Embedding Cantor sets in a manifold
Part II: An extension theorem for homeomorphisms on Cantor sets
by
R. P. Osborne (Moscow, Id.)

Tn 19921 L. Antoine [3] gave an example of a Cantor set in E® whose
complement was not simply connected. This was the first known example
of a wild embedding of a Cantor set in E". Shortly thereafter (1924)
J. W. Alexander [2] showed that the Cantor set of Antoine, often called
Antoine’s necklace, was contained in a 2-sphere in E® disproving the
Schoenflies theorem for F°. Concurrently, Alexander [1] gave an example
of a 2-sphere in B® that was wild at & tame Cantor set of points. In 1951,
Blankinship published & paper [4] in which he generalized the construction
of Antoine’s necklace to E® for any n > 3, that is, he constructed Cantor
sets in E™ whose complements were not simply connected. In this same
paper, he showed that these generalized necklaces must lie on the boundary
of a k-cell (0 < k< n); thus giving a method for constructing wild
L-cells in E™

1In this paper we shall show that any Cantor set in a manifold (open
or closed) is tamely embedded in the boundary of a.k-cell, 0 < k<.

Tt should be remarked that each Cantor set, in an n-manifold need
not lie in an open m-cell. In fact, it has been shown by Hocking and
Doyle in [6] that if each Cantor set in a compact 3-manifold lies in an open
3-cell then the manifold is S°

The following lemmas are easily proved by routine methods.

LEvmA 1. Let e > 0 be given and let A be a compact, 0-dimensional
subset of B". Then there exists a finite collection of disjoint, open connected
subsets {Ud: (i=1,2, ..., k) of E" which cover A so that (1) dam Us < ¢
(2) CL(Ty) is a polyhedron, and (3) B"—CL{U;) is connected.

Tievmma 2. Let P and Q be disjoint, compact polyhedra in B both of
which are the union of n-simplexes, ¢ > 0, and let a be a polyhedral arc
with endpoints p and ¢ such that a ~ P = {p} and o ~ @ = {g} and g s in
the interior of an (n—1) simplex 6 of BAQ. Then a can be “plown wp” into

* The results of this paper were part of the author’s doctoral dissertation written
at Michigan State University under the direction of J. G. Hocking.
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a polyhedral n-cell C such that € ~ P and 0 ~ @ are (n—1)-cells in BdP
and BAQ respectively and d(z, a) < & for ever m e (.

The following theorem is proved by pulling arms out of an n-cell
much as was originally done by Alexander [1].

THEOREM 3. Let A be a Cantor set in B". Then A lies on the boundary
of an n-cell " C E". Furthermore, C" can be so chosen that A is tamely
embedded in Bd(". (Note that C" itself may well be wild ir E" and in
fact O™ must be wild if A is wild. [7])

Proof. Let C, be a polyhedral n-cell in E” whose distance from A
is 1. Let Py, P, ..y Pi, be disjoint polyhedrfl. of diameter less than 1/2
such that IntP;; is connected and 4 C U Int P, ; (Lemma 1). Let a be

=1
a polygonal arc in BdCy, let @1, %12, ..., #1,1, be &k distinet points of «
and 1et Y11, Yre, oy Y. De kK points such that y,; lies in the interior of
n (n—1)-simplex on the boundary of P;;. Choose disjoint polyhedral
are8 0,1, G1,2, -y U1k, SO that the endpoints of ay,; arve #,; and y.,; and so
that

' %
o, 8 Gy = {!”1,«:} and az,: N Ull"m‘) = {;lll,i} .
=1

Applying Lemms 2, blow each ai,; up into a polyhedral n-cell Oy, such
that 0y; ~ (7L;)i Ch5) = @, Oy,; ~ Oyis apolyhedral (n —1)-cell,and Cy,; ~ Pi;

is a polyhedral (n—1)- ce]l Let Ty = C, and let hy be a homeomorphlsm
of 0y onto O, = C, v U Cy,s) such that k(1) = y1,:. (Note: We must

choose Ty, Ty, Ty, ... in 0’., 50 that we do not stretch any part of ¢, too
much in the construction. This will help to insure that the final composition

of homeomorphism will be a homeomorphism. As we will show ﬁo Ty

will be the Cantor set that is mapped oy the final homeomorphism onto 4.)
Suppose now that the sets Pui1, Pm2, oy Pmjimy Omiy Cmzy ooy Comotem

and Cn together with T\ and %m have been defined. For the moment
we restrict our attention to a polyhedron Pp;. Applying Lemma 1, we
get disjoint polyhedra Ph ., I—’,,.Hz, 2 Pmyvg in IntP,; of diameter
less than 1/2™** whose interiors cover Pm i A Letfo = hm o Aoy 0 oy
and choose distinet points wm+1,1, Tty - a-fn“ a Of fa(a) A BAdPp,:.
Foreach j=1,2, ..., g; let Ym41,i be a pomt in the interior of an (n—1)-
simplex on the bounda.ry of Piy;. At this point, in order to avoid ever
increasing numbers of superseripts, we shall reorder the -Pm+1,7 s(j=1,2,.

o q,, i=1,2,..,kn) lexicographically in (¢,j) (and correspondmgly
the Brmi1,48 and Ym+14’S). We now have an ordering using two subseripts
Pri1a; Prtrzy ooy Prutt,bomsy -

©
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Now leb ami11y Gmt12s ooy GmiLknmy, D€ disjoint polyherdal ares such
that (1) Zmi1,i A0A Ymy1,s aTe the endpoints of am+i1,i, (2) amy1,i C Py, for
some ji, (3) am.H i BdPu,j, = {mm+1 iy (1) emyr,s N BdPmyri = Umrrihy
and ( ) 41,4 }%Jle+l,Q) =

Next we wish to define the set Thuy1. Let S(z, &)= {y: y e C;, and
d(w,y) < £} and let Zmi1,i = fr (Tm+1,1). ChooSe &myy > 0 small enough so
that 8 (Zmeniy &mer) CI06 Ty emes < 17277 and 8 (Zmas,ty emes) ™ 8 (@maniy

Em.
mt1) = @ f014 # . Define Tia = [J S(emen sy emia). Applying Lemma 2,

blow each opss,: up into a polyhedral n-cell Cpyq,s such that (1) Cniri 0
A Cpagg= 0 for i #7, (2) Omiri o Cmi, 18 an (n—1)-cell in fin(Tms1)s

km+1
and (3) Cmisi Pmyss i8 an (n—1)-cell. Let Cpnii= Cn v ( Qlam-(-l,j)

and choose 3 homeomorphism Ay,i1: Cpm—>> Cpmyr such that humya(®mt,:)
= Ymir,i a0 hpi1/Om — fin( Tmer) = id. Finally we define f(z) = limfm(x)
Since f is the uniform limit of a sequence of continuous functions, f is
continuous. Because the domain of f is C,, & compact set, we need only
show that f is one-to-one to establish that f is a homeomorphism. Clearly
Thuys C T and T = [ T is a Cantor set in Bd C,. For any point # ¢ C,—T

m=1

there exists an N such that z ¢ T for m > N, thus for all m > N we have
fnl@) = b (fm-a(#)) = fm—1s(®): S0 f=fv in a neighborhood of » and fn
is & homeomorphism in a neighborhood of #. We see that f is one-to-one
on C,—T. Sinee f is continuous, f(Bd C,) is compact. Now d(a , fm(Bd C’,,))
<1J2™ for any point a ¢ 4; hence, d{a,f(BAC)) =0 so af(BAC,) and
A C f(BdC,). Because fm(Bd Cy) » A = @ for each m and n is the identity
near z ¢ T for sufficiently large m, it follows that A C f(T). For each z¢ T
there exists a sequence {zn} of points such that zm € {em,it ¢ =1, 2, ..., kmly
d(2m, 2) < 2™ and d(fm(zm), 4) < 1/2™. Let &> 0 be given. By uniform
continuity of f, there is a 6 > 0 such that &(f(z), f(¥)) < ¢/2 for d(z, y) < 4.
Choose m large enough so that 1/2™ < 6 and 1/2™% < ¢/2. We have

d(f(2), 4) < d(f(2), flem)) + d(F(2m), Fnlem)) + @(fm(em) , 4)
< /24127 412" < e

It follows that f(2) e 4; hence f(T)CA so f(T)= A. Now lety #2
be another point of T and let {ym: m =1, 2, ...} be & sequence of points
such that ¥m e {&me: =1, 2, ..., km} and d(ym, y) < 1/2". There exists ¥
such that for m > N we have d(2m,¥m)>y > 0. Now since in;fm(zm)

= f(2) and lm fu(ym) = f(y) and since fm(ym) and fm(zm) are eventually
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in distinet, disjoint, polyhedral neighborhoods, it follows that f(y) # f(2).
Finally, we want to show that 4 C f(a). This follows from the fact that

a(fula), a) < 1/2™  for each ac A .

Note that f(C) is an n-cell which is locally polyhedral except at the
points of 4.

At first glance, the above theorem may not so appear, but it is an
extension theorem which may be stated thus:

COROLLARY 4. Let f' be o homeomorphism mapping the Camtor ternary
set on the @y-awis in B™ into E". f' can be extended to a homeomorphism f of
the unit cube C" into E™.

If f' can be extended to ¢, it can surely be extended to any face
of (", thus:

COROLLARY 5. Each Camtor set in E" is tamely embedded in the boundary
of a k-cell in E" for 0 <k <mn.

Note that if f* could be extended further to a neighborhood of the
unit interval on the x,-axis, then A would be tamely embedded in B,

We are ready for the statement and proof of the main theorem.

TaEOREM 6. Let M™ be an n-manifold, n > 2, open or closed and
let A be a Cantor set in M"™. Then A is tamely embedded in the boundary
of a k-cell in M" for 0 <k <.

Proof. Let (" be a collared n-cell in M™ which does not intersect 4.

There exist open n-cells By, B, ..., By such that ¢"C H; and CJ B

i=1
covers A. By the Lebesgue Covering Theorem, there exists 5> 0 such
that any neighborhood of a point of A of diameter less than # lies wholly
in B; for some 4. Let {U;;} be a collection of connected, disjoint, closed
neighborhoods of diameter less than #, whose interiors cover 4, whose
boundaries do not interseet A, that do not separate M" and that are
indexed so that U;; C B; for each j and 4. Since (" is collared in By, it
follows that O™ is tamely embedded in H; [5] and there is a polyhedral
structure for B, in which C" is a polyhedral n-cell. In each set Us; let Py
be a polyhedral (in E;) neighborhood of A ~ U,;; satisfying the conditions
of Lemma 1. Now for each i and j we connect " with P;; by disjoint
polyhedral arcsa;; so that the conditions of Lemma 2 are satisfied. Using
Lemma 2, we “blow each polyhedral arc up’’ into a tame n-cell 0;; such
that Ciyj ~ Pij and Cij ~ O" are (n—1)-cells in Bd(;;. We can now
proceed as in the proof of Theorem 3 to get an n-cell in M™ which has 4
tamely embedded in its boundary. An application of the arguments of
Corollaries 4 and 5 completes the proof.
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