

On a conjecture of Leader

by

Louis J. Nachman (Columbus, Ohio)

Suppose X is a set: (Y, δ) is a proximity space; and [X, Y] is the collection of all single valued functions from X to Y. In [2] Leader defines two types of convergence for nets ranging in [X, Y]. Suppose $\{f_a: a \in D\}$ is a net of functions from X into Y. $\{f_a\}$ is said to converge in proximity to some $f \in [X, Y]$ iff for $A \subseteq X$ and $B \subseteq Y$, $f[A] \bar{\delta}B$ implies the existence of an $a^* \in D$ such that $a \geqslant a^*$ implies $f_a[A] \bar{\delta}B$, $\{f_a\}$ is said to converge uniformly to f iff for every pseudometric d on Y such that $\delta(d) \leqslant \delta$, $\{f_a\}$ converges uniformly relative to d to f. Leader shows that uniform convergence implies convergence in proximity and conjectures that the converse is not true ([2], Conjecture 2).

If X is a set and (Y, \mathfrak{A}) is a uniform space then the uniformity of uniform convergence for [X, Y] determined by \mathfrak{A} (see [1]) will be denoted by \mathfrak{A} , its topology by $\mathfrak{F}(\mathfrak{A})$. A proximity space (X, δ) determines a class $H(\delta)$ of all uniformities for X whose proximity is δ . The unique smallest member of $H(\delta)$ will be denoted by $\mathfrak{A}(\delta)$ and $\mathfrak{A}'(\delta)$ will represent sup $\{\mathfrak{A}: \mathfrak{A} \in H(\delta)\}$. In this paper we relate Leader's convergence in proximity and uniform convergence to convergence relative to $\mathfrak{A}(\delta)$ and $\mathfrak{A}'(\delta)$ and then show that Leader's conjecture is correct.

THEOREM 1. Suppose X is a non-empty set and (Y, δ) is a proximity space. Suppose $\{f_a: a \in D\}$ is a net ranging in [X, Y] which converges to $f \in [X, Y]$ relative to $\mathfrak{A}(\delta)$. Then $\{f_a\}$ converges in proximity to f.

Proof. Suppose $A \subseteq X$, $B \subseteq Y$, and $f[A]\bar{\delta}B$. Then there is a $U \in \mathfrak{U}(\delta)$ such that $U[f[A]] \cap B = \emptyset$. Let $U^* \in \mathfrak{U}(\delta)$ be symmetric such that $U^* \circ U^* \subseteq U$. Since $\{f_a\}$ converges to f relative to $\mathfrak{U}(\delta)$ there is an $a^* \in D$ such that $a \geqslant a^*$ implies $(f(x), f_a(x)) \in U^*$ for all $x \in X$. Thus $f_a[A] \subseteq U^*[f[A]]$ and $U^*[f_a[A]] \subseteq U[f[A]]$. But then $U^*[f_a[A]] \cap B = \emptyset$ and therefore $f_a[A]\bar{\delta}B$.

The following lemma appears in various forms throughout the literature on proximity spaces. A proof of this statement of the result can be found in [3].

LEMMA 1. Suppose (X, δ) is a proximity space and $\mathbb U$ is a uniformity for X such that $\delta(\mathbb U) \leq \delta$. Then

$$\mathbb{U} \vee \mathbb{U}(\delta) \in \Pi(\delta)$$
.

It is clear that, if d is a pseudometric for Y and $\{f_a\}$ a net in [X, Y] then $\{f_a\}$ converges uniformly to f relative to d iff $\{f_a\}$ converges to f relative to \mathfrak{V}_d where \mathfrak{V}_d is the uniformity with base $\{V_a: \varepsilon > 0\}$;

$$V_{\varepsilon} = \{(a, b) \in Y \times Y : d(a, b) < \varepsilon\}.$$

THEOREM 2. Suppose X is a non-empty set and (Y, δ) is a proximity space. Suppose $\{f_a: a \in D\}$ is a net ranging in [X, Y]; $f \in [X, Y]$. Then $\{f_a\}$ converges uniformly to f iff $\{f_a\}$ converges to f relative to $\mathfrak{U}'(\delta)$.

Proof. Suppose $\{f_a\}$ converges to f relative to $\mathfrak{U}'(\delta)$. Let d be a pseudometric on Y such that $\delta(d) \leqslant \delta$. If \mathfrak{V}_d is the uniformity generated by d, then by Lemma 1, $\mathfrak{V}_d \vee \mathfrak{U}(\delta) \in H(\delta)$. Since $\{f_a\}$ converges to f relative to $\mathfrak{V}_d \vee \mathfrak{U}(\delta)$, $\{f_a\}$ converges to f relative to $\mathfrak{V}_d \vee \mathfrak{U}(\delta)$ and hence relative to \mathfrak{V}_d . By the above remark we infer that $\{f_a\}$ converges uniformly to f relative to f.

If $\mathfrak{U} \in \mathcal{H}(\delta)$ and $U \in \mathfrak{U}$ let $W(U) = \{(f,g) \colon (f(x),g(x)) \in U, \text{ for all } x \in X\}$. Then $\{W(U) \colon U \in \mathfrak{U} \text{ for some } \mathfrak{U} \in \mathcal{H}(\delta)\}$ is a subbase for $\mathfrak{U}'(\delta)$. Suppose $\{f_a\}$ converges uniformly to f. If for each $U \in \mathfrak{U}$, $\mathfrak{U} \in \mathcal{H}(\delta)$, there is an $a^* \in D$ such that $a \geqslant a^*$ implies that $(f,f_a) \in W(U)$, then by the above remark we can conclude that $\{f_a\}$ converges to f relative to $\mathfrak{U}'(\delta)$. It is will known that, given such a U, there is a pseudometric d for Y such that d(a,b) < 1 implies $(a,b) \in U$ and $\delta(d) \leqslant \delta$. Then since $\{f_a\}$ converges uniformly to f there is an $a^* \in D$ such that $a \geqslant a^*$ implies $d(f(x),f_a(x)) < 1$ for all $x \in X$ and hence $(f,f_a) \in W(U)$.

The following lemma shows that distinct uniformities for Y determine distinct topologies of uniform convergence for [X, Y].

LEMMA 2. Suppose X and Y are non-empty sets and that the cardinality of X is at least as large as the cardinality of Y. Suppose $\mathfrak A$ and $\mathfrak V$ are uniformities for Y such that $\mathfrak A\subseteq\mathfrak V$ and $\mathfrak A\neq\mathfrak V$. Then $\mathfrak B(\mathfrak A)\subseteq\mathfrak B(\mathfrak V)$ and $\mathfrak B(\mathfrak A)\neq\mathfrak B(\mathfrak V)$.

Proof. That $\mathcal{C}(\mathfrak{U})\subseteq\mathcal{C}(\mathfrak{V})$ is well known. To prove $\mathcal{C}(\mathfrak{V})\neq\mathcal{C}(\mathfrak{V})$ we first note that the cardinality hypothesis insures the existence of a function $g\colon X\to Y$ which is onto. Since $\mathfrak{U}\subseteq \mathfrak{V}$ and $\mathfrak{U}\neq \mathfrak{V}$ there is a $V^*\in \mathfrak{V}$ such that for any $U\in \mathfrak{U}$ there is a pair $(x(U),y(U))\in U$ which is not in V^* . We define an indexed set of functions $\{f_U\colon Y\to Y\colon U\in \mathfrak{U}\}$ as follows:

$$f_U(y) = y$$
 if $y \neq y(U)$ and $f_U(y(U)) = x(U)$.

The collection $\{f_U \circ g \colon U \in \mathcal{U}\}$ is a net if \mathcal{U} is directed by reverse inclusion.

It is a routine matter to check that $\{f_U \circ g\}$ converges to g in $\mathfrak{F}(\mathfrak{A})$. But, for $V^* \in \mathfrak{A}$ there is always an $x_0 \in g^{-1}(y(U))$ for any $U \in \mathfrak{A}$ and hence $(f_U \circ g, g) \notin W(V^*)$ for any $U \in \mathfrak{A}$. Thus $\{f_U \circ g\}$ does not converge to g in $\mathfrak{F}(\mathfrak{A})$, completing the proof of the lemma.

We are now able to show easily that convergence in proximity need not imply uniform convergence.

EXAMPLE. Let Z be the integers and (Z, δ) be the integers with the discrete proximity. Then $\mathfrak{U}'(\delta)$ will be the discrete uniformity for Z. Then:

- (1) $\mathfrak{U}(\delta) \subseteq \mathfrak{U}'(\delta)$,
- (2) $\mathfrak{U}(\delta) \neq \mathfrak{U}'(\delta)$.

Then by Lemma 2, $\mathcal{C}(\mathcal{U}(\delta)) \subseteq \mathcal{C}(\mathcal{U}'(\delta))$ and $\mathcal{C}(\mathcal{U}(\delta)) \neq \mathcal{C}(\mathcal{U}'(\delta))$. Thus there is a function $f \in [Z, Z]$ and a net $\{f_a\}$ ranging in [Z, Z] which converges to f relative to $\mathcal{U}(\delta)$ (and hence by Theorem 1, converges to f in proximity) and which does not converge to f relative to $\mathcal{U}'(\delta)$ (and thus by Theorem 2 does not converge to f uniformly); thus proving Leader's conjecture.

The author would like to thank the referee for his helpful suggestions.

References

[1] J. L. Kelley, General Topology, Van Nostrand, 1955.

[2] S. Leader, On Completion of Proximity Spaces by Local Clusters, Fund. Math. 48. (1959), pp. 201-216.

[3] W. J. Thron, Topological Structures, Holt, Rinehart, and Winston, 1966.

Reçu par la Rédaction le 21. 2. 1968