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Some properties of gX-¥ for complete spaces*

by

Stewart M. Robinson (Cleveland, Ohio)

1. Introduetion. In [1] and [2], Fine and Gillman establish several
properties for fX—X when X is realcompact. In particular, they show
that for X realcompact and locally compact every zero set of fX—X is
the closure of its interior. They prove also that if X is realcompact and H
is a subset of SX— X, then X u H is pseudocompact implies that H is
dense in X —X. If X is assumed to be locally compact as well as real-
compact, the converse is also tpue. We shall establish the validity of
these results under a weaker hypothesis than realcompactness; we replace
realcompactness with the condition that ¥ be complete in some compatible
uniform structure. (Recall that a realcompact space is complete in the
structure generated by ¢ (X), whereas the existence of measurable cardinals
would imply that a complete space need not be realcompact.) We employ
these results to prove that if X is locally compact and complete, 2.X— X
is a nowhere dense subset of SX— X. We also extend a well-known theorem
of Rudin [5]: we show (assuming the continunm hypothesis) that if X
is locally compact and complete, SX— X contains a dense set of P-points.
In the final section, we prove that if X is a locally compact metric space,
BX— X contains a dense set of remote points. This generalizes results
in [2] and [4].

We use the terminology and conventions of [3]. All spaces are assumed
to be completely regular and uniform structures are defined by families
of pseudo-metrics. We recall that fX denotes the Stone-Oech compactifi-
cation of X and that 22X is the Hewitt-Nachbin realcompactification.
We let X*= X —X and Z(X) denote the collection of zero sets of X.
For fe C*(X), the ring of bounded and continuous real valued functions
on X, we let f® denote itz continuous extension to fX. We recall the
familiar facts that if d is a member of a unitormity for X and if S is a d-di-
screte subset of X, then § is C-embedded in X (all continuous functions
in O(8) are extendable to functions in C(X)); and if X is a non-compact
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and complete space it admits unbounded*continuous functions into the
reals, and hence contains a d-discrete infinite set.

2. The main results.

TuEoREM 1. If Y is locally compact and admits & complete uniform
structure, then each Z « Z(X*) is the closure of §is inierior.

Proof. It suffices to show that each such Z has a non-void interior.
For if p € Z— clys(inty+Z), there exists F e Z(Y") such that p < F  Z,
while F ~ intpsT = @. Thus, F ~ Z is a non-empty zero set with a void
interior.

Observe that local compactness of Y implies that Y™ is compact,
and hence is C-embedded in pY. Therefore, Z ¢ Z(Y*) implies Z = Zp— Y
for some fe C(Y). Consider Z;. In case Zr is not compact, completeness
implies that it is not pseudocompact and therefore that it contains
a d-discrete copy, IV, of the natural numbers. Let N= {x:: i ¢ N}, and
let g(2:) = 4. Extend ¢ continuously to all of ¥, and observe that the
function §, defined by

1 @
gy)=5—~— for yel¥
gy F o1 Yel,
is a positive unit of C(Y) and that ¢f(p)= 0 for p eclyjpyN— Y. Thus if
W= ||+ 1f|, we observe that @ s ZywC Zp—Y = Z. Finally select
for each 7 ¢ N a compact neighborhood V; of x; satistying

(i) VinV;=0 for i #j, and
(1) |h(y)— h{m)] < 1/i for y e V.

For eachl, let u; e C(Y) be such that uy(z;) = 1 and u ¥—Vi] = 0.
Since % is positive on ¥, (ii) implies that |} {Fs: i e N} is closed. Hence,
oo
%= Dun i5 continuous and vanishes on ¥— | {Vi: e N} If qe ¥*
n=1
and if 4¥(g) + 0, then q e clpg[ {Vi: 4 ¢ N}]. This implies that h¥q) = 0,
50 that we have @ % ¥Y*— Z,8C Zys C Z.

In case Zy is compact, let p € Z and select g# ¢ ¢(SY) such that g&(p) = 0
and g% = 1. Again we consider the function #° = | f” |+ 16%]; we select
a countable set 8 = {&s: n ¢ N} C ¥— Z; such that 0 < h(@pys) < h{wn)
< 1/n, for each n. As before, we select a compact neighborhood V, for
each @, such that Vo " V=0 for n £ m, and |h{y)—h(2a)| < 3k {(2s)
for y € Vu. We now repeat the arguments above to construct a function u
which i3 0 on Y— | J{Va: n e N} and 1 on §; we note that & % ¥*—
—Zu¢ C Z, and this conecludes the proof.

Completeness is not necessary. For a non-trivial example, we observe
that the space ¥ == BR— (BN—N) is a pseudocompact space in which
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Y* = N* and so satisfies the result above. We are not able to find any
condition weaker than local compactness in the above theorem.

In [4], Plank introduces the notion of A-points and f-subalgebras
of C(X). In the presence of the continuum hypothesis, he is able to prove
the following theorem:

If X is locally compact and realcompact, and if {Am: m ¢ M} is a family
of B-subalgebras, where card(4Am) < ¢ and card (M) < ¢, then X* contains
a dense set of 2° points which are simultancously Am-points for all m e M.

If one notes that if X is complete, then X* has no isolated points
and employs the preceeding theorem in place of the Fine-Gillman result,
o repetition of the remaining arguments of Plank will yield the same result
for spaces that are complete and locally compact.

TemOREM 2. Let 8 admit a complete uniform structure, let H C 8%,
and let X =8 o H. If X is pseudocompact, then H is dense in S*. Con-
versely, if H is dense in 8% and S is locally compact as well as complete,
then X s pseudocompact.

Proof. We establish the second result first. If X is not pseudo-
compact, there exists % ¢ 0(8X) such that & s Zp C X* C §*. According
to theorem 1, Zss = clgs[intgeZs], and this implies that intge Zss is 2 non-
empty open subset of S* that is disjoint from H.

To prove the first statement, assume that H is not dense in §*. Let
Fye Z(BX) such that 8*—F; = @ and let H ~ (8*—Fp) = @. Let p « §*—
—Fp and let Zgpe Z(pX) be a zero set neighborhood of p in X that is
disjoint from Fj.

Let Z = Zs ~ 8. Since p € clpe Z, Z is not compact; hence completeness
implies it contains a d-discrete copy of N, N, that is ¢-embedded in S.
Furthermore, since !N and H are contained in disjoint zero sets of X,
they are completely separated in that space. But this information implies
that N is C-embedded in X, i.e., X is not pseudocompact.

CoROLLARY. If X admits a complete uniform structure, vX— X has
a void interior in X*.

Proof. Since X v (fX—»X) is pseudocompact, the conclusion follows
from the theorem above.

TaEOREM 3. If X 4s locally compact and complete, vX — X is nowhere
dense in X*.

Proof. Let 0 = | {intx*Zss: Zss e Z(pX) and ZpC X*}. By Theo-
rem 1, we have that

Alx* 0D | {Zss: Zsp e Z(BX) and Zmp C X*}D X —0X .

By the preceeding corollary, we have that clx.0 = X*. Since 0 n »X = @,
we- conclude that »X— X is nowhere dense.
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Local compactness, or something like it, is necessary here. For if X,
is a discrete set of measurable cardinal for each # ¢ N, we let
X = II{X4: n « N}. Every closed neighborhood V in fX contains a C-em-
bedded copy of some Xy; hence X, C V. In particular, »Xp— X, CV ~ X*,
and since vX,— X, C»X— X, we have that clx*(»X—X)= X"

LemwA. If X admits a complete uniform structure and p e X*, then
every neighborkood of p in X* contains a copy of PN —N.

Proof. Let 0 be a neighborhood of p in X* and let H = X*—0,
Since H is not dense, the space ¥ = X « H is not pseudocompact. There-
fore, Y contains a C-embedded copy, N, of the natural numbers, where IV
is contained in X, a dense subset of ¥. Thus, AN—NC ¥* Co0.

THEOREM 4. In the presence of the continuum hypothesis, if X is locally
compact and complete, then X* contains a dense set of P -points.

Proof. It is well known ([3], p. 138) that if 7 is locally compact
and contains a (-embedded copy, IV, of the natural numbers, then every
P-point of N* is a P-point of 7*. Rudin [5] has shown (using the continuum
hypothesis) that N* contains a dense set of 2° P-points. Thus, we may
combine these facts with the preceeding lemma to achieve the desired
conclusion.

3. Applications to metric spaces. Let 1/ be a metric space
without isolated points. Let & denote the set of remote points of BM, y
i.e., those points of M* not in the closure of any discrete subset of M H
and let D = M*—@. In case M = R, the real line, Fine and Gillman [2]
show that both D and @ are dense subsets of B*. Their proof of the non-
emptiness of @ requires the continuum hypothesis. In [4] Plank gives
several interesting characterizations of remote points in S, for arbitrary M
and (assuming the continuum hypothesis) proves:

If M is a separable metric space, G is a dense subset of M*
and card (@) = 2°.

Since M contains no copy of the natural numbers C-embedded in
M © D, it follows that M v D is pseudocompact, i.e., D is dense in M*.
(Recall that every metric space is complete in some compatible uniform
structure.) We shall now consider the situation with regard to @; it is

more complicated and we must employ the continuum hypothesis and
assume that 3 is locally eompact as well.

LeuMmA. Let M be a metric space and 0 a non-empty open subset of M.
If 8 = elu0, then every remote point of B8 (= clg8) is a remote point
of BM.

Proof. It is known ([4], theorem 5.3) that if M is a metric space
without isolated points, p is a remote point of BM ifand only if p ¢ clym H,
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for any closed nowhere dense subset H C 2. We shall assume P is a remote
point of A8, while p e clgyr H for some closed nowhere dense H C M, and
proceed to reach a contradiction. Since § is the closure of an open set,
H ~ § is a nowhere dense closed subset of S. Therefore, our assumption
implies that p ¢ elgar(H ~ S). Since p is in the closure of H. , we must have
P € clgy(H—inty ). Since § and (H~inta8) are zero sets of 3 and since P
is in the closure of each, it follows that P eclgy[Sn(H —inty 8)]. But
8 ~ (H—intar8) C S—inty S, a nowhere dense closed subset of §. This
contradicts our assumption that p is a remote point of R

THEOREM 5. Assuming the continuum hypothesis, every locally compact
metric space without isolated points contains a set of remote points dense
n M*.

Proof. Let V be a closed subset of M such that intz «(V ~ M*) = O
Since »M ~ M* is nowhere dense in M*, there exists g € intgy V with
q¢vM. Let ¢fe C(BM) such that ¢f(g)=1 and FPLUBM—V)]= 0. Let
fe C(M) such that f is unbounded on every neighborhood of ¢ and let
h=|f-g|l. Thus, & is unbounded on V, so we may select a sequence
{tn: ne N} CV such that h(@ny1) > h{@n) > n for each n. Now let
In = [h(@n)—rn, h(2a)+ 1], Where 7y is a positive number chosen so that
In~In =0 for n # m. For each #, let Oy De an open set such that
@€ 0 Ch™Y I, and cly0, is compact and a subset of V. The set
8= {J{cluOn: ne N} is o-compact and is equal to cly | {On: n e N},
(For if peclgy | ) {On: nelN}, and if p¢ 8, then every neighborhood
of p must meet infinitely many of the sets O,. But this implies that % is
unbounded on every neighborhood of P, and hence that p ¢ M*.)

Since § is a o-compact metric space, it is separable. Therefore, the
above quoted theorem of Plank implies the existence of remote points of
BS = clgy S, and since V is closed, these remote points are contained
in V. Our previous lemma yields the conclusion that these remote points
of A8 are also remote points of AM.

In the above theorem, we did not use the full force of local com-
pactness: something like local separability would have done the trick.
Similarly, we could replace metrizability with the requirement that M
be complete and perfectly normal. We have not been able to determine
whether perfect normality can be replaced by normality.
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Fredholm o-proper maps of Banach spaces
by
Kazimierz G e¢ba (Gdansk)

Introduction. The theory of framed cobordism was introduced
by L. Pontrjagin in order to study homotopy groups of spheres. Pon-
trjagin has shown in [9] that the problem of homotopy classification
of continuous maps of 8™ into 8™ is equivalent to the problem of cobordism
classification of (m —n)-dimensional framed submanifolds of S™. After-
wards it has turned out to be easier to solve this homotopy classifieation
problem by quite different methods. But it also turned out that Pon-
trjagin’s methods allows to translate some problems in differential
topology to homotopy theory.

Using the idea of Pontrjagin, S. Smale has suggested the following
notion of degree for certain maps of differential Banach manifolds. Let X
and Y be connected 07 Banach manifolds and f: X—Y a proper Fred-
holm CP map of index n, with p > n+1. It follows from Smale’s version
of the Sard Theorem [10] that except for a set of the first eategory all
points of ¥ are regular values of f. If y is a regular value of f, then !
is a (P compact n-dimensional submanifold of X or is empty. ’\f[meover,
it is shown in [10] that if y, and ¥, ave regular values of f, then f~ Hyo)
and f(y,) are cobordant as unoriented n-dimensional manifolds. Thus
there is defined an element y(f) (generalized degree mod 2 of f) of the
unoriented bordism group R(X).

The purpose of this paper is to find a link between the invariant y(f)
and the homotopy theory of so-called compact fields ([4], [5]). Instead
of X and ¥ we consider two infinite dimensional Banach spaces ¥ and F.
We assume that there is given a subset 1" of the set @ (¥, F) of all Fredholm
operators from F to F, satisfying certain conditions (see Section E).
As an example of such a I" we can take ¥ = a convex subset of &(H, F)
and let I'= {4 e ® (B, F); 4 =B+0, BeV, C is compact}.

Let U be an open subset of B. An n-dimensional ¢ I™-framed sub-
wmanifold of U is a pair (M, ) where M is an n-dimensional (7 submanifold
of U and @: M-»I"is a continnous map such that Kerg(z) = the subspace
tangent to M at x, for all # ¢ 3. In the set of all I-framed compact sub-
manifolds of U, there is a natural cobordism relation which we call
w - cobordism.


GUEST




