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On the existence of a mean on certain continua

by
Kermit Sigmon (Gainesville, Fla)

1. A topological groupoid is a Hausdorff space G equipped with
a continuous function @ x GG whose value at (z,y) will usually be
denoted by xy. A topological groupoid @ is medial if (wy)(uv) = (zu)(yv)
for all @, y,u,ve@, distributive if x(yz)= (wy)(xz) for all =,y,2¢8G,
commutative if oy = yx for all z,y e @, and idempotent if zx = x for all
% e G. A commutative, idempotent topological groupoid will be called
a mean, as will its binary operation. The notions of mediality and distrib-
utivity are very natural ones and have proved useful in the study of
mean values (see Frink [6] and Aczél [1], pp. 287 and 298). One easily
shows that in the presence of idempotency, mediality implies distributivity.

Aumann [2], Eckmann [4] and Eckmann, Ganea and Hilton [5]
have shown that there are wide classes of spaces which do not admit
a mean. For instance, no n-sphere, » > 1, admits a mean. However,
none of their methods apply, for example, to the space consisting of the

curve y = sin%, 0 <z <1, together with its limit continuum. It has

been conjectured by A. D. Wallace that this space admifts no mean but
this remains open. In this paper we present certain results relevant to the
admissibility of a mean on a continunum containing an open, dense half-
line and give an example of a related space admitting no distributive
mean. The action of & semigroup on such a space has been studied by
Day and Wallace [3]. We conclude with the statement of some open

problems.
It is a pleasure to acknowledge the direction by Professor A. D. Wal-
lace of the research leading to this paper.

2. If A and B are subsets of a topological groupoid, we set

AB = {ab| a e A and b B}
and let
A B={(g| Az~ B [}
and
AT B= {#| AxC B}
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and, dually,
BA“Y = (5| 4 ~ B # [}
and
BA™ = (4| zACB).

Tt should be noted that if 4 is a singleton set, then A“VB = A""g,
(2.1) LemMA. If A and B are subsets of a topolgical groupoid, then
(i) A”UB is open if A is compact and B is open, and dually.
(i) ASB is open if B is open, and dually.
(iii) {2| A C Az} is closed if A is compact, and dually.

Proof. (i) If s AT™"B, then Az C B. But since 4 is compact, it
follows from the continuity of the groupoid multiplication that there,
is an open set ¥ about = such that AV C B. Hence z ¢ ¥ C A"'B o0 that,

AYRB is open.

ii) We have that A“"B={J{a" "Bl aecd}= {J{a B| acd}
(

and each of o"™"B is open. by (i).

(i) Since {#| 4 C Aw} =) {4 Ya| a e A} it suffices to show that
A" iy closed for each aeA. If ¢ AV, then a¢ Az and hence

Az C X\{a} which is open. Then, since 4 is compact, there is an open
set ¥ about & such that AV C X\{a} so that &<V C X\AVa. It follows
that A is closed. ‘

For the remainder of this section we suppose that I is a continuum
containing an open, dense half-line W whose complement €' is non-de-
generate and we let P be a property of topological spaces which is a con-
tinuous invariant on continua and which M does not possess. T'wo examples
of such a property are local connectivity and arcwise connectivity.

(2.2) Lemma. (i) C is a C-set (i.e., any continuum which intersects ¢
but is not contained in ¢, must contain ) and hence is conmected.

(il) Any subcontinuum of M which has property P and which inter-
sects C must be contained in C.

Proof. (i) Tt is easy to see that C is a O-set and the fact that O is
connected follows from lemma 1 of [8].

(ii) If, on the contrary, K is a subcontinuum of M having property P
and intersecting both ¢ and W, then by part (i) ¢ C K and hence, since

E~nW#0O,K Lo But since P is a continuous invariant on continua,
this implies that M has property P contrary to our assumption.

The next theorem shows that the multiplication of an idempotent
topological groupoid on M must “spread” near G. A subset J of a to-
pological groupoid & is a right ideal of @ if JG CJ, a left ideal of G if
GJ CJ, and an ideal of @ if JGu GJ CJ.
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(2.3) THEOREM. If M is an idempotent topological groupoid, then W
is a subgroupoid of M and either ¢ C Cx for all € C or C CxC for all z € C.
The first case holds whenever either C or W is a right ideal of M, and the
second case holds whenever either C or W is a left ideal of M. If, in addition,
C has property P, then C is a subgroupoid of M, either C is a right ideal
or W is a left ideal of M and, dually, either C is a left ideal or W is a right
ideal of M.

Proof, The theorem is contained in the following series of assertions.
The proofs of the primed assertions, which are dual to the unprimed
ones, are omitted.

(i) W is a subgroupoid of M. We know that W* is arcwise connected
since W is and that W C W* from the idempotency so that observing
that W is an arc-component of M it follows that W*= W.

(i) M= W"W o W¢. Since W is an arc-component of M
and Wz is arcwise connected for each z ¢ M, we must have that, for each
# ¢ M, either Wa C W or Wa C C. This shows that M C W 1w o wie
and the reverse containment is trivial.

(i) M =ww o oW,

(iti) If CC WU'W, then CC Cz for all ze C and if C ¢ WIW,
then € C 2C for all x € M. First, suppose that ¢ C W™™"W and let x ¢ C.
Then Mz is a continuum intersecting C, sinece z e Mz, but not con-
tained in O, because x ¢ ¢ C W' 'W and hence WaoC W ~ Mz. It fol-
lows from lemma (2.2(i)) that ¢ C Mz and since Wz C W, we must have
that CC Cu. :

Next, suppose that ¢ ¢ WUW so that, in view of (ii), we have that
O~ W0 £ O, If we choose m,e €~ W UC, then for ye W, yM is
a continuum which intersects C, because yz, e yC ~ W, CyM ~ C, but
which is not contained in C, since y e yM, so that from lemma (2.2(i))
we have that ¢ C yM and hence C C yC, since yW C W. We have shown
that W C {#| CC zC}. But, by lemma (2.1(iii)), {#] ¢ C xC} is closed.
from which it follows that M = W*C {z| CC «C}. .

(i) If €C WWSY then CCaC for all e C and if ¢ ¢ WWH,
then CC Cx for all x e M.

(iv) CC WUUW iff W is a right deal of M and CC W0 iff C is
a left ideal of M.

Tt is clear that O C W™W iff WC C W, but since W2 C W, we have
that WC C W is equivalent to WM C W. Similarly, ¢ C W10 iff WO C ¢
which, in turn, is equivalent to MC C C, since ( is closed and W*= M.

(iv) 0 CWW™ iff W is a left ideal of M and CC OW™ iff C is
a right ideal of M.
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(v) CC Cz for all % ¢ C, whenever either C or W is a right ideal of M
and CCx0 for all ® e C, whenever either C or W is a left ideal of M
Observing  that OC W0 implies ¢ ¢ W™'W (and that ¢ C oWt
implies ¢ ¢ WW['I]) we see that (v) follows from combining (iii), (iii)’

{iv) and (iv)". ’

(vi) If C'has property P, then C is a subgroupoid of M. If % e O, then
zﬂeéﬂ%n 0 and %0 has property P so, by lemma (2.2(ii)), #C C 0, ie.,

(vii) IL]G has property P, then either CC WUW o ¢C WYg.
I ¢ ¢ WW with, say, @, e O\W' ™ 'W, then in view of 2.2(i) we have
that Wa,C C so that, for each y ¢ W, ymye yO ~ ¢ and hence from the

fact that yC has property P and from (2.2(ii)) i
; . t follows th
This shows that WO C ¢ and hence ¢ C W[“”g at yOC C.

(vil) If C has property P, them either 0C WW™™ or ¢ C oW,
An immediate consequence of the preceding theorem is the following:

(2.4) CorOLLARY. If M is a mean, then CC Oz fe X
s or all zeC, W is
a submean of M if, in addition, C has , !
. . property P, th =
and either C or W is an ideal,of M. Py By then O= Cafor all a < 0

o fhﬁ thfz case of an idempotent semigroup, theorem (2.3) reduces to
e following faorolla,ry.. A semigroup is an associative topological groupoid
and a topological semilattice is an associative meamn.

(2.5) CorOLLARY. If M is an idempotent semigroup, then O is a sub-

semigrgup Hof M fuch that either @y = o for all w,y e C or ay = y for all
v,y eC. Hence, M 7 =
laitt ios. s ¢ M does mot admit the structure of a topological semi-

Proof. If M is an idempotent semi
we have that either ¢ C Oz f(}; allze O I)grmg’lg’m%iﬁ; Elclm; : lé'e(;ll‘fgl h(2-3):
since each elf?ment of C is idempotent, ¢ consists of either all right en?: ’
or all left units of C. For, supposing € C Cz for all e C, if o fG’ 1:;? X
@€ CC Oy and hence » = 2y for some 2 ¢ ¢ from Whic]; it lgoglllow’ the]tli
oy = (2y)y = 2y® = 2y = x. The dual assertion follows similarly s
If M were a topological semilattice, then from the above, eac};L element

of 0 would be a unit for ¢, which would i i
frary to our smmeneton. N imply that C is degenerate, con-

3. Let § be the subcontinuum of the

of the s plane consisting of the union

ond C={r,8)] r=0 and —1<s<1}

W={(r,5)] s=sin> and 0 <r <1}
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and, for each positive integer k, let Ax be the subcontinuum of § given by

2 2
Ae = {(’ 18) € 8] (4:k+3)7c<r<(4k+1)7c}'
It will be convenient to denote the subcontinuum of § irreducible between
subcontinua 4 and B of 8 by [4, B] and to let <4, B]=[4, BI\4, ete.
We now foil your idea of an example of a mean on S.

(3.1) PROPOSITION. § admits no mean which is internal on W, i the
sense that zy [, y] whenever T,y e W.

Proof. Suppose that, on the contrary, S admits a mean such that
@y € [@,y], whenever x, y ¢ . Then the mean is internal on C. For suppose
that @, 2, ¢ [#,, 2.] for some @, &, € C and let V be a spherical neighborhood
(in the usual metric of the plane) of @y, such that V* ~ {m, &} = O
and, using the continuity of the mean, let U, U, be spherical neigh-
borhoods of x,,%,, respectively such that U, U,CV and (Uyv Uy)
A~V = [J. We remind you that U, U, = {zy| e Uy, y € Uy} If we choose &
so large that Ag ~ Uy 5= [ # 4k~ U, and let Yy e Ap ~ Uy and y; € 4z
~ U,, then Dby our choice of neighborhoods, [#;,%.]~V = . But
41¥s € U, U, C V while from the internality of the mean on W, 4,9, € [¥:, Y2l
a contradiction. Hence, the mean is internal on C. Letting a and b denote
the endpoints of ¢, we have from (2.4) that ae C= Ch s0 a=ab for
some z ¢ C. But from the above this is only possible if z = a, Le., a = ab.
Similarly, one shows that b= ab and hence a = b, a contradiction. The
proposition follows.

Next we show that any distributive (and hence any medial) mean
on the sinusoidal continuum described above must have the limit con-
tinuom as an ideal and give an example of a continuum admititing no
distributive mean. We first prove a lemma.

(3.2) Lmmma. If A is a submean of a distributive mean M then, for
each xe M, Az is also a submean of M.

Proof. We have only to observe that if 4 is a submean of M, then
the distributivity of M implies thab

for all e M. i
A nodal set in a continunm is a proper, non-void subcontinuum

having a one point boundary. .
. (3.3) ProrosiTioN. If § is a distributive mean then G is an ideal of S.
Proof. In view of corollary (2.4) (with M = 8 and P = local con-
nectivity) we have only to show that W is not an ideal of 8. To this end
we suppose, on the contrary, that W is an ideal of 8 and note that, for
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each y e W, Sy = [ry,1,] for some 7y, ¢ W and Oy = [ey, fy] for some
ey, fy e W, and we set Ny=[C,r,;] where ¢ is the endpoint of S.

We now prove several assertions whose object is to show that the
mean is internal on C.

() Non WCiryl ye WA {fy]l ye W) If we define g: WW Dby
g(y) = ry, then g is continnous, for if we let <, o) be an open interval
contained in W, let U;=[C,v), and let U,= Cu,q], then U, and U,
are both open and, since § is compact, so are ST, and §I! U,. But W
is open and

g (U, 1) =800, ~ STUT, A W

from which follows the continuity of g. If one defines h: W—~W by
h(y) = fy then one shows h continuous in a similar manner. Tt follows
that each of g(W) and k(W) is connected.

Now let y e Ny~ W and observe that SU[¢,y> and oo, vy
are open, the latter because C is compaet, and that € C ¢™[C, ¢ ~
~ 8¢, y> since, for z ¢ C, we have that Oz = O C[C,y)> and = ¢ 8z ~
N CGCB8un[0,y). We may then choose an element e e, gy A
~ 8C,y> ~ W so that, on the one hand, (uC [C ,¥> and hence
Y elfo, 1 Clfa, fd CRW) = {fy| y« W} (R(W) is connected!) and, on
the other hand, 8z ~ [C,y) # [1s0 that y e [15,7,]C g(W) = {ry| y ¢ W).

(i) If h: W W ds defined by h(y) = fy and if N is a nodal set con-
taining C, then there is a nodal set N' about € contained in N, and disjoint
Jrom k([go, q1), where g, is the boundary point of N, s which must then satisfy

N AWCHE ~W).

The funetion k is continuous, as was shown in the proof of (i), so that
h([go, 1) is compact and since it is contained in W it is clear that we may
choose a nodal set N’ about ¢ disjoint from h([gy, 9]) and conta.ine;l
in N,. From (i) we have that ¥, ~ W C h(W), and hence N' A WC N, A
N WC W)= 2(N ~ W) v k(g q]) from which it follows that N’ ~ w
Ch(N ~ W) since (N'~ W) ~ h(lgs, ¢1) C N’ ~ h{{go, ) = (.

(i) If @y, 2,¢ C and U, and U, are open sets about ®; and m,, re-
spectively, then there ewists a nodal set N of S such that ’

CCNC T, ~ 0707,

Bach of VU, and -0 U, are open and CC 0“7, ~ 0°VT.
because, in view of eorollary (2.4), {2, 2,})C C = Cx for all lm e C. Bug
an open set about C must contain a nodal set about C.

(iv) The mean is internal on C. Suppose that a,

%y ¢ [x;, #,] for some
Zy, @y € C and assume that m,z, < Ty,

where 7, is the second projection
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in the plane. As in the proof of proposition (3.1), let 7 be a spherical
neighborhood of @@, such that V* ~ {z,,,} = [J and, using the con-
tinuity of the mean, let U, and U, be spherical neighborhoods of &, and =,
respectively, such that U, U,CV and (U;v Uy) ~ ¥V = [1. Using (iii),
we let I De a nodal set about ¢ such that N C N, and ¥ C ¢*07, A
~ OV and then, using (ii), we let ¥’ be a nodal set containing € such
that N' ~ WC h(N ~ W). Let k be so large that 4xC N’ and Az~ U,
5 [0 % Ax ~ U, and choose 2] e Ay ~ U, and x4 e Az ~ U,.

From (i) we have that ; =, for some y, ¢ W, 25 = f,, for some
Y, € W and because #; ¢ Ax CN' A~ WC (N ~ W) we may suppose that
Y, € N so that Oy, ~ U, [0 # Oy, ~ V. It follows that 7y, = 2{ e Cy,
= [éy,, fy.] and hence, recalling that fy, = @€ AxC N, we have that
Cyy ~ 8y, = [y, fra] = [#1, #2] so that since, by lemma (3.2), each of
Cy, Sy, are submeans of M, so is [#i, #;], from which we have that
@5 € [21, 23], But a12: C U, U,CV while V ~[2f,#]= [0, a contra-
diction.

. Returning to the proof of the proposition, one obtains, from the
internality of the mean on C, a contradiction as in the proof of proposition
(3.1). Therefore our assumption that W is an ideal of S is false.

It may be remarked that in the preceding proof, the distributivity
assumption was used only to get each of Cy and Sy a submean of S for
each y ¢ W so we could have assumed that instead.

We next let D= Swv {(r,s)] (2—r,s) eS8} and again employ the
notation [4, B] for the continuum irreducible between A and B, where 4
:}nd B are subcontinua of D. Observe that C,= {(r,s)eD| r= 0},
C,={(r,s)eD| r=2} and W= {(r,s)eD| 0 <r <2} are the arec-
components of D.

‘ (3.4) PROPOSITION. D admits no distributive mean.

Proof. Suppose, on the contrary that D is a distributive mean.
From the fact that each of 0, C, and W are the arc-components of D
we have that they are each submeans of D.

‘We establish a cpntradiction by the following series of assertions.

(i) Bither WC,CC, or WC,CW and, dually, either WC,C C, or
W, C W. Since W(, is arcwise connected and the arc-components of .D
are 0;, C, and W, in order to show that W{, C ¢, or WC, C W, it suffices
to show that WC, ¢ C,. We know that ¢i""(D\C,) is open and contains ¢,
because ¢, is compact and CiC ¢; and hence W ~ Cr(D\C:) # O,
ie., WC, = O,W ¢ C,. The dual assertion follows similarly.

(ii) Either WC,C W or WC(C,C W. If this were not true, then, in
view of (i), we must have W, C (, and WC, C C, and hence DC; = W*(C,
C ¢, and DO, = W*(, C C, from which follows the impossible conclusion
that both C,C,C DC,C 0, and C,C,= C,C, CDC, C (i
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In view of the symmetry, we suppose for the remainder of the proof
that W0,C W and consider the two possibilities W, C O, (and hence
DC,CG,) and WC, CW.

(i) If DC, C Cy, then Cp= C,x for all z e C,. If xe C,, then Dz is
a subcontinuum of D intersecting C,, since C,z C C,, but not contained
in G, since Wo C WC,C W and hence, since C, is a O-set, we have that
G, C Dx. Tt follows that €, C G,z (and hence C, = C,%) because, in addition
to Wa CW, we have that C,2C ¢, D = D¢, C (. )

(iv) If DG, C C,, then, for each y e W, Dy = [0y, 8y] for some sye W
and W= {sy|y e W}. It is clear that if ye W, then Dy =[C,, sy] for
some sy ¢ W and if we define f: W—W by f(y) = sy, one shows that fis
continuous in a manner similar to that in the proof of assertion (i) of
proposition (3.3) and hence it follows that f(W) is connected.

I y « W, then DXy, ;] is open and contains ¢, (z ¢ €, = & € Dz
~ C,C Dz~ <y, C) and, because D is compact, D['”[C’l,y‘) is open
and contains €, (DC,C €, C[(,,y)), so if we let 3 e D0, 4> ~ W
and 9, e D"y, ] A W, then y e [sy,, sy,] C F(W) since f(W) is connected.
We have therefore shown that W Cf(W) = {sy| 5 ¢ W}

(V) If WO,.CW and if ©,¢0Cy, w,e0C,, then either Doy~ Cy= O
or Dy, ~ 0, = [J. Since each of €, and C, are C-sets and since Dzx, A
~ 6, % 0% Dzy~ Oy (2, € Dy, @, € Day), if we suppose that the assertion
s not true, we must have that Dz, = D and Dz, = D. Bach of oy,
Wa, and C,z, are arewise connected with 2, C C, and Wo, C WO, C W
so that since D = Cuz, v Wa, w Gy, and 0y, O, and W are the arc-
components of D, it follows that ¢, = C,2,. We then have 2%, € Cp and
a dual argument shows that @, € ¢; which is impossible.

If DC,C 0y, by utilizing (iv) and our assumption that wWe,Cw
one can show as in the proof of proposition (3.3) that the mean is internal
on C, which, again as in the proof of proposition (3.3), will then con-
tradict (iii). :

If WO, CW (and W0, C W), then, in view of (v) and the symmetry
we may suppose that Dm; ~ 0, = [J with o, « C;. Then Dz, is a continum
contained in €, v W which intersects both 0, and W so that since €,
is a C-set, it contains €, and hence is homemorphic to the sinusoidal
continuum § defined earlier. Furthermore, Dz, is a submean of D such
that (Da; ~ W) 0, C Dz, ~ W so that if we apply proposition (3.3) we
are led to a contradiction.

Having shown that all possibilities lead to & contradietion, the prop-
osition follows.

.4. ‘We have just seen that D admits no distributive (and hence no
medial) mean. However, each of the following questions awaits an answer.
(£.1) Does D admit a mean?

- ©
Im Euistence of a mean on cerfain continua 319

(4.2) Does 8 admit a mean? a distributive mean? a medial mean?

It is easy to show (see Aumann [2]) that any retract of a space ad-
mitting a mean must admit & mean. Hence, if § admits no mean, neither
does D. For results relevant to the medial case of (4.2), the reader is
referred to Sigmon [7].
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