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If IntD ~ Py = 0, we add to P; a 3-cell neighborhood of D to obtain
a punctured 3-cell Pi such that FCIntP; v IntPa. and 8P{ ~ oF’ has
fewer components than does 8P, ~oF'. The conclusion then follows by
induction. .

¢ TntD C IntP,, we remove (as in lemma 3) & small product neigh-
borhood of D from P; to obtain two disjoint punctured 3-cells Py and Py,.
‘We require that the neighborhood we remove is small enough that
FCIntPy v Int Py v IntP,. If one of Py; (say P;;) does not meet
we let P, = Py,. If both meet F' we take an arc A in IntF’ such that
IntA (P v P,) = @ and one end point of A is in 8Py, and the other
is in 2Py,. In this case we let P{= Py v Py, v (small neighborhood of A).
Tn either cage the construction can be made so that Pi is a punctured
3-cell such that F C IntP; U Int P, and 8P; ~ 2F has fewer components
than does 9P; ~ OF". Again the conclusion follows by induction.

LeMoia 5. Suppose that M is a closed 3-manifold and I is a (polyhedral,
compact) contractible 3-mamifold-with-boundary in M. If there emist punctured
3-cells P, and P, (polyhedral and in general position) in M such that
FCIntP, v IntP, then F is a (combinatorial) 3-cell.

Proof. We add a collar to F' to obtain F’ such that F C IntF" and
7 —F = aF x[0,1]. By lemma 4 we assume that P, v P, CIntF.

Then by lemma 3 (with ¥ = IntF'), Py Py i3 & special punct‘.ured;
cube-with-handles. Thus F can be piecewise-linearly embedded in §
and hence iz a 3-cell.
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f-closure algebras
by

Peter Wilker (Bern)

1. Introduction. In the theory of closure algebras (cf. [2] and
the references given there) several elementary algebraic problems ecan
only be solved if appropriate completeness conditions hold for the algebras
involved. The following are examples of this situation. 4 denotes a closure
algebra, B a Boolean algebra.

1.1. Consider the set € of all closure operators on B, ordered as
usual. Whereas in topology the corresponding set of all topologies is
a complete lattice, this will in general be no Ionger true for C. If B is
complete, however, C is a complete, lattice.

1.2. Consider a Boolean epimorphism A4 --B. In his paper [2],
Sikorski solved the problem of defining a suitable closure operator on B
as an analogue to the quotient topology. His construction makes use
of a basis and of several assumptions about completeness properties of 4.

1.3. The inverse problem of lifting a closure operator has also been
investigated Dby Sikorski. Given a Boolean epimorphism B-—>4, can
a suitable closure operator be defined on B similar to the topology induced
by 2 mapping on its domain? Sikorski (cf. [2], [3]) constructed a closure
operator on B in such a way that its quotient operator on A coincides
with the given one. Again he assumed the existence of a basis and ¢-com-
pleteness. :

14.If A—-B or B-»4 are Boolean monomorphisms instead of
epimorphisms, one is confronted with the problems of extension and of
contraction of closure operators. Both problems have been investigated,
though only incidentally, by MeKinsey and Tarski (cf. [1]), using complete
algebras.

1.5. Given a family 4; (4 e¢I) of closure algebras, one might be
interested in their product and in their coproduct. While the construction
of the product is trivial, the coproduct will in general not exist. Let @
denote the Boolean coproduct of the Boolean algebras 4; (called “product”
in [4]). A suitable closure operator can be defined on @ using the methods
mentioned in 1.1 and 1.4, provided @ i3 complete.
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In this paper we propose a generalization of the concept of closure
algebra. Briefly, we shall define the closure of an element of a Boolean
algebra not as another element, but as a filter, and we shall require the
correspondence elements—filters to satisfy axioms formally identical
to the axioms of Kuratowski. Making use of the fact that the lattice
of filters of a Boolean algebra is complete we then show that problems
1.1-1.5 have natural solutions in terms of filter-closures. Moreover, in
case the algebras involved satisfy certain completeness conditions, our
constructions will be seen to coincide with, those to be found in the literature.

Sections 2 and 3 of the present paper contain a brief review of those
parts of the theory of filters on a Boolean algebra which will be needed
in the sequel, followed by the definition and elementary properties of
f-closure operators as well as some basic theorems. The second part of
the paper (sections 4-6) contains the solutions of the problems mentioned
above. All routine proofs will be omitted.

The author has presented the basic ideas of the present paper in
a talk at the Infernational Congress of Mathematicians at Moscow 1966.

2. Foundations of the theory of f-closure algebras.

21. Filters on Boolean algebras. Throughout this section,
B, B* will denote Boolean algebras, F, @, F*, G*, sometimes with sub-
scripts, filters on B and B*, respectively. #(B) will stand for the set of
all filters on B.

We introduce an order relation on F(B) by defining

F<G < GCT.

As is well known, §(B) is a complete lattice with respect to this relation.
It F; (i € I) is a family of filters on B, its join and meet are given by

VF; = F:; A Fi=filter generated by |JF;.

For a ¢ B, (a) will always denote the principal filter generated by a. The
tilter (0), consisting of all elements of B, will simply be written as 0.

Levwa 1. Let Fy (iel), G (keX) be two families of filters. Then
(VE)WV(AG) = N\ (FivGr) (iel, heK).
Let p: B—~B* be a Boolean homomorphism. p induces mappings

between & (B) and F(B*), which will also be denoted by p: F(B)-+TF(B*)

and by p~': F(B*)—F(B), viz.
FeF(B): pF=iilter generated by {pfeB*: f el},
F*eF(B*); p~iF*= {feB: pfeF*}.

We recall some of the elementary properties of these mappings in
the following lemmas,
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Leyma 2. For all aeB, F,G,F; (icI) ¢ F(B), F*, G* ¢ F(B*:
(pa) = p(a) (with the obvious use of the symbols ( )),
F<G=pF<pl; F*<G >p ' F*<pi6*,
P(FVGE) = pFvp@; p~Y{F*VG*) = p-1P*ryp-1G*,
D(NF) = A\pF;).
Let 'y (i e I} be a family of filters such that for any two subscripts

i,k el there is m eI with FiAFy > Frn. Then Fy (iel) will be called
a basic family of filters.

Lmvya 3. If FY (i e I) és a basic family of filters belonging to F(B*),
PHAFY) = A\p—'Ft.
LeMMA 4. If F e F(B), F* ¢ F(B*), then
PP < F; F* pp iF*.

EBquality holds in the first velation, if p: B—B* is a monomorphism, in the
second ome if it is an epimorphism.

then

2.2. f-closure operators. Let B be a Boolean algebra and ¢ a map-
ping C: B—F(B). ¢ induces a mapping, again written as ¢: F(B)—>F(B),
defined by

FeF(B); CF=ACf (feF).
C will be called a f-closure operator on B, and (B, ) a f-closure algebra,
if ¢ satisfies, for all a,b ¢ B, the following axioms:

Ax 1. (a) < Ca.

Ax 2. (0= 0.

Ax 3. C{avb) = Cav Cb.

Ax 4. (2a= C(Ca)= Ca.

If O satisfies only Ax 1-Ax 3, it will be called a pre-f-closure operator.
Ax 3 implies

Ax 5. a<b = Ca < Cb.

Instead of Ax 1-Ax 4, one could take Ax 1, 2, 5 together with Ax 3
and Ax 4, where the equality sign has been changed to <, as an equivalent
set of axioms. It is sometimes simpler to verify the latter set then the

former.
The following lemma lists some easy consequences of the axioms
and of the definition of C: &(B)—F(B):
LevmA 5. If Cis a pre-f-closure operator, then for all a ¢ B, ¥, G, F;
(i eI) e F(B):
‘ O(a) = Ca,
FLOF; CO@FVv@)=C0Fv0G; FLG=>C0F< 06 OFAQAKOPAOG
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If a—@ denotes an ordinary closure operator on B, define
Oa = (@);
obviously, O is a f-closure operator on B. Hence any ordinary closure

algebra can be looked upon as a f-closure algebra. However, let J be
a non-principal filter on B (provided there is one), and define ¢ Ly

i

0£aeB; Ca=(a)vF; CO=0.
C is a f-closure operator, but Ca will not in general be principal.

2.3. f-closure morphisms. In order to form a category, the
objects of which are to be all f-closure algebras, we have to choose
appropriate morphisms. Let (B, C), (B*, 0*) be two f-closure algebras.
A map p: B—>B* will be called a f-closure morphism if p is a Boolean
homomorphism and if, for all ¢ ¢ B,

C*pa < pla .

(Note that the letter p has different meanings on the two sides of this
relation.)

If ¢ and C* are derived from ordinary closure operators, both ex-
pressed by bars, the relation reads pa < pa. Sikorski [2] calls a p with
this property continuous; we prefer to use the term “closure morphism?.

3. Some basic theorems. Throughout this section, B, B* will
denote Boolean algebras, p: B—~B* a Boolean homomorphism.

TeeoREM 1. Suppose thai a f-closure operator C is given on B.
Define the operator C* on B* by

zeB*; C*z=pCp—z).

Then C* is a f-closure operator on B*.

Proof. Using Lemmas 2, 4 and 5, C* is easily seen to satisfy Ax 1,
2, 3 and 5. The proof of Ax 4 depends on the following relation:

F* < F(B*); OF* = pOp=11™,

By definition, (*F*= A C*y (y ¢ F*). Substituting for * on the right-
hand side and using Lemma 2 leads to C*F* = p A Op~Y(y) (y e ™). But
Op=Hy) = A Ca (a < p~Y(y)), s0 that C*F* can be written as C*F* = p ACa
(@ ep~'(y),y e F*). On the other hand, it is easy to see that {aeB:
4 epTHy),y e F*} = p~F*. Hence O*F*= pACa (a¢p—F*) = pOp—1F*,
a8 required.

Ax 4 i3 now an easy consequence of Lemmas 2, 4 and 5:

O 0*z) = pCp~pCp~—(x) < pCPp—Yz) = C*z,
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THEOREM 2. Suppose that a f-closure operator C* is given on B*.
Lefine the operator C on B by

a € B; Ca= p~10*av(a).
Then O is a pre-f-closure operator on B. If p is an epimorphism, C is a f-clo-
sure operator.
Proof. We prove only the second assertion. To this end, we first
establish the relation ’
FeF(B); OF=p-1C*pFVF,
valid for any p. By definition, OF = A [p=10*pfv(f)] (f ¢ F). We assert:

A 2 Cpfv(Hl= Alp™'C*pfv(9)]  (f,geF).

Obviously, it suffices to show that the left-hand side is less than or equal
to the right-hand side. For f, g « F, write h = fAag. Using Lemmas 2, 3
and 5, one obtains p~1C*phv (k) < p~10*pfv(g), which proves our assertion.

Lemma 1 implies A[p7*C*pfv(9)] = [Ap~2C*fIVIA ()] (f, 9 F).
If g runs through F, then A (g)= F. The family of filters C*pf (f e F)
is a basic family and by Lemma 3, Ap~1C*pf = p~'A C*pf. Moreover,
N\ C*pf = C*pF, so that finally

CF = N[p™'C*pfv(9)] = p~'C*pFVE .

Ax 4 can now be seen to hold for C, if p is an epimorphism. It suffices
to write C%a = O[p~1C*pav(a)] = (p~10*p)[p~1C*pav(a)]vp~1C*pav(a)
= p~1C*pp—1C*pavp—C*pav(a) = p~10*pav(a) = Ca, using Lemma 4.

In the sequel, we shall write § for the set of all mappings P: B—>F (B)
and € for the set of all f-closure operators on B. We introduce the usual
order relation on § by

P, <P, <=>PaPa TforallaceB.

Given P ¢4, let C(P) denote the subset of C consisting of all M ¢ C with
P<< M.

THEOREM 3. For any pre-f-closure operator B, the f-closure operator
E* = minC(H) ewists, (where the min has to be taken within C), i.e. there
is B* € C such that (1) B << EB*, (2) if CeC and F < 0, then E* < C.

Proof. Let g, o, ... run through all ordinals up to a given, yet to be
chosen ordinal «. 'We define recursively a a-sequence of operators E,e T
as follows:

weB; Ba=FBa; Byoa=FEia;

if p is a limit number,
EBoa= \VEBa (0<i<p).
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We claim that for all g, o < a:
(1) Bach E, is a pre-f-closure operator,
(2) 0 <o = B, < B, (especially B < H),
(3) CeC B0 = H,<C.

The proofs of (1)-(3) ave straightforward applications of transfinite
induction, making use of Lemma 5. As an example, we shall show (3).
Tet a¢B, F eF(B). Then for an ordinal g, B, < 0 implies E I < CF
and B0 = Bia < B,0a < (Pa= Ca, hence Heyy < C. One can now
use transfinite induction, the case of p, @ limit number being trivial.

We shall next prove that to each a < B there corresponds at least one
ordinal number T < a such that B.a = Hyyq0.

Tf this were not true, we would have, by (2), Bet < Ho10y1.e. Bor1a C Ha,
for all 0 < o < o, the inclusion being proper. Hence there exists an
element b, ¢ B,a, b, ¢ Hy410. Suppose that b, has been picked for each o;
the a-sequence {by; 0 < ¢ < a} consists of pairwise different elements
of B. Indeed, if b, = b, for ¢ < o, say, then by (2) b, ¢ Hya C Hoyaa, con-
trary to our assumptions. Choosing the ordinal number o high enough,
e.g. such that carde > cardB, one reaches a contradiction.

Let v denote the least ordinal such that F.a = F.yia. The foregoing
proof shows that we must have cardr < card B. Moreover, it is easy
to see that E,a = E,a for all ¢ > 7. Using these facts, one can choose
an ordinal number § such that Hza = Epiia holds for all a € B. Obviously,
B* = B, satisfies all the requirements of the theorem.

Given p: B—>B* as before, suppose that a f-closure operator ¢
is defined on B. We shall call a f-closure operator C* on B* coinduced
by p (given C) if it satisfies

(1) p is a f-closure morphism on (B, C) into (B*, (*),

(2) 0* is maximal with respect to this property in the lattice C*
of f-closure operators on B*.

TEEOREM 4. The f-closure operator C*, defined for all @ e B* by C*x
= pCp~Yx), is coinduced by p (given C).

Proof. By Theorem 1, 0* is a f-closure operator. For any ae B,
C*pa = pCp~(pa) = pCp~p(a) < pCa, so that (1) holds. Suppose that
D* € C* is such that D*pa < pCa, for all a ¢ B. It follows from Lemma 2
that D*pF < pCOF, for any F € 7 (B). Let @ e B*; by Lemma 4, (x) < pp~(x),
hence D*z < D*pp-Y(wz) < pOp-i(x) = O*z and (2) holds as well.

COROLLARY. If p is a monomorphism, *pa = pCa, for all aeB.
(Lemma 4.)

Given p: B->B* suppose that a f-closure operator C* is defined
on B*. We ghall call a f-closure operator ¢ on B induced by p (given 0*),
if it satisfies
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{1) p is a f-closure morphism on (B, C) into (B*, %),

(2) € is minimal with respect to this property in the lattice C of
f-closure operators on B.

Consider the operator E, defined by & ¢ B, Ba = p-1C*pav(a). By
Theorem 2, F is a pre-f- closure operator. By Theorem 3, there is a minimal
f-closure operator ¢ such that B < 0. Again by Theorem 2, C equals E
if p is an epimorphism,

THEOREM 5. The operator C is induced by p (given C*).

Proof. Using Lemma 4, one infers for any aeB that C*pa
< pp~tC*pa < pp~C*pav(pa) = pEa < pCa, so that (1) holds. Let D eC
be such that (*pa < pDa. Then Fa = pC*pav(a) < p~pDav(a) < Dav
V(a) = Da, hence E < D. By the minimality of C, this implies ¢ < D,
which proves (2).

CoroLLARY. If p is an epimorphism, C*pa = pCa, for all aeB.
(Lemma 4.)

As we mentioned in 2.2, any ordinary closure algebra can be turned
into a f-closure algebra by writing Ca = (@). In this case, all filters Ca
are principal; if, conversely, all Ca are principal, i.e. if @ = min Ca exists
for all @ € B, the given f-closure algebra can be obtained from an ordinary
one in this way. We prove more generally:

THEOREM 6. Let (B, C) be a f-closure algebra such that a* = inf Ca
exists for all a € B. Then a—a* is an ordinary closure operator on B.

Proof. We have to verify Kuratowski’s axioms

1) a<<ayy (2) 0*=0; (3) (avd)=a*vd*; (4) a™=10*.

(1) and (2) are obvious. To prove (3), one uses Ax 3 for the operator ¢
and the well-known fact: if a, b, ¢; (4 € I) are elements of a Boolean al-
gebra, and if ¢ = inf{e;; 4 I} exists, then a < bve; for all ¢ I implies
a < bve. The proof of (4) runs as follows: by (1) a < a*, by construction,
(a*) < Ca. Applying C and using Lemma 5 yields Ca < Oa* < (Pa = Ca,
hence Ca* = Ca. Property (4) is an immediate consequence of this equa-
tion.

4. The lattice of f-closure operators. As in the. preceding
section, C will denote the ordered set of all f- closure operators on a given
Boolean algebra B. The discrete operator D, defined by a ¢ B, Da = (a)
is the minimum, the indiscrete operator M, defined by 0 # a ¢ B, Ma = (1),
M0 = 0, is the maximum of C.

THEOREM 7. C is a complete lattice.

Proof. It suffices to show that sup D exists for any subset D of C.
Let O = {Ci; i eI} and define the operator D 7 by

aeB; Da=\Ca (iel).
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It is & simple matter to check that D is a pre-f—clospre operator. By
Theorem 3, there is a f-closure operator D% minimal with respect to the
inequality D < D* We assert D* = supD. .

Obviously, C; < D* for all i ¢ I. If O «C is such that Ci < 0 for all
ieI, then \/ Cia = Da < Ca and Dby the minimality of D* we conclude
D* < C. ) .

T# D consists of ordinary closure operators, D* will in general still
be a f-closure operator. Suppose, however, that a* = inf D*a exist"s fqr
all @ e B. By Therem 6, a—a* is an ordinary closure opera,tmj, which i
evidently equal to sup®. If this is true for any such D—as will happen,
for instance, it B is complete—the set of all ordinary closure operators
on B is itself a complete lattice.

5. Quotients and lifting of f-closure operators.

51. Quotients. Let p: B—~B* Dbe a Boolean epimox:phism,
0 a f-closure operator on B. The operator ¢, coinduced by p (given )
will be called the guotient operator on B*.

Tn this section, we investigate quotients of ordinary closure operators,
which are in general f-closure operators. For any « ¢ B*, we shall write
[#] = {a € B: pa = z}. Obviously, [#] is a residue class with respect to
the ideal Ker p of B, Let Ca= (@) (a e B).

PrOPOSITION 1. The filter C*m, x e B*, is generated by the p-images
of all elements ¢, ¢ e[x]. ‘

Proof. By construction, O*z= pCp~iw)=pACa (aep ().
Choose b e [«]; then for any aep~Yx), p(anb) = paApb =, while Ca
> O(aAb). Hence C*z = p\0Oc (¢ e[]). Using Lemma 2 and Cec= (¢),
one obtains C*x = A (pé) (¢ «[#]), as required.

Suppose that #* = inf *x exists for all © ¢ B*. By Theorem 6, z—>a*
is an ordinary closure operator on B*. Our arguments show that it is the
quotient of the given closure operator on B, where quotient now refers
to closure morphisms instead of f-closure morphisms.

There are several important cases for which inf(*z can be shown
to exist.

(L) Kerp is a closure ideal, i.e. @ ¢ Kerp implies @ « Kerp. Yor ¢ B,
a,b <[] implies pa = pb, as is easy to see by using the relation a0
<< a—b. By Proposition 1 therefore, C*z is generated by a single element,
ie. is principal.

(2) Kerp s a principal ideal, generated by an element g, say. Then
for any « ¢ B*, the set [#] possesses a minimum m = m(x). In fact, choose
a € [#] and write m = a—g¢. Then m e [#] and m < b for any b e [#]. Hence
m = min{z]. By Proposition 1, C*x = (p7).
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(8) B* is complete.

(4) The case treated by Sikorski (cf. [2], section 9) can be subsumed
under the following proposition.

ProrosiTioN 2. If every family of closed elements of B possesses an
infimum, and if p preserves such infima, i.e. if

pinf{ts} =inf{pt} (iel, ti=1tie B),

then w* = infC*x ewists for all @ ¢ B*. In fact, (*z = (@),

Proof. For any #eB*, 2°=inf{a: ae[]} exists and o*= pa®
= inf{pa: a e[«]}. By Proposition 1, z* = inf C*z.

As #° is a meet of closed elements, it is itself closed and z < o* implies
O*s < Oa* = C*pa® < pO® = p(a®) = (pa) = (2*). Hence C%z = (a*).

Sikorski considers a closure algebra 4 and an ideal J with the following
properties: for some infinite cardinal m, 4 is m-complete, J is a m-ideal
and A possesses a basis B (for the closed elements) with cardR < m.
(Actually, Sikorski requires a basis for the open elements of 4, a con-
dition obviously equivalent to our assumptions). It is easily seen that
Theorem 9.1 of [2] is a consequence of Proposition 2 and that the closure

operator constructed by Sikorski is identical with the operator con-
structed above (cf. especially [2], 9.3).

5.2. Lifting. Tet p: B—>B* be given as in 5.1, and let O* be
a f-closure operator on B*. The operator C, induced by p (given C¥)
will be called the lifted operator on B.

We investigate lifting of ordinary closure operators. Let C*z = (z),
for all # ¢ B*. Recall that [#] is the set of all elements of B mapped onto z.

PROPOSITION 8. For a e B, Ca is generated by all be B with b e [pal,
b>a.

Prooi. By construction,

Ca=p=iC*pav(a) = p~(pa)v(e) = (@)VA (b) (pb=pa).

If o* = infCa exists for all a ¢ B, then a—a* is an ordinary closure
operator on B, as shown by Theorem 6, but it will only be the lifted
operator if ¢* = minCa, in consequence of the Corollary to Theorem 5.

If Kerp is a principal ideal, every one of its residue classes possesses
& minimum, as shown in 5.1. Therefore m(a)= min{b e B: b e[pal}
exists and by Proposition 3, minCa = m(a)va.

There do not seem to be other simple conditions which guarantee
the existence of minCa. Even completeness of B does not necessarily
imply inf Ca = min Ca. As is easily seen, this will be the case if and only
if pinf Ca = infpCa, for all a ¢ B. Requiring the homomorphism p to be
Fundamenta Mathematicae, T. LXIV 8
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complete is of no help, as with B and p complete the ideal Kerp is again
principal.

Sikorski, in his papers [2] and [3], uses the following conditions:
there exists an enumerable basis B on B* B is a ¢-algebra and Kerp
& o-ideal. Again it does not follow that min Ca exists. As aresult, the closure
operator constructed by Sikorski on the basis of his assumptions does
not coincide with the operator a—a* obtained by assuming a* = min Ca.
(For a ¢ Kerp, a* = a, which does mot hold for Sikorski’s operator.)
Therefore, the closure operator constructed in [2] does not, in general,
satisfy the conditions of lifting as defined in the present paper. (It does,
however, satisfy a reciprocity condition: its quotient operator on B* is
equal to the one given there.)

5.3. Products. We use the results of section 5.2 to construct the
product of an arbitrary family of f-closure algebras {(B., (v); ieI}.
Let P = [] B, denote the product of the Boolean algebras Bi, with the
canonical projections pi: P—B;. (Note that products are called “disjoint
unions” in [4]). As each p; is a Boolean epimorphism, the corresponding
f-closure operator O can be lifted to P; call the lifted operator (9. Let
0 = sup 0 (i € I) be the f-closure operator determined as in Theorem 7.

TEEOREM 8. (P, C) is the product of the algebras (By, Ci) in the category
of f-closure algebras and f-closure morphisms.

Proof. Obviously, the mappings pi: (P, C)—>(Bi, Ci) are f-clo-
sure morphisms. Let (4,D) be. any f-closure algebra and let
@ (4, D)—~(Br, Ci) (4 € I) be f-closure morphisms. Because P is a prod-
uct in the category of Boolean algebras and Boolean homomorphisms,
there is & unique Boolean homomorphism r: 4 P such that the diagramg

P--—p‘ —>B¢
Qi
A

commute for all i¢I. We have to show that r is a f-closure morphism.

For a € 4, consider Oﬂra..Using the commutativity of the diagrams,
we can write

Cira = pi*Cipsrav (ra) = pi* Cigrav (ra) < 7 g Dav (ra) .

Fox;J 1imty filber F'e F(4), pi'aF = p7 perF < rF, according to Lemma 4,
8o tha

0
Cire << rDa .

icm°®
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Let D* be the operator coinduced by r (given D). As D* satisties D*ra
< rDa for all ¢ e A and as it is maximal with respect to this relation,
we have €< D* for all i<, hence € < D* Choose acA; then Cra
< D*a = rDr*ra) = rDrYr(a) < rDa. This shows r to be a f-closure
morphism.

Suppose the given (Bi, Ci) are ordinary closure algebras; then (P, C)
turns out to be the usual product obtained by defining, for any b e P,
the closure Cb as the result of applying the operators C; to the respective
components of b.

For any a eB;, prl(e) is a principal filter on P, generated by an
element a* with pia* = a, pra* =0 (k £4). From this follows easily,
for any b ¢ P, that C%b is a principal filter on P, generated by an element
b e P with pgbi = pxb (k # 4), while pibi is equal to the closure of pid
in B;. By the definition of (, this shows Cb to be principal, generated
by an element b with p¢b equal to the closure of p:b in B;, for all e I.

6. Extension and contraction of f-closure operators.

6.1. Extensions. Let p: B—B* denote a Boolean monomorphism,
and let C be a f-closure operator on B. The operator ¢*, coinduced by »
(given O) will be called the extended operator on B*.

To study the extension of ordinary closure operators, we shall assume p
to be an embedding, i.e. p: B C B*. All filters, infima ete. will refer to B*.

Let ¢ be derived from an ordinary closure operator on B, denoted
by a bar. By the Corollary to Theotem 4, G*a = (@), for any a ¢ B, so that (*
can be said to coincide with ¢ on B. For « € B¥, « ¢ B, (" will in general
not be principal. )

ProrosITION 4. For x € BY, C*u is generated by the set {@ ¢ B*: v < a,
a € B}.

Proof. An obvious consequence of the construction of C*.

Suppose that a* = inf(*z exists for all # < B*. By Proposition 4,
#* = inf{# e B*: s < a,a<B}; for aeB, a*=7d. Hence the operator
2-* coincides with the closure operator constructed in [1], Lemma 2.3
(ef. also [5], IIL, 4.1).

inf C*» will exist in case B* is complete (as assumed in [1]). One
might also require B* to be m-complete for some infinite cardinal m
and B to possess a basis R for the closed elements with card R < m.
Bvery @ (¢ < @, o « B) will then be a meet of elements of R, so that inf C*z
will exist by virtue of the m-completeness of B*.

6.2. Contractions. As in 6.1, assume p: B—B* to be a Boolean
monomorphism. Suppose that a f-closure operator C* ig given on B*.
The operator C induced by p (given (%) will be called the contracted

operator on B.
8*
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Assume p to be an embedding and ¢* to be derived from an ordin.ary
closure operator, C*r= (%), ® ¢ B*. For the remainder of this section,
filters, infima etc. refer to B. . )

PROPOSITION 5. Let B denote the set of elements o € B such that @ e B.
Then for all ae B, Ca= (a). . .

Proof. The operator E, defined by ae B, Ea=p 'C*pav(a) is
easily seen to satisfy .

Ea={beB: D=a}.
Hence if a ¢ B, then Ha = (@) and FPa= N\NEb (b =0, Iie B) turns out
to be equal to Ba= (@) = Ea. Therefore Ea = Ca= (f‘) for zulll ae€B.

Tn their paper [1], Temma 4.14, McKinsey and Tarski used. a .chfferent
operator. When constructed in terms of f-closure, it .also satisfies Prgp-
osition 5 and is, moreover, maximal with respect to this property. Define

aeB; Ka= A(®) (a<b, beB).

K is a f-closure operator on B. Ax 1-3 and 5 are readily verified, using
TLemma 1. To prove Ax 4, note that EK*a = A (¢), where ¢ runs througll
the set of all elements of B dominating elements of Ka. The elements b,
which generate Ka belong to this set, so that.Kaa < Ka.

Obviously, for any a B, Ka= (@). It L is any f-closure operator
on B satisfying the same relation, then for a < b, -b ¢ B we have La < Lb
= (B), hence L < K. Proposition 5 implies, especially, that C < K.

6.3. Coproducts. By means of the results of s_ectim_l 6.1 we are
going to construct the coproduct of an arbitrary family {(Bi, Oi); i €I}
of f-closure algebras. Let @ = [1B; denote the Boolean coproq.uct 'of
the Boolean algebras Bi, while gi: Bi—>@Q stands for the canonical in-
jections. Given C; on By, the extended opemtog with respect to the mono-
morphism g¢; will be called C7. Let ¢ = infC; (i eI).

THEEOREM 9. (Q, 0) is the coproduct of the (Bi, Ci) in the category of
f-closure algebras and f-closure morphisms.

Proof. Obviously, gi: (Bi, 00)—(Q, C) is a f-closure morphisnr% for
every i e I. Let (4, D) be any f-closure algebra and let 74: By T—>A (tel)
be f-closure morphisms. There is a unique Boolean homomorphism s such
that the diagrams

commute for all i ¢ I. Tt must be shown that s is a f- closure morphism.
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For weQ, sCw = sq:Cigi'(z) = rCigi \(x) = Dregi (@) = Dsu, using
commutativity of the diagrams and Lemma 4. Hence :

zeQ; Dsw < s .

Let D* be the operator induced by s (given D). As D* satisties Dsz < sD*s
for any @ €@, and as it is minimal with respeet to this inequality, we
have D* < 0} for all eI and D* < ¢. This implies Dsz < sD*z < sCy,
a8 required.

Contrary to the product, if all the operators C; are ordinary closure
operators, the coproduct will in general not be an ordinary closure algebra.
‘We shall describe the filters Cw for this case.

Assume all ¢ to be embeddings, i.e. g;: B: C Q. For the sake of brevity,
we shall call the B; the constituents of Q. As is well known, {By; i I}
is an independent family of subalgebras of @, i.e. if b;, b,, ..., b, are elements
of Q belonging to constituents with pairwise different subscripts, and if
biA...Aby = 0, then at least one of the b; is equal to 0. Two constituents
with different subscripts have only the elements 0 and 1 in common
(cf. [4], § 13).

Consider the set B C @, consisting of all finite joins of elements chosen
from among the constituents. Each a e B, @ % 0, 1 has a unique standard
representation @ = b,V...vb,, where the elements b belong to constituents
with pairwise different subscripts and neither of them is 0 or 1. Moreover,
if 1 is a join of elements belonging to constituents with pairwise different
subscripts, then at least one of these elements is itself equal to 1.

Let a be any element of B, a = b;V...vb, a representation of a by
elements b of the constituents. We may assume that none of the b is
equal to 1 and that not all b are equal to 0. Drop all b equal to 0; collect
all b belonging to the same consituents and substitute their joins. Let
@ = ¢, V...V be the result of this process. We may assume that no 0 and
no 1 occurs among the elements ¢; in this way we have reached a stand-
ard representation.

Suppose that a=d,v..vds is another standard representation.
Then ¢, < d,V...vds, which is equivalent to ¢,AdiA...Ad; = 0 (the prime
denoting complement in Q). Because none of the elements in this equation
is 0 or 1, there must be one d, say d,, which belongs to the same constituent
as ¢;. Therefore ¢;Ad; = 0, ie. ¢, < d;. Pairing off in this way the ¢ and
the d and starting all over with the d yields the desired result. A similar
argument leads to a proof of the second assertion.

On B we introduce an operator, denoted by a bar, as follows: let a ¢ B,
a#0,1, and let a=b,v..vby, be the standard representation of a.
bT, ..., by will stand for the closures of the b in their respective constituents.
Define

@==bfv..yb% 0=0; I1=1.
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Tt is easy to verify the following properties:

peB =FeB; b<b; bve=0bvg b=b (b0eB).

We consider again the operators Ci, 0%, ¢ defined in this section.
Recall that each C; is assumed to be an ordinary closure operator on Bi;
by the preceding definition, ¢; can now be expressed by a bar.

LemMA 6. For aeB, 0@ = (@)

Proof. First, let ¢ be an element of a constituent B;. Because
C < (%, the equality 0¢% = (% holds. The definition of 0% implies
(% = (@). (Use the Corollary to Theorem 4.) Hence (@ = (@) is true
in this special case. Now suppose that a is any element of B, @ # 0, 1,
and @ = byV...vb, the standard representation of @ Then @==b;V...Vbn
and 07 = Cb,V...v 0By = (By) V...V (Bn) = (@), a8 required.

We are now able tp prove

PROPOSITION 6. For @ @, the filter Ox is generated by all elements
@ eB with ¢ < 4.

Proof. Let Dz= A (@) (#<@,aeB). We shall first show that D
is a f-closure operator on @. Ax 1-3 and 5 follow easily from the prop-
erties of the operator a—a. To prove Ax 4, consider D*x = ADy
(y e D). Obviously, D’z is generated by all ? ¢ B dominating elements
of Dwx. As each generator @ of Dz has this property too, D’z < Dux for
all z Q.

The definition of C? yields 0%z = A (8) (@ < b, b e Bi). Hence D < oy
for all i ¢ I, and D < €. On the other hand, by Lemma 6, # <8, Ge¢B
implies Cz < 0a = (@), so that ¢ < D. This proves our assertion. )

We consider the case of a complete . In this case, x* = inf O
= int{i e B: @ <-@} exists for all x e Q and z—a* is an ordinary closure
operator on @ (Theorem 6). This operator satisfies the following con-
ditions: (1) with respect to it, all the injections ¢i: Bi—~Q = Bi C @ are
closure morphisms, (2) it is maximal with respect to this property. Ob-
viously, these conditions are similar to the usual non-categorical require-
ments for a coproduct in topology. To investigate the categorical situation,
let A be any closure algebra with a closure operator a—G, and let r: Bi—~4
be closure morphisms. Finally, let

Bi—%—»¢Q
RN
‘\‘A

De, the corresponding commutative diagram of Boolean homomorphisms.
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As shown in the proof of Theorem 9, the homomorphism s satisties
zeQ: (5) < sCq-

If 4 is assumed to‘be co/x\nplete, this relation implies §2 < inf sCz, but
does not. allow to infer §w < so* = sinfCx. If, however, all the Boolean
;lgebra,s mXolved belong to the category of complete algebras and complete
omomorphisms, s will be a closure morphism and *) thy i
coproduct of the B;. (©:7) the categorieal
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