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Some cover properties of spaces

by
A. Lelek (Warszawa)

Let X be a regular topological space. We say that X is a Hurewicz
space if for every sequence y,,y,,... of open covers of X there exists
a cover a of X such that a = a; U o, U ... where a; Cy; and o is finite
for = 1,2, ... This class of spaces has been introduced by W. Hurewicz
(see [10], property E*). Clearly, each Hurewicz space is a Lindelof space.
The aim of the present paper is to give several characterizations of Hurewicz
spaces under the assumption of metrizability.

Let X be a metrizable topological space. Given a metrization of X,
we say that a collection « of subsets of X is a zero sequenoce if a is countable
and the diameters of elements of a are real numbers converging to zero.
The following conditions describe some properties of X in terms of zero
sequences. They will be shown to be equivalent to each other (see Theorem 1
below).

(i) For every melrization of X there exists a cover a of X such that a
is @& 2ero sequence. - ‘

(ii) For every metrization of X there ewists an open basis f in X such
that f is a zero sequence.

(iii) There exists a metrization of X for which every open basis in X
contains a cover a of X such that a is a zero sequence.

(iv) For every metrization of X every open basis in X coniains a cover a
of X such that a is a zero sequence.

(v) For every metrization of X every open basis in X coniains an
open basis B in X such that f§ is a zero sequence.

It has been stated without proof by W. Hurewicz that properties (i)
and (iii) are equivalent for metrizable spaces (see [11], p. 204). A proof
of this theorem is given in our Theorem 1.

Metric spaces possessing property (iii) are called strongly Lindelof [17]
provided the metrizations whose existence is required by (iii) coincide
with those already given in metric spaces. The class of strongly Lindelof
spaces has been distinguished by K. Menger (see [19], property E).
Belonging to this class might depend on a metrie, but since (iii) and (iv)
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turn out to be equivalent, being a strongly Lindeldf space is a topological
invariant. Moreover, the metrizability yields the equivalence of all prop-
erties involved, including (B) and (E¥), and strongly Lindelof spaces
coincide with Hurewicz metric spaces. It should be noted that some
metric analogues of properties described in (i) and (ii) are not topological
invariants [7]. An essentially smaller class of spaces has been examined
by W. Hurewicz (see [11], property E**). We saiy that a regular topological
space X is strongly Hurewicz if for every sequence 7y, ys,... of open
covers of X there exist finite collections a;Cy¢ (¢=21,2,..) satisfying
the equality

X= U (W loitsl
i=1 J=0
where |o| denotes the union of elements of a. It has been shown by W. Sier-
piviski that there exist Hurewicz separable metric spaces which are not
strongly Hurewicz (see [11], p. 196). A theorem of W. Hurewicz [11]
says that a metrizable topological space X is strongly Hurewicz if and
only if for every metrization of X there exists a countable cover of X
consisting of totally bounded sets. It seems to be still an unsettled question
whether or not each strongly Hurewicz metric space is an absolute F,
(see [11], pp. 200 and 204). If this question has an affirmative answer,
absolute F, can be characterized in terms of open covers. An analogous
characterization of locally compact spaces has recently been done by
R. Telghrsky [22]. However, it has been proved by W. Hurewicz [10]
that each absolute analytic Hurewicz metric space is an. absolute F,.
Thus, for instance, the space R of irrational numbers with the natural
topology is not Hurewicz. There exists an example of an open basis 8
in 9t (see [4], this example is due to N. N. Konstantinov) such that every
cover y C§ containg a strictly increasing sequence of elements, i.e. there
are sets G, C &, C.. where Giey and Gy # Gy, for ¢=1,2,.. Such
a basis cannot contain a cover which is a zero sequence, for any metriza-
tion of 9. Independently, C. G. Lekkerkerker [16] has found another
example of a basis having the latter property. On the other hand, some
ra,the_r pathological properties can be possessed by Hurewicz separable
metric spaces, e.g. the property of F. Rothberger (see [20], property 0").
A space X fulfils (0") if for every collection of open sets G4(z) C X gatisfying
zeChiz) for e X (1=1,2,..) there exist points ;e X such that the
sets Gi(w¢) where i=1, 2, ... constitute a cover of X. Property (G”) is
re.la.ted to some problems of the theory of measure. Bach metric space
mth‘property (C") is totally imperfect and the existence of uncountable
metric spaces having property (C) follows from the continuum hypothesis
(see [1§], § 40). Since (C) implies (E*), these spaces are examples of
Hurewicz metric spaces none of which is an absolute F, (see also [21],
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p. 48). It remains an open question whether or not one can construct
a Hurewicz metric space which is not an absolute F, without using the
continuum hypothesis.

Let X Dbe a topological space. We say that a collection a of subsets
of X is almost point finite (or almost locally finite) if for every open subset G
of X the collection {4 ¢ a: A\G s @} is point finite (or locally finite,
respectively) at each point of G. The following conditions deseribe prop-
erties of X in terms of various types of finiteness. They will be shown
to be equivalent to each other in the case of separable metric spaces
(see Theorem 2 below).

(vi) Buery open basis in X contains a cover o of X such that a is almos?
point finite.

(vii) Every open basis in X contains a cover a of X such thal a is almost
locally finite.
(viii) Bvery open basis in X contains a cover a of X such that a is point
finite. :

(ix) Boery open basis in X contains a cover o of X such that a is locally
finite. ‘
(x) Boery open basis in X contains an open basis § in X such that B
is almost point finite.

(xi) Bvery open basis in X contains an open basis § in X such that §
is almost locally finite.

It is not difficult to check that each open cover being a zero sequence
in a metric space contains a locally finite cover. Consequently, property (iii)
implies property (ix). This has been observed by R. M. Ford who has
raised the question as to whether the converse is true under the assumption

- of metrizability and separability. An affirmative answer to this question

is given in our Theorem 2.

Eleven conditions listed above will not be complete if we do not
mention the twelfth one. Condition (xii) which follows is, however, much
more restrictive than either of conditions (i)-(xi) since, for instance, (xii) is
not satisfied by the space of rationals [22].

(xii) Boery open basis in X contains a cover « of X such that a is star
finite.

Topological spaces possessing property (ix) are called folally para-
compact [9], while those satisfying (viil) or (xii) might be called iotally
metacompact or totally hypocompact, respectively. Bach discrete space is
totally hypocompact. Thus totally paracompact metric spaces need not
be strongly Lindelof if the separability is not assumed. The concept of
total paracompactness can be generalized in order to include hypocompact
metric spaces, i.e. metric spaces with the star finite property [8]. It can
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also be compared with some singularities for subsets of complete metric
spaces [18]. Open bases are called point regular or regular [2] if they are
almost point finite or almost locally finite, respectively. It has been proved
by A. V. Arhangel’skii [4] that a T,-space X is metrizable if and only
if X admits a regular basis. The metrizability can also be derived from
the existence ¢f a point regular basis [1] provided the space is Hausdorff
and paracompact. Consequently, in most cases a space satisfying either (x)
or (xi) is metrizable. On the other hand, each compaet space is totally
paracompact. Thus properties (ix) and (xi) are not equivalent in general.
An open basis g is called fine [6] if every open cover has a locally finite
refinement contained in B. Clearly, each open basis in a totally para-
compact space is fine. It is rather easy to verify that each regular basis
is fine, and an open basis § in a metrizable space is fine if and only if g
contains a regular basis [4]. Hence properties (ix) and (xi) are equivalent
for metrizable spaces. Fine bases play a role in some uniformity problems
(see [12], p. 144). An open basis f is called coarse [6] if § contains no locally
finite cover. It has been known [6] that the space of irrationals 9t admits
a coarse hasis. The example of N. N. Konstantinov mentioned above is
such a basis in . Observe that there can exist a countable open basis g
in a metric space such that § is not coarse and § contains no cover being
a zero sequence. In fact, a basis satisfying the latter conditions can be
found in the remetrized space . If J denotes the space of integers with
the usual diserete topology, 9t is homeomorphic to the Baire space
IXIX... with the metric defined by

0[liny By e}y (uy oy )] = [MID{R: 4 52 )]

for (i, 4y, ...) # (ji; Jay -..). It is known [16] that the Baire space does
not admit any countable cover consisting of sets whose diameters are

less than one and converge to zero. Coarse bases have been also exhibited '

in the Hilbert space I* which is neither strongly Lindelof nor totally
paracompact. In particular, H. H. Corson [5] has proved that no reflexive
infinite-dimensional Banach space admits a locally finite cover consisting
of bounded convex sets. Since I is homeomorphie to the infinite product
of countably many copies of the real line [3], both I* and 9t show that
the infinite product of Hurewicz spaces needs not be Hurewicz. At the
end of the present paper we give an example of a Hurewicz space X such
that X x X is not Hurewiez. Roughly, our example (whose idea has been
proposed by J. B. Isbell) is an uncountable set possessing the Lusin
property L [15] and carrying the half-open interval topology [14]. The
latter topology yields, by a result due to F. B. J ones [13], the non-normality
of the product, thus also the non-metrizability. It is an unsettled question
whether or not each product of two Hurewicz metric spaces is a Hurewicz
space. Also, construction of uncountable sets with the Lusin property
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requires a well-ordering technique. It remains an open question whether
or not one can construet two Hurewicz spaces whose product is not a Hu-
rewicz space without using the continuum hypothesis. .

LevmA 1.0. If X is o Lindeldf regular space and yy, 9y, ... Gre open
covers of X, then there ewists a pseudo-metric p in X and open covers xq, 1y -
of X such that y: refines yi (1=0,1,..) and, for every subset YCX
satisfying

diam, ¥ < oo or diam,Y < 27%,

Y intersects only finitely many elements of y, or x:, respectively (i =1, 2, ...).
Proof. First recall that Lindelof regular spaces are paracompact
and normal (see [14], pp. 159 and 172). Since X is Lindeléf and para-
compact, there exists a countable locally finite open cover {U;, Ui, ...}
of X which refines y; (= 0,1, ...). Since X is normal, there exists an
open cover
x1i= {Gil, Giz, }

of X such that cl@yC Uy for j=1,2,.. (see [14], p. 171). Thus x
refines y;. Let fi; be a real-vdlued continuous function on X such that
fulw) =3 for x eGy and fi(z) = 0 for ¢ X\U;;. Then the function p
defined by !

o0 [==] 0
p@,9) = Sholo) ~futl + X2 Minft, 3ifuto)—futw)l]

=1 i=1 =
is easily seen to be a pseudo-metric in X. If a subset ¥ C X intersects
infinitely many elements of i, there exist points ¥y e ¥ ~ Gy, where
ik < jraq for k=1, 2, ... Since y;; (together with any point from a neigh-
bourhood) belongs to finitely many sets Uy (j=1,2,..), we have
Jii{yn) = 0 for k sufficiently large. Thus

Em [fin(yin) ~Filya)l = E—‘ijk = oo

whence diam,Y = oo or diam,¥ > 27 depending on whether ¢= 0 or
i > 0, respectively.

TEEOREM 1. Let X be a meirizable space. Then X is a Hurewicz space
if and only if X satisfies either of conditions (i)-(v).

Proof. A scheme of the proof is given by Diagram 1 in which only
three implications are non-trivial. We are going to prove them.

Suppose that X satisfies (i). Let o be a metric in X and let yo, 715 ...
be open covers of X. Let p be a pseudo-metrie in X and let %, 215 --- be
open covers of X such that p and y; fulfil all requirements from Lemma 1.0.
Then ¢ = g +p is & metric in X and, by (i), there exists a cover {4;,4,, v}
of X such that diam,4;< oo for i=1,2,.. and diam,4: converges
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to zero when i tends to the infinity. Thus there exigh positiw;e integers 4
such that x< dxs1, and 4 <4 < gy implies diam,4; <277, for k=1,
2,... Let 4p=1 and

T
6k={G5Xk: GﬁiU Ai?é@}
=1y

for k= 0,1, .. Since y; and {4, 4,, ...} are covers of X, so is the union
8o 6w ... It follows from the inequality

diam, 4; < diam,4;

that A intersects only finitely many elements of iy, provided iy <% < fgt1.
Consequently, & is finite for k= 0,1, .. But 0 C g and xx refines yx,
whence each element of 6 is contained in an element of yr. In this way
we get a finite collection ax C yi such that 16x] C |ax] for &= 0,1, ... Thus
Gy 0y U ... I8 & cover of X. We have proved that X is a Hurewicz space.

Now, suppose that X satisfies (iii). Let yi, sy« be open covers
of X. Given z ¢ X and 7 > 0, we denote by B(x, ) the open ball having
the center at # and the radius equal to  with respect to a metric ¢ in X
whose existence is claimed by (iii). Since y¢ is an open cover of X, there
exist numbers 7;(#) > 0 such that r(z) < 2% and B[z, ri(a)] is contained
in an element Gyz) of y; for x e X. Let !

Ci={(z,9) e Xx X: 27 < o(w,9) <2'7)

for i=1,2,.. We denote by I(X) the set of isolated points of X. Then
the collection
B={{z}: zeI(X)} v H{B[w, ri(@)] v Bly, ri(y)]: (@,9) € Ci}
is an open basis in X and, by (iii), there exist a sequence of positive in-
tegers 4; and a sequence of pairs (wy, y5) e 0y such that
XN\[(X)C 191 Blw;, rif@s)] v H Bly;, r4(y:)]
and diam, B[z, ri(2;)] v Blyj, r4(y;)] converges to zero when j tends
to the infinity. Thus p(2,y;) also converges to zero and, consequently,
the set (i can contain only finitely many pairs (@, y5). It follows thab
the collection
pr={Gylwg): 45 = 1} v {@y(yy): 45 =1}
i finite for ¢=1, 2, ... Moreover, X\I(X) is contained in the union
lpi v lga] © ... and since, according to (iii), X is separable, I(X) must
be countable. Let the points of I(X) be ordered in a sequence and let G
be an element of y; which containg the ith point from this sequence. Then
{settmg as = @1 v {G} we get finite collections a; C 44 such that a; v ay v ...
is a cover of X. We have proved that X again is a Hurewicz space.
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Finally, suppose that X is a Hurewicz space. Let o be a metric in X
and let y; be the collection composed of all elements @ of an arbitrarily
given open basis in X such that diam,G¢ <27° (i=1,2,...). Since X is
Hurewicz, there exist covers a; of X (j=1,2,..) such that aj= ay; v
© Oy U ... Where a;; C p;y7 and ay; arve finite. Then each oy is a zero sequence
and diam,G <277 for Gea;. Thus f= U gy v ... is a Zero sequence
too, and f is an open basis in X. We have proved that X satisfies (v).

CorOLLARY 1.1. Fach metric space being the continuous image of
a strongly Lindeldf metric space is strongly Lindeldf.

COROLLARY 1.2. Bach melric space being the union of couniably many
strongly Lindelof subspaces is strongly Lindelof.

CoROLLARY 1.3. Hach F, in a strongly Lindeldf metric space is strongly
Lindeldf.

(V) == (iv) ==y (iii) (xi) s—)(ix) ——>(viii)
{x)

(ii)

H (vii)
(1) wosmm——) (Furewicz) (V) &= (iii) G (Vi)

Diagram 1 Diagram 2

TEEOREM 2. Let X be a separable metrizable space. Then X is a Hure-
wice space if and only if X satisfies either of conditions (i)-(xi).

Proof. A scheme of the proof is given by Diagram 2 which has two
items in common with Diagram 1. These are conditions (iii) and (v),
and we know that (iii) implies (v) according to Theorem 1. Among the
remaining implications in Diagram 2 only two are non-trivial. One of
them, namely that (xi) implies (ix), has already been discussed (see [4],
p. 590). It suffices to prove that (vi) implies (iii).

Suppose that X satisfies (vi). Since X is separable and metrizable,
X can be imbedded in the Hilbert cube. Let ¢ be the metric in X which
comes from the Hilbert cube and let § be an open basis in X. Since g is
totally bounded, there exist finite sets F;C X such that g(w, F4) < 27t
for ze X (i=1,2,..). Let

yi={@ep: 27 < dam, & <27%

for i=1,2,.. Given Geyi We take points @ e @, y e F; such that
o{z,y) <2 " and an element UiG)ef such that ye Uy(@) and
diam, U @) < 27% We have

diam, [ v @] < 2 27 427 = 2%
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for Gey; and 1 =1, 2, ... Then the collection
B ={{a}: e I(X)} v Q {Gv U@): G ey}

is an open basis in X and, by (vi), there exists a sequence of collections
¢ Cy¢ such that

o = Q{Gu Ud@): Gegs}

is almost point finite and X\I(X)C |a’|. It can he assumed that every
element of o' has exactly one representation G u Uy(@) where G eqy
and i=1,2,.. ‘

We claim that ¢; is finite for ¢ =1, 2, ... Suppose on the contrary
that gy, is infinite. Since U (@) meets F;, for & e g1, and Fy, is finite,
there exists a point y, e Fy, such that ¢, belongs to infinitely many sets
& v Uy(@) where G egy,. Since @i, C y1,, these sets have diameters not
less than 27", and thus the collection

a={4 ca’: A\B(y,,27%%) = @}

containg all of them., Consequently, o, is not point finite at y,; this
contradiets the fact that o’ is almost point finite.

The space X being separable, the set I(X) of its isolated points is
countable, and # ¢ I(X) implies {#} ¢ 8. It follows that the collection

a={{@}: veI(X)}u ,Q, oo ,Q (U(@): Gep)

is' contained in g, and || = I(X) u la’] = X. Moreover, since ¢; are finite
(i=1,2,..), the cover « is a zero sequence. We have proved that X
satisfies (iif). :
COROLLARY 2.1. Each metric space being the continuous image of
a totally paracompact separable metric space is totally paracompact.
CoROLLARY 2.2. Fach separable metric space being the union of count-
ably many totally Daracompact subspaces is totally paracompact.
CO'ROLLARY 2.3. Bach separable F, in g totally paracompact metric
space 13 totally paracompact,
EXAMPLE We give an example of a Hurewicz space X guch that
%Y X X is not nm:mal. Let X be an uncountable dense subset of the real
line R such that if 4 C R is nowhere dense in R, then 4 ~ X ig countable

(see [15], p. 525). We provide X with the to ich i i
] pology for which intersectiones
of X with half-open intervals

[a;8)={reR: o <7< b}
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constitute an open basis (a, b ¢ R). The space X is regular (see [14], p. 133).
To see that X is a Hurewicz space let us consider a sequence yy, yg, ...
of open covers of X. Since X is dense in R, there exist points ;3 ¢ X such
that {#,, @, ...} is dense in R. Since y; is an open cover of X, there exists
& number r; > @, such that X ~ [@,ry) is contained in an element G
of y;. Then the set

Y= R\ 'Q [mi: 1‘()

is nowhere dense in R, and thus ¥ ~ X is countable. We can write
¥ nX={y,y,..}, and let a;Cy; be the two-element collection con-
sisting of G4 and an element of y; which contains yi{t =1,2,..). It follows
that o, v o v ... is a cover of X, and X is Hurewicz. To see that X x X
is not normal let us consider subsets

O={lz,—2): weX}, D= {(m,a):4,j=1,2, o}

of X x X. Clearly, € is an uncountable closed discrete subspace of X x X.
On the other hand, D is a countable dense subspace of X x X. A normal
space cannot contain subspaces ¢ and D which possesse the latter prop-
erties (see [13], p. 671). It follows that X x X is not normal.
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Some results on AC-o functions

by
M. C. Chakrabarty (West Bengal, India)

1. Introduction. Let @(z) be non-decreasing on the cloged in-
terval [a, b]. Outside the interval, w(z) is defined by o(z) = w(a) for
2z <6 and o(@) = w(b) for £ > b. Let § denote the set of points of con-
tinuity of w(x) and let D = [a, b]—8. Let 8, denote the nnion of pairwise
disjoint open intervals (ay, by) in [a, b] on each of which w () is constant,

Si=A{a, b1, 00, by, ), =88 and S, = [a,5]-8—(8, 8, .

R. L. Jeffery [4] has denoted by W the class of functions F(z) defined
as follows.

f(z) is defined on the set 8-la, b] such that f(z) is continuous at
each points of §-[a, b] with respect to §. If a point #, € D, f(x) tends to
a limit (finite or infinite) as « tends to 2+ and a,— over the points of
the set 8. These limits will be denoted by f(z,+) and f(z,—), respectively.
When z < g, f(#) = f(a+) and fl@) = f(b—) for & > b. f(z) may or may
not be defined at the points of the set D.

In [4] Jeffery has introduced the following definitions.

DErFINITION 1.1. A function f(@) defined on [a, b] and in the class W
is absolutely continuous relative to o, AC-w, if for £ > 0 there exists 6 > 0
such that for any set of non-overlapping intervals (z;, i) on [a, b] with

2o @i+) —w(@i—)} < 6 the relation 21f (@ +) —F@i—)] < & is satistied.

DeriNition 1.2. Let f(z) belong to the class . For any 2 and any
h # 0 with @ +% e 8, the function y(z, b) is defined by

fl@+h)—f(x—)
w(@+h)—ow(z—)’
fle+h)—f(z+)

{ h>0, w@+h)y—w@—)£0,
W(m’h)z{ g al _— P

o+t —a@L)’ h<<0, w@+h)—ol@+)=0,
lo, o(@+h)—w(@t)=0.

If p(z, h) tends to a limit as h—0, this limit is called the «-derivative
of f(%) at & and is denoted by Ja(z). The upper and lower limits of w(x, k)
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