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On the hyperspace of subcontinua of a finite graph, II

by
R. Duda (Wroctaw)

§ 1. Introduction. In the preceding paper [1] we have shown
that the hyperspace CO(X) consisting of all non-empty subcontinua of
a continuum X and metrized by the Hausdorff metric is a polyhedron
if and only if X is a finite connected graph. Some results concerning
the structure of polyhedra which are hyperspaces have also been proved
there, and among them a proposition ([1], corollary 9.2) which can be
read as follows: a connected polyhedron P of finite dimension is a hyper-
space if and only if its subset Ep (whose definition depends on the
topology in P only) is homeomorphic to a finite conunected graph and P
has the structure of the hyperspace for that graph. However, the structure
of polyhedra which are hyperspaces has not been discovered so far and
it is the aim of the present paper to do it in the particular case of polyhedra
which are C(X) for a graph X, finite, connected and acyclic (i.e., con-
taining no simple closed curve).

Such graphs are also known under the name of finite dendrites. Thus
in the present paper we shall give a Characterization Theorem (see § 9)
providing in it a complete characterization of those polyhedra which
are ((X) for some finite dendrite X (or, what is the same by virtue of
theorem 6.4 from [1], which are C(X) for some acyelic continuum X) and
in § 10 we shall provide some examples of such polyhedra.

To gain this aim we shall proceed as follows. We start with a de-
finition, for each finite connected and acyclic graph X, of a so called
a-polyhedron a(X) which we deseribe as a union. of a certain number
of solid triangles and geometric cubes M cp (see § 3). Returning then
to a decomposition of the hyperspace C(X) into topological balls Mcx
(cf. [1], theorem 6.4), we shall define in §6 and § 7 & homeomorphism

face: Mace>Macn

for each such 4 C B in a way such that all these homeomorphism can be
combined together (see § 8) to yield a homeomorphism

f: C(X)~a(X).
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This shows that a-polyhedron «(X) coincides with the hyperspace
C(X), whence Characterization Theorem follows easily.

§ 2. Preliminaries. The present paper strictly follows [1] in
notions and notations. For the convenience of the reader we shall recall
some of them here.

Throughout the paper X is assumed to be a finite connected and
acyclic graph, ie., a connected union of finitely many segments joined
by their end-points and containing no simple closed curve. By a segment
of X we shall always mean one of those segments, by a subgraph of X—
a graph contained in X and formed by some of those segments and their
end-points, and by a verfexr of X—an end-point of a segment of X. If »
is a vertex of X and ord,X > 3, then # is called a ramification point,
and if ord, X = 1, then v is called an end-point of X. Any subgraph of X
which contains no end-point of X is called internal. A segment joining
vertex v to vertex w is denoted by ww.

A topology on X is the identification topology induced by embeddings
of segments of X into X. Combining some segments into new ones we
may assume that each vertex of X is now either an end-point or a ramifi-
cation point of X. Moreover, we assume also that X is metrized by the
metric in which each segment of X has length equal to 1 and the distance
between any two of its points is equal to the length of the shortest arc
Joining them. Under these agsumptions on the topology and metric in X
(equivalent to (), (B) and (y) from [1]) all the results from [1] retain
their value here. We shall apply them without further motivation.

Our assumption on X make X very easy to handle. For instance,
they give us the following two lemmas:

2.1. Let A be a connecied subgraph of X. If A is internal and consists
of k segments of X, then

ordsX > k3.

Proof. By hypothesis each vertex » of 4 is a ramification point
of X, i.e., of the order ord, X > 3. Hence if A contains no segment (% = 0),
ie., if 4 is a vertex itself, then clearly ordsX > 8. Similarly, if A is
a sd'egment (k= 1), then the two end-points of A are ramification points,
and so

ords X > (3—1)+(3—1) = 4.

) Now we shall proceed by induction. Assuming the inductive hypoth-
esis that, for some natural % > 0, if A is a connected and internal sub-
graph of X consisting of k segments, then ordsX > %3, consider a con-

nected and internal subgraph B of X consisting of k-1 segments. We
have to show that

(1) ordpX > (k+3)+1.
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For that purpose let A be a connected subgraph of B consisting of &
segments and let B= A v ab, where a ¢ A. Since the segment ab adds
to the order ordsX at least 1 (because b is a ramification point of X by
hypothesis), then it is clear that

ordpX > ords X +1,

whence and from the inductive hypothesis follows (1).

2.2. If A and B are two distinct connected subgraphs of X such that
A CB and B is internal, then

ordsX < ordgX . -

The proof is by a similarly simple argument.

The notions and symbols not defined in the paper come from [1]
and [3].

§ 3. a-polyhedron o(X). We shall define here a procedure leading
from a finite connected and acyclic graph X fo a certain polyhedron
which we shall call a-polyhedron for X and denote a(X).

Recall that each vertex of X is either an end-point or a ramification
point (cf. § 2), and let N be the number of segments in X. By I” we shall
mean an N -dimensional cube, i.e., a subset of an N - dimensional Euclidean
space B consisting of all points (z, ..., zy) such that 0 <z <1 for
i=1,..,N.

The first and most important (for all that follows depends on it)
is an embedding

i X IV

such that each segment of X is identical with a certain edge of I™ and
that any two distinet segments of X are now perpendicular to eath other.
Since X is acyclic by hypothesis, then such an embedding does exist.
In general, however, there are many of them and . is just a fixed one.
Having defined :, we attach first to each edge :(B) a solid triangle,
Mocp with the base of length 1 (more precisely, we identify this base
with the edge) in a way such that M,cpis disjoint with IV except for its
base and that any two attached triangles Mycp and Mocp are disjoinb .
except for, perhaps, an end-point :(B) ~ (B’) common to their bases ¢(B)
and «(B').
Let o'(X) denote the union of all N triangles Moycp attached in that
way to (X).
Polyhedron «(X) will be the union of «'(X) lying outside ¥ and
of o"(X), to the definition of which we now proceed, lying inside ™.
If A is an internal connected subgraph of X, then by A* we shall
mean the middle point of the least face of Fad containing all edges of ¢(4)
16*
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As follows by an easy inductive argument, if 4 consists of % segments,
then A* is the middle point of a %-dimensional face of I¥. In particular,
if 4 is a vertex v then A* = i(v), if A is a segment then A* is the middle
point of the edge ((4), ete.

Now let B be a connected subgraph of X such that

ACBCQ4,1),
ie., let B be a union of 4 and of some segments of X meeting 4.
‘We can then write
(1) B=Au Jaibs, where aic 4, bse B—A, and all b; are distinct
is1

for i=1,2,..,n
By .
(A% asbs)

we shall denote the veetor with the origin 4* and the end-point (4 w a;b,)*,
Le., the vector of length %, parallel to the edge :(asb;) and joining 4* to

(.A v aibi)* (flg 1).

;)

(47:a:5;)

¢(as)

A"
TFig. 1

More generally,

n
(2) X (A4*; aibs)
i=1
will denote the system of » vectors (4% @Ti), i=1,2,..,n
‘We shall regard (2) as a system of coordinates, each vector (A*; a;b;)
being a half-unit. vector, and by

®) Macn =X (4% Gb)|
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we shall mean an »-dimensional cube spread over system (2), i.e., the
set consisting of all points whose coordinates (yy, ..., %) in system 2)
sabisfy conditions 0 <y:; < § for ¢=1,2,..,n. Clearly, system (2) of
coordinates in Mucp is closely related to the system of coordinates in IV
(cf. § 7 below).

Now we are already able to define o'/(X). Namely, o”(X) is the union
of all cubes M 4cp, where A runs over all internal connected subgraphs

n o .
of Xand B=A4A v iU a:b; Tuns over all connected subgraphs of X such
=1

that A CBCQ(4,1).

In other words,

o(X) = «(X) v a"(X) = | Mucs
ATB
where A C B runs over all pairs of X.

However quite concise, such a definition of a(X) does not make
it easy to imagine and so we shall now repeat the last part of it, i.e., the defi-
nition of o”(X), in a somewhat lengthy but for further investigations
more suitable way.

First of all notice that we could restrict ourselves to pairs 4 C Q(A4 , 1)
only, for if B is a subgraph of X such that 4 C B C Q(4,1)and B # Q(4, 1),
then the cube Mucp is a face of the cube Mpcou,y-

We shall divide the definition of «'/(X) into -1 operations

Ogy O1y5 eoey On,

where # is the greatest natural number for which there exists an internal
subgraph of X consisting of n segments. Operation ax, k= 0,1, ..., %,
consists in putting into I cubes M4 cq 4,1, Where A runs over all connected
and internal subgraphes of X consisting of % segments precisely.

To construct a,(X) we must then consider all internal vertices of X
and for each such a vertex & put into the “cornmer” of IV determined
by «(a) the cube M), of dimension dim Miycoey = ordsX resting
upon halves of all the segments of «(X) issueing from i(a) (see fig. 2).

To construect a,(X) consider the 1-dimensional faces of I”. If a face
is the edge 1(4) = ¢(a):(b) lying in «(X), then we put into I the cube
Macou,n resting upon all those edges of the cubes belonging to ay(X),
‘which start from the middle point A* of that face and lie in the 2-di-
mensional faces but not in the 1-dimensional faces of IV (see fig. 3).

((— fp—
In fact, if @Q(4,1)= |Jaa; v | bb;, and
= =1

x X (4% bby)|

Maicouan = IXI(A*; aa;)
i= j=

-
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LX)

M(a)ca(i-,v)/

t(a)
Fig. 2

then the edge (4*;aa;) belongs to the ball Myycqey and lies in the
2-dimensional face of I” determined by the edges ¢(A) = «(ab) and «(aa),
and similarly the edge (4*; bd;) belongs to the ball Meyceey and lies
in the 2-dimensional face determined by the edges «(4) = «(ab) and «(bby).
Other edges are out of question.

of b/)

Macawm,

3 u(b)

t(a)

¢(s)
Fig. 3

Now proceed by induction. Suppose that the set of cubes aj—y(X),
where & > 1, is already constructed and consider the %-dimensional faces
of I, Tt the middle point 9 of such a face belongs to az—,(X), then the
face is determined by a connected subgraph A of X consisting of &
segments of X and p = A*
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Two cases are possible:

1° If 4 is internal, then we put into I the cube M 4cQe,y Testing
upon all those edges of the cubes belonging to a_;(X) which start from
the middle point p = A* and lie mvthe (k--1)-dimensional faces but
not in the %-dimensional faces of I,

In fact, if p= A* and Q(4,1)=

[, then

T
A v | ]ab;, where a;e A for
i1

i=1,2,..,

3 —_
Macoun = |_>_<1(A*; aiby)| .

BEdge (A*; a:b;) lies in the (k-+1)-dimensional face of I” determined
by the k-dimensional face, the middle point of which is p = A% and
by the edge t(a:bs).

Moreover, if 4; is a connected subgraph of A consisting of k—1
segments and such that a;ed; (in view of k > 1, subgraph A; clearly
exists), then M 4,coua.) € ax—1(X), and the edge (4% M) clearly belongs
o Macoun-

Other edges are out of question.

2° If A is not internal, we leave it as it is.

(Note, that by 2.1 each cube of the set ax(X) has dimension not less
than k-3, and by 2.2 this dimension grows up from step to step.)

Having defined ax(X) we proceed 0 ax4+1(X), and 50 on until we come
to the maximal n for which there exists an internal subgraph of X con-
sisting of n segments. Naturally, this is an end of our construction, and so

a"(X) = a(X) v oy X) v ... v an(X) .

This completes our (second) definition of the a-polyhedron a(X).

It is not difficult to prove that a connected polyhedron «(X) is
@ topological invariant of X. However, we do not need to bother about
that at the moment, because it will be a simple consequence of theo-
rem 8.2 (to the proof of which we shall proceed) stating that if a poly-
hedron P is the hyperspace ((X) for some finite connected and acyclic
graph X, then P coincides with the a-polyhedron a(X).

§ 4. Geometric diagram of the polyhedron o(X). Polyhedron
a(X), as defined in § 3 for a finite, connected and acyclic graph X,
has rather complicated structure and in general it is of quite a large
dimension (it can be easily shown that dimension of a(X) equals to the
number of end-points of X). In § 9 we shall prove that polyhedron o(X)
coincides with the hyperspace C(X). In view then of a great importance
of a-polyhedra (at least for the present paper) it may be, perhaps, of
some value to describe here a certain way of looking upon a-polyhedron
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through its geometric diagram in 3-dimensional Euclidean space EP,
and so we shall describe here such a diagram shortly. However, these
diagrams will not be used until the last § 10.

In construction of a-polyhedron o(X) we have started with the
solid triangles Mycp. The set of all those triangles,

o(X) = JLSJ Mocr,

where B runs over all segments of X, can be represented in ®? in
the following way (see fig. 4): first we embed X into the plane Owxy in
a way such that each segment of X is a straight-line segment of length 1
(it is possible becanse X is a graph both finite and acyclic) and then upon
each segment B — ab of this homeomorph of X we erect the isosceles
perpendicular triangle of height §. In fig. 4 this triangle is denoted by #ig.

Tig. 4

Clearly, MuCa—b = M. Let us agree that under this homeomorphism

the segment L(a) (), whlch is a base of the triangle Mycz5, goes onto the
two upper edges of the triangle #ig; in such a way that the half-segment
t(a)(ab)* goes linearly onto the edge joining « to the top vertex, and the

half-segment (ab)*:(p) goes linearly onto the edge ]ommg the top vertex
to b. Hence, in particular, the top vertex of Mg corresponds to the
point (ab)* of Mycz.

This way of looking upon o'(X) can be extended first to a geometric
diagram of the set

2 (X) U qp(X) =

KEJ Mocn v LaJ Macowy

where & runs over all internal vertices of X.
Indeed, if o is a vertex (bubt not an end-point) of X and

(a,1) = Ua,a“
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then we erect upon & a perpendicular straight-line segment of length 1,
and treating this segment as a base, we build upon it # isosceles triangles,
each of height % and each lying over one of the segments issueing from a.

This bunch, which we denote by m, (see fig. 5), represents the - di-
mensional cube

Macoey = Ii>=<1 {(ay*; aas)| .

My

a; a

Fig. 5

Let us agree that the point a of m, represents the point (a)* = i(a)
of that cube, that the lower side of the triangle lying over segment aa;
represents all points of that cube whose only non-zero coordinate corre-
sponds to the vector ((a)*; @) and that this correspondence is linear.
Since the vector ((a)*; @as) is a vector with the origin :(a) and the end-
point (aa;)*, that lower side can be identified with the corresponding
side of the triangle #igzs;. Furthermore, let us also agree that the upper
side of the triangle of m. lying over aa; represents all points of our cube

n n
|X ((a)*; @as)| whose coordinate in system X ((a)*; @as) corresponding to
i=1 =1

the vector ((a)*; h?d?) is equal to 4. Such an upper side represents then
actually an (n—1)-dimensional face of our cube.

Now we shall extend the geometric diagram of o'(X) v afX) to
a geometric diagram of «'(X) v afX) v a(X) by defining it for each
ball M, cQ,1) € a"(X)"__

Let then A = ab, where ordsX = n-+1 and ordsX = m+1. As
follows from the definition of the diagram «'(X) u ai(X), the bunches mq
and ms meet at a point represénting (ab)* and joining the upper sides
of the two triangles, one of ms and the other of mp, and both lying over ab.
These sides correspond, respectively, to an n-dimensional face of the
(n-+1)-dimensional cube Mycoey Trepresenting certain points -of thab
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cube. and to an m-dimensional face of the (m--1)-dimensional cube
representing certains points of Myycqep,1.

Upon these two faces we construct the squarve mg; representing the
{n+m)-dimensional cube Mzco@,y in a way such that its lower sides
are identical with the sides of the corresponding triangles of mg and my
and represent the same continua (see fig. 6).

A Mg £ my 7

)

3
8i
)

Fig. 6

Our way of looking upon a'(X) w (X)) v a(X) through its geometric
-diagram lying in B is convenient for many purposes, but there are several
-obstacles to its extension to a similar diagram of the set '(X) U ayX) v
v a(X) v a(X) to say nothing of the whole polyhedron a(X). The main
cause is the complex structure of the polyhedron involved. Nevertheless,
& rather natural extension of the geometric diagram of a(X) U q(X) v
v (X} to a geometric diagram of the whole a(X) does exist and gives
some idea on the composition of this polyhedron. We shall now describe
it shortly.

A_ geometric diagram of «(X) will consist of the diagram of o'(X)
and diagrams m4 of all sets M, co4,n, Where A runs over all connected
and infernal subgraphs of X.

) In order to define a diagram of M Aceea,y We must first distinguish
in 4 a subgraph 4, which we shall call a middle element of A. Let §(4) = k.
If k=21 (vesp., k= 21+1), then 4, is a vertex (resp., a segment) of 4
such that 4— A4, has at least two components of diameter I each. For
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=0 we put 4,= A. Since 4(4)= k implies that 4 contains an arc L
of length % consisting of % segments and k41 joining them vertices (and
does not contain any arec of length k1), then 4, can be also defined as
the middle vertex of L if & = 21 or the middle segment of L if k = 21--1.
It is clear that 4, does not depend on L (for otherwise we would obtain
a contradiction of §(4)= k) and so the middle element of A4 is unique.

Consider now two cases:

I. If 4, is a segment, then we define m4 to be a square of side }/2,
lying just over A4, at a distance (measured from A4, to the lower vertex
of the square) equal to %/2 (see fig. 7).

My

X

NIx

40 >40
Fig. 7 Fig. 8

IT. And if A4, is a vertex, then we define m4 to be a bunch of »n
triangles, where n = ordsX if {= 0, and » is the number of all internal
ares in X issueing from 4, and disjoint outside A, if I > 0. The triangles
of the bunch are all isosceles of height § and their common base is a straight-
line segment of length 1 lying just over 4, at a distance (measured from A,
to its lower end) equal to %/2. Bach triangle lies over half of the first
segment of one of those » arcs in A (see fig. 8).

It should be clear that the geometric diagram of a(X), which we have
just in that way defined, embraces the diagram of o'(X) v a(X) v a(X)
and so that it is an extension of that diagram to a diagram of the whole
polyhedron a(X).
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In comparison with the diagram of o'(X) v ay(X) v o(X) the diagram
of the wholé a(X) has some faults. It may happen that ms = m in $pite
of A # A’, and thus a diagram ma of some M 4cQu,y actually often re-
presents a whole system of cubes M.couey. Also some of ma and m 4
can meeb although cubes M,cquyy and M 4'cqearyy are disjoint.

However, it can be said to its advantage that if ms and M4r are
disjoint, then are also disjoing Macoayy and Micoury. Moreover, the
geometric diagram of a(X) is defined uniquely and corresponds to one X
only.

§5. Families M.cp. Let us recall that two connected subgraphs,
4 C B, of a finite connected graph X are called a paty of X if 4 = 0 and B
is a segment of X or if 4 is internal and B satisfies the condition 4 CBC
C@(4,1) (ie., B is a union of 4 and of some segments of X meeting 4).

To each pair A C B corresponds a certain family M4 ¢z of subcontinua
of X. In the considered in the present paper case of acyclic X, the
family Macr can be defined as follows (ct. [1], § 5):

Macr={0cC(X): ACCCB}.
Occasionally, however, we shall also deal with the families Dacp,

where 4 and B are two subggraphs of X such that 4 C B, but not nec-
essarily forming a pair. :

51. If ACB and A’C B’ are two pairs, then
1) Wacpn Macpr #0  if and only if AVA'CB~AB %0,
and if, moreover, A U A'C B ~ B’ = 0, then

L (2) Macs ~ Marcp = {0 0(X): AvA'COCBABY.
Proof. If
(3) ’ Mace A Marew #0,
then there exists a continuum C such that
(4) ACOCB and 4A'COCp,
Hence
(5) AvA'COCBA,
and so
&
(6) AVA'CBAB 29,

Gonv'ersely‘, 1f (6) holds, then ¢ = B ~ B is continuum and since
by (6) it satisfies (5) and, consequently, (4), then (3) also holds.
Thus we have proved (1).

Equality (2) easily follows from the equivalence of (4) and (5).
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5.2. If ACB and A’ CB' are two pairs such that A # 0 = A’ and

(7) AVA'"CBAB,
then

(8) o(4,4)<1,

(9) o{dvwd',BAB)<1.

" If, moreover, A ~ A’ = 0, then there ewist vertices a,a’ € X such that
(10) A=(a), A'=(a) and BAnB =adCX.

Proof. We first prove (8). In fact, since, by hypothesis, B C Q(A,1)
and B'CQ(4’,1), then (7) implies

AUACQUA, L) AQA,T).

Hence, in particular, 4 CQ(4’, 1)and 4’ CQ(4, 1),ie., g4, 4) < 1.
To prove (9) observe that

{4 v A" ,BAB)= sup g(4dw A,y
veBNB’

= min[b sup o(4,y), sup g(4d’,¥)]
yeBNEB yeBNB’

< minfsup e(4,y), sup o(4’, y)]
yebB yeB’

< min[e{(4, B), {4, B')] <1,

where the first equality follows from (7).

Finally, if A ~ A’ = 0, then by (8) there must exist vertices a ,a' e X
such that A = (a), 4’ = (a’) and in X there is a segment aa’ C X. In view
of (7), the common part B ~ B’ must then be non-empty and so B ~ B’
is a connected subgraph. By (7) and (9) we must have B ~ B’ = aa’.

5.3. If ACB and A’ CB’ are two pairs such that dy= A ~ A’ 0,
then B n B' C Q(4,,1).

In fact, let @ € B ~ B'. If there is no segment of B ~ B’ containing ,
then » must be a vertex and, in view of the acyclicity of B ~ B’ following
from that of X, we must also have (#) = B ~ B’. But then, as follows
from 4~ A'CB~A B, we must have (2)=A4 ~A'= 4,, whence,
a fortiori, m € Q(Ay,1). Therefore, let aa’ be a segment of X such that
zeaa’ CB B Since BCQ(4,1) and B'C@Q(4’,1), one of the end-
points o and a’ of aa’ must belong to A and the other to A’. Let a e A
and a'ed’. If ae A— A’ and o’ ¢ A’— A, then, by the acyclicity of X,
we would also have 4 ~ A’=0 which is impossible. Hence either
aed~A" or a'cd~ A, and in hoth cases x e Q(4,, 1).
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§ 6. Homeomorphisms ficp for A C Brunning over all pairs
of X with A= 0. In the preceding paper [1] we have shown that
each family Mycp, where 4 C B is any pair of a finite and connected
graph X, is a topological ball ([1], lemma 5.2) and that, in the considered
here case of acyclic X, their union yields polyhedron ((X) as a cellular
complex ([1], theorem 6.3)

a(X) =ALCJ;JJ?A¢:B .

In § 3 of the present paper we have defined, for each finite connected
and acyclic graph X, polyhedron «(X) as a union of geometric triangles
and cubes M_cp, where 4 C B runs again over all pairs of X,

o(X)=\J Mucn-
4ACB

Now we proceed to show that both these sets, C(X) and a(X), are
homeomorphic to each other. With that end in mind, assume that there
is given, as defined in § 3, an embedding

©w X BN

and that o-polyhedron a(X) based upon this embedding is already con-
structed.
In this § 6 we shall define homeomorphisms

(6] face: Macp—>Macn

for all pairs A C B of X with 4 = 0, in the next § 7 such homeomorphisms
will be defined for all other pairs of X, and in § 8 we shall show that all
these homeomorphisms f4cp can be combined together to yield a home-
omorphism

fr O(X)»a(X).

In order to define homeomorphism (1) for a pair AC B with 4 =0
we shall first define homeomorphism
’ fuce: Mace~E*,

then define a homeomorphism
fics: facs(Macn)>Maics,

and finally, put fucs = ficsfucs.

Let B= ab. Each continnum CC B is then uniquely determined
by the pair of real numbers (r(mg), %6(0)) , where mc is the middle point
of O and r(my¢) is the real number denoting the position of the point me
in ab (r(e)=0<r(mg) <1=r(d)).
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Clearly, the correspondence O~>(r (me), 36( 0)) between. continua
0 C B and pairs (z, y) of real numbers from the triangle of vertices (0, 0),
(0,1) and (3, %) is one-to-one and continuous.
Put

Faes(0) = (r(me), $6(C)) .
Hence facp(Maicn) is a triangle whose base represents the points

of B, one side—the subcontinua of B containing e, and the other side—
those containing b. The top vertex represents B itself (see fig. 9).

Fig. 9

Now turn to the edge ¢(B) C I” and define f’icp as & homeomorphism
which maps flcs(Macn) onto the triangle M4cp in a way such that the
side (a)B goes linearly onto the half-segment :(a)B*, and the side B(b)
goes linearly onto the half-segment B*:(b).

It is clear that

6.1. If B is a segment of X, then the mapping focs: WMocr—>Mocp is
a homeomorphism onto.

6.2. If a is a vertex of X and B any segment of X containing a, then
focs(a) = i(a).

6.3. If B and B’ are two distinct segments of X, then focs(Mocr) and
foce{Docw) are disjoint outside I™.

§ 7. Homeorphisms fi-z for A CB running over all pairs
of X with A 0. Let A C B be a pair of X such that 4 = 0. We can
then write B in the form

1) B=Awv Ua;bi, where a;¢ A, bye B— A, and all b; are distinct
i=1
for ¢=1,2,..,n

‘With each such a pair there is connected system of # vectors

@) X (4% @by

=1
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which can be regarded as a system of coordinates, each vector (A*; a;b;)
being a half-unit vector (ef. § 3).

The cube

n —_—

(3) ﬂIAcB==l><(Aﬁ;aahN
spread over system (2) is contamed in I and the system of coordinates (2)
is closely related to that in il

In fact, let
(4) 7:17 ey iZ’
be the numbers of all those axes of IV which are parallel each to a certain
edge of IV contained in ((4).

Similarly, let
(5) Guy wees Gr
be the numbers of all those axes of I” which are parallel each to a certain
edge contained in «(B— A4).

By the supposition that any two distinet edges of ((X) are per-
pendicular to each other, sequences (4) and (5) are disjoint.

Now, each point p = (t,,...,%) of (3) is also a point of ™. Let
(#y, .., @) be the yystem of its coordinates in I¥. Tt should be clear that
these two systems are connected by the relations

1 it m=1i,..,i,
I<ta<$ if  m=j, .., Jr and om-axis
has same direction as (4%; [0, }n),

I
|
o= 1,
I

<Kl—tn<<l ® m=j,..,Jr and zn-axis
has opposite direction to (A*;[0, 1ln);
Oorl in any other case.

The symbol (4*; [0, 4Jm) denotes here the half-unit vector (A*; azby)
parallel to the a,-axis.
Now we proceed to the definition of the homeomorphism

fACB: SRACB *MACB .

Namely, if e Mycs, then O may be expressed in the form

=40 Ua—’;b_f(ti)y

i=1

where 0 <#; <1 and a;b,(t:) denotes a subsegment of a;b; containing as
and having length #, i =1, 2, ..., n.
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We define
Jucs(0) = (3t oy $a)
where (3, ..., ,tn) are coordinates in system (2), and so obtain a map

jAcg Mucs—~E>. The range of this map is equal to Mcp and so it is
quite obvious that

71. If A C Bis a pair with A # 0 and B satisfies (1), then the mapping
face: Macs—+Macr

s a homeomorphism onto.

) Since M 4cp is an n-dimensional cube and # = ord,B, we infer that
2. If AC B is a pair with A % 0 and B satisfies (1), then dim Mycr

= 01d_4B In particular, if B= Q(4,1), then dim JRACB_ ord4 X.

It is also clear from the deﬁnition of the map fucp that

7.3. If AC B is a pair with A 0 and if S is a subgraph of X such
that A C 8 C B, then facn(S)= 8§*.

7.4. If A C Bis a pair with A # 0 and if A is a vertex and S a segment
such that A € SC B, then ficsl Mucs 15 a linear homeomorphism mapping
M acs onto half-edge A*S* in such o way that f4cs( A) = A* and f4cB(8) = S*.

Now we shall prove the sequence of lemmas 7.5-7.9 which are needed
to prove in § 8 the consistency of homeomorphlsms facm.

7.5. Let A be a non-empty and connected subgraph of X. If ACB
and GC H are pairs such that

16) ACGCHCB,
then
(7) foca = facs|Macr ,
and
facs(Wecr) = foca(Meca) is a face of the cube Macs -

(8)

Proof. By virtue of (6) the family Mecxy is contained in the family
Macs and so we have to show that if 0 € Mecm, then feca(C) = facn(0).

If @=H=_8, then Mgcr = (S) and, by proposition 7.3, feca(S)
= 8% = f4cp(8). Hence we may assume that G = H.
’ Let B satisfy (1). The subgraphs ¢ and H are then the unions of 4
and of some segments a;bq, 7 = 1, 2, ..., n. Denoting an empty set by @b,
and reordering, if necessary, the segments @by, «.y Gnby, We may then
write

& 14
G=AuUaib; and H:AUU(L,:IH,
=0 i=0

where 0 <k <I<n

Fundamenta Mathematicae, T. LXIII 17
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By virtue of (3) and proposition 7.1 we then have

n — i —_—
facs: Macp—| X (4% aibi)l  and  fecm: Mecn | X (675 b

n
As iy easy to see, G* is a point of |X (A*; asbi)| of the coordinates
. i=1
(t1y ey ta) (in system (2)) such that

tI:A..=tk=%—, tk+1=...=tn=0,

1 n
and the cube | X (G*; a:bi)] is a face of the cube | X (A*; a¢b;)| consisting
i=k+1 =1

of all points of the coordinates (u,, .., us) (in the same system) such
that

(9) Up=..=u=4%, O<<ui<} for i=%k+1,..,17,
U1 == oo = Up = 0,
. .
or, in the system i( (G*; asby), of the coordinates gy, ..., wz such that
=kl
(10) O<u<} for i=h+1,..,1.

Moreover, points (9) and (10) arve identical, i.e., they are the same
points of I,

. LC—
Now, if Ce Maca, then €= 4 U | ] a;bi(z;), where 2, = ... = 2, = 1,
=1

0 <u<l1 for ¢=k+1,..,1, and 2= ..=2,=0, and so, by the
definitions of fscp and feca,

facel0)= (3, ..5) o fEeno)= (B2, 3.
Hence
. faecn(0) = facr(0) .
7.6. If ACB and A'C B’ are two pairs such that A =0 % A’ and
AUACBAB, then

(11) Jacel Muvacnor = facn| Midacens .

Proof. If 4 ~ A’=0, then, by lemma 5.4, there exist vertices
a,0 ¢ X such that 4 = (a), 4’ = (a), and B n B’ = aa’ C X. Therefore,
if CeBuuacrnp, then aw o’ C OCaa’, and so ¢ = aa’, Hence, by
lemma 7.3, f4c5(C) = (a@')* = farcsl0).

Finally, it 4 ~ A’ £ 0, then 4 U A4’ is a connected subgraph of X
and, by lemma 5.2, 4 U A’CB ~ B’ is a pair. Since

ACAVA'CBA~BCB,

icm
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then, by lemma 7.5,

facs| Mayarcan = fauarcens ,
and, similarly

Jarer| MavacBop = favarcnp -
The two equalities imply (11).
7.7. If ACB and A’ CB' are two pairs such that

(12) AVA'CBAB  and Ay—An~A #0,
then
(13) facB(Mavscran) = forca(Mavacaar)

s a face of each of the following three cubes Mace, M.acp and M., cque -
Indeed, equality (13) follows from lemma 7.6.
From (12) and lemma 5.3 we infer that

A CAVA'CBABCQ(4,,1),
and the following two sequences of inclusions are obvious
ACAVA'CBABCB,
A'CAVA'CBABCE.

Now it suffices to apply in each case (8) of lemma 7.5.
7.8. If ACB and A’ C B’ are two pairs such that A # 0 %= A', then

facB{Macn) N fac(Marer) #0

if and only if Av A'"CBA~B.
If, moreover, A v A’C B~ B’, then

Facs(Macr) ~ foce(WMaen) = facB(Mavscrar) = frcp(Mavscsar) -

Proof. Let A* = (%, ..., oy) and A™* = (xi, ..., ). By the defini-
tion of A4* (cf. § 3),

{ 1 if ¢(A) contains an edge parallel to the w;-axis,
“=Y0or1 otherwise y
and, similarly,
, ' 1 if ((4’) contains an edge parallel to the aj-axis,
o= { 0 or 1 otherwise.
Let
(14) Tiy aeey By

17*
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be the sequence of all indices 4, for which z; = 4, and let

(15) Juy s Juy

be the sequence of all indices js for which zj, = %.
Similarly, let

(16) Uyt1y ooy Tk

be the sequence of all indices 4 such that the ;.- axis is parallel to a certain
segment of +(B—A4), and '

1n Juty ey It
be the sequence of all indices s such that the j,-axis is parallel to a certain
segment of ((B'— A4’).

By the definition of a map facp, the set facn(Macn) consists of all
points (t,, ..., ty) e I such that

3 for  m=1, ..., 40,
m=10<tn<}or }<tn<l for M= g1y ey gy

0 or 1  otherwise.

And the sebt fucp(Macr) consists of all points (i, ..., ty) € I¥ such
that
th=10<th<}ori<th,<l for M= Jli1y ey Jiy

l 3 for  m=j, ..., fu,
0 or 1 otherwise .

Let (41, ..., tn) € facn(Macs) and (B, oony ty) € farcp(Marcw), and sup-
pose that

(18) (tay ooy T) = (8, oo, 1) -

Two cases are now to be examined.

L A~ A’ =0. In this case sequences (14) and (15) are disjoint
and so if (18) holds, then we must have &, — l, =0, ie., both 4 and 4’
must be vertiees. Since they are distinct vertices, say A = (a) and A’ = (a'),
then there exists an axis, let it be the My-axis, such that the m,th coordi-

nate of ¢(a) is 0 and the m,th coordinate of i(a’) is 1 (or the other way

round). Now if o(a, a’) > 2, then also the sequences (16) and (17) would
be disjoint, m, could belong to one of the sequences (16) and (17) only,
and so the equality (18) could not hold. Hence there exists a segment
a0’ CX. Tts image i(aa’) is parallel to the my-aXis and so if m, belongs
to (16), then the m,th coordinate of a point (¢, ..., 1) of facn(M.ucs)
can assume any value 0 <in, < §, and similarly, if m, belongs to (17)
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then the m,th coordinate t,, of a point (4, ..., ) e farcp{M Acr)
satisfies 4 <4y, < 1. Therefore (18) can hold if and only if m, belongs
both to sequence (16) and to sequence (17) (i.e., if and ounly if a u a’
CBn B’) and in that cagse tmg = tmy = . And since (16) and (17) are
disjoint except for m, (because X is acyclic by hypothesis), then the
only common point of face(Macp) and Sarcp(Marcp) can be the one
whose coordinates t are all equal either to 0 or 0 1 except for t,, = %,
ie., the point (aa’)*.

However, by lemma 5.2, B~ B' = aa’ and 80 Muvarcpnp = (aa’).
Hence and from lemma 7.3 we infer that

JacB(Macp) A farcs(Macp) = (aa')*
= Tace(Muvscrop) = Jace(Mavacpom) .

II. A~ A’ # 0. In this case, if m belongs to (16) and (17) simul-
taneously, then the projections of A* and A’* onto the z,-axis are the
same point, and so for both #, and #, we have either 0 <#n, <1 and
I<im<}ori<tn<land i<t,<l. Hence, if (18) holds, we must
have

3 for  me(iy, ., in) v (G, ... s Jn)

Ogtm:t;ng% Or%gtm=ﬂn<1

for m e (ikl'i'l’ neey ikz) m (jl1+17 '-~7jlg) )
0 or 1 otherwise.

tn =t =

In other words, point (18) belongs to fAuAchnB'(ﬂﬁAuA'cBnB') and
this is possible if and only if (%1 veoy 08 C (G vy Jiy) and (Juy oves )
C (fayy ey ), dee., if and only if A C B’ and A C B, which is obviously
equivalent to 4 v 4'C B ~ B".

A trivial consequence of lemmas 7.8, 7.7 and 7.1 ig the following
proposition

7.9. Let ACB and A'C B’ be two pairs of X such that both A and A’

are non-empty. If the cubes M cp and M arcw meet together, them their
common part is their common face.

§ 8. Consistency of homeomorphisms f, 5. The basic result.
here is the following proposition, which proves that all homeomorphisms.
facm, where A C B runs over all Pairs of X, ean be combined to yield:
a homeomorphism from ¢/(X) onto a(X) (cf. 8.2 below)

81. If ACB and A'C B’ are two pairs of X, then

(1) Jacn| Macs ~ Marcy = Jace] Macs ~ Macw
(i) face(DMice ~ Marcs)

= facB(Macs) A facrMacn) = facsMucs ~ Marcm) .
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Proof. I. We first show that (i) and (ii) are fulfilled if both A and 4’
are empty, A=0=A".

Indeed, by virtue of lemma 6.3, if B and B’ are distinet segments
of X, then

focn(Docn) N focs(Dhocn) = foca(Vhocs) N focs(Mocs) IV .
But by the definition of the map focs we have

focB(Dhcs) ~ IV = «(B),
and, similarly,
focn(Moc) n IV = |B).
Hence
Joce(MocB) A foce{Mocr) = ¢«(B) ~ «(B') .

However, Mocp ~ Mocnr # 0 if and only if the segments B and B’
have a common end-point a, and in that case Mocn A Mocr 5% (@). On
the other hand, segments B and B’ have a common end-point ¢ if and
only if «(B) A~ ¢(B’)=i(a). Hence and from lemma 6.2 we infer that

fncB(smocB) m focB’(gﬁocB’)
= foeB(Poce ~ Phouz’) = focw(Dhoce ~ Dhcr) = 1(a) y

which proves both (i) and (ii).

II. Now if AC.B and A’ C B’ are two pairs of X such that 4 # 0
= A’, then, by lemma 5.1, M4cs ~ Macp # 0 if and only if A C B ~ B".

Since A’ =0, B’ is a segment of X and so B ~ B’ is either a vertex
or a- segment.

If B~ B is a vertex, then, by A C B~ B’, A i3 also a vertex and
A4 =Bn~B'. And if B~ B’ is a segment, then A ig either a vertex or
a segment depending on whether A # B~ B or A= B~ B.

a If A=DB~B, then Micpnp = (4), and so by lemmas 5.1
and 7.3 (for 4 = 8) we obtain

face(Macn) A focs{Docs’)
= facB(Mace N Mocr) = focp(Mace ~ Docn) = A*,

which proves both (i) and (ii) in the case under consideration.
b. And if A4 3 B~ B/, then 4 is a vertex of segment B ~ B'. Since
in this case
Macenr={C: (< 0(X),AcCCBABY,

then it suffices to put B~ B'= § and to apply lemmag 5.1 and 7.4.

IIT. Finally, consider the case of 4 0 % A’. Here we have, by
lemma 5.1, Meap~ Marcp £ 0 and only it A A'CB A~ B, and by

icm
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lemma 7.8, A v A"CB ~ B’ if and only if f4cp(Macs) A farcp(Marcn)
# 0, and in that case, by the same lemmas,

Mace ~ Marcs = Mavacpup
and

JacB(Dacs) N farcp(Macn) = facBMavarcnne) = foceMavwcens) -

Hence, by lemma 7.6, condition (i) holds true and, by lemma 7.8,
condition (ii) is also satistied.
Since A%JB SfacB(Macr) = a(X) by 6.1 and 7.1, then an immediate

consequence of lemma 2.1 of [1] and lemma 8.1 above is the following
theorem:

8.2. The combined function

f: 0(X)—>a(X)
given by the formula

fl Macp=face

i8¢ a homeomorphism onto.

for all pairs ACB of X

§ 9. Main result. Recall (cf. [1], § 8) that if P is a polyhedron,
then by Ep we denote the closure of a subset of P consisting of all points
2 ¢ P for which there exists a closed neighbourhood topologically equiv-
alent to a disc (i.e., to a 2-dimensional ball) and such that p lies on the
boundary of that disec.

Theorem 8.2 together with some previous results allows us to for-
mulate now the following

CHARACTERIZATION THEOREM. Polyhedron P of dimension dimP = 2
8 the hyperspace if and only if P is a 2-dimensional ball.

If P is a 2-dimensional ball, then P is the hyperspace for an arc and
for a simple closed curve.

Polyhedron P of dimension dimP > 2 is the hyperspace for an acyclic
continuum if and only if its subset Ep is homeomorphic to a finite connected
and acyclic graph, and P is the a-polyhedron for that graph.

If Bp is homeomorphic to a finite connected and acyclic graph X and P
s the a-polyhedron a(X) for X, then P is the hyperspace C(X) for X.

Proof. Let dimP = 2. If P is a hyperspace, then, by theorem 9.1
from [1], P is a 2-dimensional ball. And conversely, if P is a 2-dimensional
ball, then, by examples 1 and 2 of § 3 from [1], P is the hyperspace for
an arc and for a simple closed curve.

Let dimP > 2. If P is the hyperspace for an acyclic continuum,
then, again by theorem 9.1 from [1], it is the hyperspace ¢(X) for one X
only which must be a finite connected and acyclic graph. By theorem 9.2
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from [1], it must also be X = Ep. Hence Ep is homeomorphic to a finite,

connected and acyclic graph, and so there exists an embedding ¢ Hp —>IN,
as defined in § 3 of the present paper. Such an embedding yields the
a-polyhedron «(Fp) and we have shown the equality o(Hp) = (o} (EP)::
But, in view of equality EP{D—;X, we have C (Ep\) = 0(X), and since
0(X) = P by assumption, then, finally, a(Bp) s P. This means that P
is the a-polyhedron for Fp.

Conversely, if Ep is homeomorphic to a finite connected and acyclic
graph X and P - o(X), then the equality a(X) = C(X), proved in 8.2,
implies P = C(X). e

top R

§10. Examples. As we know, each finite, connected and acyelic
graph X yields a-polyhedron a(X) (cf. § 3) and we have learned how to
represent this polyhedron by its geometric diagram in E® (cf. §4). In
view of Characterization Theorem, the geometric diagram of a(X) can
be viewed as a diagram of the hyperspace O(X) itself whenever dim C(X)
> 2 or, what is the same by virtue of theorem 7.4 from [1], whenever X
contains a ramification point (i.e., for X topologically distinet from an
arc). To illustrate this and to show how a complementary procedure can
be applied to that diagram in order to discover all particulars of the
structure of the respective C(X) (see especially example 6)—consider
now the following examples. :

1. Recall first (cf. [1], § 3, example 1) that the hyperspace C(I) of
a segment I (topologically, of an arc) is a 2-dimensional ball.

2. Consider now a k-are, ie., a union of %k segments joined at one
vertex (fig. 10).

The polyhedron C(X) is a k-dimensional ball to the surface of

which % 2-dimensional balls are attached along a k-arc (for the diagram
of C(X), see fig. 11).

Fig. 10 Fig. 11

* ©
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3. Propositions 6.4 and 7.4, both from [1], imply that the only
3-dimensional polyhedron which is C(X) for X acyeclic is a 3-dimensional
ball with three 2-dimensional balls attached to its surface along a 3-are
(see fig. 12).

//

Fig. 12

4. One may also ask about the 4-dimensional polyhedra which
are O(X) for X acyclic. It turns out (cf. [1], theorem 7.4) that there are
two of them, because there are only two topologically distinct, connected
and acyclic graphs possessing 4 end-points (see fig. 13).

Fig. 13

The hyperspace of the first graph we already know: ifi is 2 4-dimension-
al ball to the surface of which four 2-dimensional balls are attached
along a 4-arc.

The geometric diagram of the hyperspace of the second graph is
given in fig. 14. It is a 4-dimensional ball (vepresented by mz) to the
surface of which are attached two 3-dimensional balls (represented by ma
and mp) along 2-dimensional balls meeting at one point (representing ab),
and to the surface of the union of these two 3-dimensional balls five
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2-dimensional balls are attached in such a way that their common part
with each 3- (hmensmnal ball is & 3-arc and their common part with

the 4-dimensional ball i3 the point representing ab.

Mag
Ma Mp
\
\\ //
N /I/
AN ~
aQ N mas // B
~~~~~~~ N\ 2\ 2
a b
Q.
2 b
Fig. 14

5. Similarly, since there are three (topologically distinet) connected
and acyclic graphs possessing 5 end-points (see fig. 15), there are also
only three 5-dimensional polyhedra which are C(X) for acyelic X.

Fig. 15
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The geometric diagrams of these three polyhedra, from which their
structure can easily be deduced, are given below in fig. 16.

Fig. 16

6. The number of polyhedra of higher dimensions which are ((X)
for X acyclic, rapidly increases. For instance, there are seven- 6-dimen-
sional polyhedra of this kind and thirteen 7-dimensional ones. However,
we do not intend to give here atlas of polyhedra C(X) for X acyeclie.
Instead, in order to provide some idea of the complex structure of the
polyhedra involved, we shall consider in some detail the polyhedron O(X)
for the graph given in fig. 17.

The geometric diagram of the 11-dimensional polyhedron O(X)
drawn according to the rules described in § 4 is given in fig. 18. In its
description (the number standing below or on the left side of m.4 denotes
the dimension of M .4cqu,y) We have used a convenient way of denoting
subgraphs of X which we shall now shortly explain. For that purpose
let us look at the bunches of triangles which lie over vertex d. The
lowest mg represents cube Mgcowy. The middle one represents cube
Macouan, where A is an internal subgraph of X of diameter §(4)=2, .
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d being the middle element. Clearly, 4 = db U de, which we write as
A=d—b,e, and so the middle bunch is denoted by Ma-p,e. Finally,

Fig. 18

the upper one represejnts cubes M4cqa,y, where 4 is an internal sub-
graph of X with d as its middle element and of diameter 0(A4) = 4. There
are 3 such subgraphs, all obtained by joining to d—b, ¢ some segments,

icm°®
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and we denote them by writing down all the vertices which are end-
points of those segments. Thus those 3 subgraphs arve denoted by, re-
spectively,

(1) d—b,e—a,f, d—b,e—ec,f, d—b,e—a,c,f.

Here we meet for the first time the case where a certain element
of the geometric diagram represents more than one cube Macouy- In
fact, the top square in fig. 18 (a bunch consisting of two triangles) rep-
resents cubes Macqu,y for three distinet subgraphs 4 of X listed in (1).

Now we shall give another example of a representation by one element
-of the geometric diagram of several balls from ¢(X) and proceed to show
how to overcome the difficulty.

Consider the ball Mpycgp.y. As we know, this is a 4-dimensional
ball given by the analytic formula

Meycama = (5% ba) x (b*; De) x (b*; bb,) x (b*; bd)| ,
and it has the face
1(3) x (8%; bo) x (%; Bb;) x (b*; bd)|
in common with the ball Mzce@,y, the face
1(5%; ba) x (3) x (0% Bb,) x (b%; bd)|
in common with the ball Mscqusy, the face
1(5%; ba) x (8% bo) x (5% bby) x (B)]

in common with the ball Mraco@s,y (in all cases, () instead of the vector
(b*; vw) denotes the coordinate § on the axis determined by this vector).
Hence the balls Mzpco@dy, Miscopen, and Mscopsy have the com-
‘mon edge

B = |(3) x(3) x (b%; bb) x ()],

and any two of them meet along a 2-dimensional face stretched upon
-edge B and the “missing” edge. For instance, Mapcem,y and Macodan
meet along the face

[(3) X (3) x (b%; bD,) x (b*; bd)) .

. If we try to present this situation in a drawing it may look somewhat
like fig. 19. Note that in our geometric diagram of C(X) (see fig. 18)
edge # and the three 2-dimensional faces common to the pairs of balls
Mg co@n, Mricodey and Mricoea,: are represented by a single point.
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Migca(be.n

Mapca(as,)

Fig. 19

Now, the 4-dimensional ball Mgcoesy (which is not represented
in fig. 19; one can imagine it as lying under the drawing and glued to
each of the balls Mzcom.y, Mrcopey 2nd Mrcogiy along the re-
spective 3-dimensional face) has 16 vertices. From four of them issue
four balls M 4cqua;) represented in fig, 18 by the bunch of three triangles
lying over my: from (%, %,0,0) issues Mp—gecqp—ae, from (4,0,0,%)
issues Mp_aaco@-omn, from (0, 4,0, 1) issues Mo—cacoup—cann, and from
(%,%,0,0) iissues My ncacou-aemn- Here we have another example
of a representation by one element of a geometric diagram of several
balls from ¢(X).

I we write down analytical formulas for the four balls
Mb—mg,dq((b—a,c, ) 5 Mo-a.0cmb-a0.0, Mo-aacow-aany 30d Mo oicoo—omy i
then it is easy to discover their mutual relations. For instance, all the

four balls except the second meet the ball Mipecqua—bes: the first
along the 3-dimensional face

[Ba—a, ¢, 6" 55,1 x [(bd—a, ¢, e)*; F] X [(bd—a, ¢, o); Tl ,
the third along the 4-dimensional face
[(bd—a, e)*; be] x [(bd— a, &)*; bb] x [(Bd—a, &)*; dE] [(Bd—¢, e)*; dds],
and the fourth along the 4-dimensional face
I[(Bd—c, &)*; 5a] X [(bd—c, e)*; To] x [{bd— o, s T x [(Bd— 0, e)*; Tl -

* ©
lm Subcontinua of a finite graph, II 255

Similarly, the first, third, and fourth balls of the four listed above
meet any of the three balls -

Mﬂ_d—-a,c,aCQ((—b_d—a,t,e),l) 3 ﬂfb_d--a.eCC?((l;i—a,e),l) 3 and ME—G,GCQ((E—C,GLI) .

‘We shall not pursue this analysis further since it can be completed
by anyone. Instead, let us mention two more exemplary features of our
geometric diagram of C(X): first, using the geometric diagram and, if
necessary, the analytical apparatus of coordinates one can find a neigh-
bourhood of any C e C(X), and secondly, such a geometric diagram
of (X) contains also diagrams of all subgraphs of X. For instance, if
we remove from X in fig. 17 three segments, ffes ffa, and ff,, then the
diagram of the remaining subgraph can be obtained from the diagram
of the whole C(X) by removing the strip on the right-hand side of fig. 18
consisting of all 7 and m4 such that the letter f appears in A (with the
exception of iz, of course, but it does not belong to the strip).

Looking upon the geometric diagram of C(X) as it gradually emerges
from the partial diagrams of ¢'(X), a'(X) v g(X), a'(X) U q(X) U a(X), ...
one may see in it a kind of a pyramid whose base is a 1-dimensional
curve consisting of all one-point subcontinua of X (g(X) in notation
of [2]). To this base is first attached a set of perpendicular triangles.
This is o'(X). To form a'(X) v a(X) we add balls to o'(X), each ball
of dimension 3 or more. It can be said that these balls “fill up the hollows’
of ¢'(X). And so on: in each subsequent step we “fill up the hollows’”
of the preceding one with balls of still higher dimension (by virtue of
lemmas 2.1 and 7.2 each ball of ax(X) has dimension k+3 or more. and
by lemmas 2.2 and 7.2, its dimension is in any case greater than that
of any ball in the “hollow”), the set of these added balls becoming more:
and more “narrow” (although their number may occasionally increase)
and more and more “thick” (the latter thanks to the increase of dimen-
sion), aiming at the top of the pyramid formed in every case by the ball
of the highest dimension with the point representing X as one of its free
vertices.
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