.
Thus

1Do C(@, Rrtptr) CqD1 O (@, Rripg) = Chanlt) .
Therefore
(iote, %0 () Oy = [, Oe)
Since
() CDkG(m, ) ,

then

(@) cﬁk i) .

Since every Ci(z) is compact, O () is compact. Thus E has & special strong
S-net and P(a) is true. The induction is now completed and the theorem
is proved in a slightly strengthened form.

3.91. Remark. If X in the above theorem is not perfectly normal
but hereditarily normal, the theorem is not true. Let X be the set of
all ordinals less than or equal to o;. This X with the interval topology
is a strong Z-space (actually & compact space) and is hereditarily normal.
Let @ be the set of all countable ordinals. & is of course a X-space. Let
us prove G cannot have & strong S-net. Let {Fi} be a spectral Z-net
of G TLet F, be the subeollection of & consisting of all cofinal (in &)
elements Fi. Seb

K=\ {F: FeFi},
K = m K,; .
Then each K; is cofinal and K,DK,D... Hence K is also cofinal. Seb
S= | J{P: FeF1—5F1, i=1,2,..}.

Then & is not cofinal. Hence K —8 is not empty. Let  be a point of £ —8.
Then C(x) is cofinal and hence not compact. Thus {F:} is not strong.

4. Product spaces.
4.1. TaeoreM. Let X be a paracompact P (m)-space and Y a para-

compact E(m)-space. Then X x ¥ is paracompact.
Proof. Let S be an arbitrary open covering of X x Y. Tiet
[Fi= {Flag.ai): gy % eQ}}
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be a spectral Z-net of ¥ with |2] < m. Let
Bi= {H(ay...5): ag, ..., 05 €2}
be a loeally finite open covering of ¥ such that
Floy...a;) C H(ay... o)
for each a;, ..., a;. Liet
W(ag...a) = {Uz2 X Va: Le A(ay...aq)}
be the maximal collection satisfying the following three conditions:

(i) Each U, is an open set of X.
(ii) Each 7, is an open set of ¥ such that
Flay.ar) CV, C H(ay...az) .
(iii) Bach V, is a finite union of open sets Vi, ..., Vinw such that
G = {UAXVM: i=1, ,..,ﬂ.(ﬂ.)}< g.

Set ‘

’ W= v {W(ey...as): ag, ey €2, 4=1,2,..}.
By an a._na.logous way to that in K. Nagami [10], Theorem 3, we can see
tpa't W is & normal open covering of X x Y. Hence there exists a locally
finite open covering

Wo={Wi: de Alaecas), oy, 4R, i=1,2,.}= {Wy: 2¢ 4}

of X XY such that

WA C U)_ X V;,
for each A Now

U S Wa: Ae A)

is a locally finite open covering of X x ¥ refini

o, ring refining § and the theorem
4.2. CorotrARY. Let X be a paracom
pact P-space and ¥ -
compéwt Z-space. Then X X Y is. paracompact. P o e
his generalizes the essential i

2 part of K. Morita [8], Th b
and K. Nagami [10], Theorem 3, at the same time. [8) Thoorem 6.5,

4.3. DEFINITION. Let m be a power. A space X has the property Li(m)

if every open. covering of X . . e
elements. ng has a subcovering consisting of at most m

mostWhen"n;s lsAﬁnite, the property L(m) implies that X consists of at
most m points. A space X has the property L(s,) if and only if X ig a Lin-
elof space. It is to be noted that the property L(m) is not always heredi-

tary. If X has the property Li(m), the
i (m), then each F,-set of X hag the pro-
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4.4, TEmMMA. If X is a space with the property Li(m), then each locally
finite collection F of subsets of X consisis of at most m elemenis.

Proof. Since the proposition is trivially true for a finite m, we prove
it for an infinite m. Suppose there would exist a locally finite collection §
with |¥]> m. Pick a point from each element of 5. Let 8 be the sum
of all these points. Since the collection of such points is locally finite,
g is a closed discrete subset of X with |8] > m. Hence X has not the
property Li(m), & contradiction.

4.5. LeMvA. Let m be an infinile power. If a space X is a sirong
X (m)-space, then X has the property Li(m).

Proof. Let § be an arbitrary open covering of X and X the collection
of all finite sum of elements of §. Let

{3‘—i == {F‘iu: a S.Ai}}
be a strong spectral X-net of X such that |4 < m for each i. Seb
g ?’;:{Fw:aeB;}:{Fs.‘ﬂ:FCSOmeHsJ@}.

To prove that | J &% covers X let # be an arbitrary point of X. Since C ()
is compact, there is an elemenf H of 3¢ with C(w) C H. Then there exists
an i such that C(z, F:) CH. Since C(=, Fy) =T for some element ¥
of Fi, O(w, Fs) ¢ Fi. Thus {JF; covers X.

For each element Fy, in F; let §;, be a finite subeollection of § cover-
ing Fi. Then

U {Siz aeBi, =1,2,..}

is a subcovering of § consisting of at most m elements.

4.6. TrEoREM. Let m be an infinite power. A paracompact X-space X is
a Z(m)-space if and only if X has the property Li(m).

Proof. The necessity is evident by Lemma 4.5. Assume that X has

the property Li(m). Liet
{\‘T-i = {Fi, #0: a eA,-}}

be a Z-net of X. Then by Lemma 4.4 44| < m. Hence X is a X(m)-space
by the remark at the end of Definition 1.5.

4.7. TerorEM. Let m be an infinite power. Let X be a paracompact
P(m)-space with the property L(m) and Y a paracompact X{m)-space.
Then X x Y is a paracompact space with the property Li(m).

Proof. The paracompactness of X x Y is agsured by Theorem 4.1.
To prove X x ¥ has the property Li(m) let G be an arbitrary open eovering
of X x¥. Let

[Fo= (Bl as): @y on @€ QY
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De a speetral X(m)-net of Y. Let
G(ag...as) = {Galay...as): e Alag..oai)}
be the collection of all possible open sets of X such that
Giay...as) X Flag...a5)
is & sum of a finite collection Xi(ay...a;) refining G. Then
U{Fa: de Aogeai), agy ey, e, i=1,2,..}
covers X X Y. Set .
Glage. o) = J{Glag...az): 2e Alag...ai)}.
G(ay...a;) C G1(01... azais)

Then

for each sequence ay, gy, ... Let {H(q¢;...a:)} be a collection of closed sets
of X such that

(i) H(ag...as) C G(ay... a5),
(i) |JG(a...0s) = X implies |JH(g...ar) = X. ¢
Let
Hlayeai) = {Hyay...as): pe M(ay...0:)}
be a covering of H(a,...a;) refining G(q¢...q;) such that
| M {ay...a5)] <m.
To each ue M(w...a;) there corresponds a A(u) € A(ay...as) such that

St H (0. az) C Gy oon i)

Weay ... a5) = Kyl ay... @) Huloy ..o 05) X Flay... )
W= U {Wuoq.oa): pe M{agear), ayy ey ieQ, i=1,2,..}.

Then W is a covering of X x ¥ refining §. Since W consists of at most 1t
elements, § has a subcovering consisting of at most m elements. Thus X
has the property L{m) and the theorem is proved.

4.8. CoROLLARY. Let X be a regular Lindelof P(2)-spa
ROLLA 2)-space and Y
a regular Lindelof Z-space. Then X x Y is a Lindelof spacel.)

Proof. By the condition X is a paracompact P(s,)- i
the property L(s,). By Theorem 4.6 Y is a par%ja.compa(cto);(psa;}?slmil
Thus the present corollary is an immediate eonsequence of Theol;"em 4 7‘

This generalizes the essential part of K. Morita [8], Corollary 6.6.
and K. Nagami [10], Theorem 4, at the same time. ’ v

4.9. LeMMA. A normal space is countably paracompact if and only

if each couniable open covering can be refined b R .
covering. f Y & o-locally finste closed
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This is an easy exercise.
£.10. THEoREM. Let X be a P-space and Y o strong X-space. If
X x Y is normal, then X x X is countably paracompact.

Proof. Let
{Fo={Flar @)t ayy oy a e Q}}
be a spectral Z-net of Y. Let §= {G:} be an arbitrary countable open
covering of X x Y. Let Sy, Gy, ... be the sequence of all finite subeollection
of §. Set
Hi=J{G: GeSi}.
Let Gj(as...a:) be the maximal open set of X such that
Gilay...as) X Flag...as) CHj .

Glay...00) = ij Gilog...a) .

Set

Then
G(ay...ar) C G0y aiis)

for each sequence a,, o, ... € 2. Moreover we can verify thatb
{G{ay.e i) X F(ag--- 03)1 Gy ooy @i eR,i=1,2,..}
covers X x ¥ by the standard argument with the aid of compactness
of O(y), ye¥. Let K(o...;) be closed sets of X such that
(i) K(ay...ai) C G(a...a1),
(i) UE(g..a)= X whenever |J G(a...0q) = X.
Then .
{K (ay...05) X F (g0 06)0 Gy oeeey O eQ,i=1,2,..}

covers X x Y.

Since X is a normal P-space, X is countably paracompact by K. Mo-
rita [8], Theorem 3.10. Since K(ag...a:) is & countably paracompact
normal space as a closed subset of X, there exist closed sets Kj(ay...as),
j=1,2,.., such that

(i) E(ay.a)) = U Eiay...ai),
7

(i) Ki(ay...as) C Gi{og... as)y

(iil) {Ei(ay...a0): j=1,2, ...} is locally finite in X.
Set ) 0
= {K,-(al.‘. ag) XF(al...cu): J= 1,2, .., ) ai € } .
Then £; is locally finite in X x ¥ and | £ covers X x‘Y. Sinee‘g,: is a finite
open covering of Kja;...ai) X F(ag...a5); there. BXlStS. a finite .closed
covering Rj(ay...a:) of Kia...0) x F(@,...a;) which refines

G| K (... as) X Flog...ai) -
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Then
Mg = U {Bsay.oaqt §=1,2, 0,01, a; €}

is & locally finite closed collection of X x ¥. Thus [J 4G is a o-locally
finite closed covering of X x ¥ refining S. By Lemma 4.9 X x ¥ is
countably paracompact and the proof is completed.

4.11. Remark. Almost all propositions about X-spaces are also true
if we replace X-spaces with X(m)-spaces. The following are such ones:
Theorems 1.8, 3.2, 3.6, 3.9, 3.13 and Corollaries 1.8, 1.19.
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A generalized contraction principle
by
R. E. Chandler (Raleigh, N. C)

Various versions and generalizations of the Banach contraction
mapping theorem ([1], p. 160) have been given. For only two of many
examples see [4], p. 43, 50 (where an application is given by solving
the Volterra type integral equation) and [2] (where an application is
given to analytic mappings of a compact connected set in the complex
plane into itself.) We discuss a general definition of contraction mapping
here for which we can prove the necessary result that a contraction mapping
of a complete metric space into itself has a unique fixed point. In order
to make this definition it is convenient to work with uniform spaces
having a countable symmetric base rather than metric spaces although,
of course, the two are equivalent.

See Kelley ([3], Chapter 6) for the necessary terminology and results.
Tn what follows Z will denote the integers and 4 the diagonal of
X xX (4= {=,o)reX}).

DerNrTIoN. Let (X, U) be a uniform space. A mapping f: XX
is u-contracting provided there is & collection of symmetric sets {Vaulnez,
cofinal in U, (with respect to the ordering U > U, if and only if U, C U,)
which satisfy

Q) ViCVvy it i<j, (\Va=4, UVe=XxZX,
nezZ nez

(ii) for each n ¢ Z there is an integer p{(n) >0 such that {p(n)|n € Z}
is bounded and Va—pwmy © Vipm C Vn,

(i) if (#,9) € Va then (f(2),F(¥)) ¢ Va-s-

Lena 1. If f: XX is u-contracting then [ has at most one fized
point.

Proof. Suppose f(#) = » and y # . Let n be the least integer for
which (2, %) € Va. (n exists since M Va=4 and |JVs= X xX.) Then
(#,y) €Vn 50 (f(w),f(y)) € Va1. If 4 =f(y) we would have (2,%) € Vo,
a contradiction.

LEyma 2. If f: XX is u-coniracting then so is any iterate, f¥, of f.

Proof. The sequence of ¥, which demonstrates that f is u-contracting
will suffice.
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