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(i) d(A,B)=¢e(d)—e(B) if A,Bel.
It then follows from Theovem 2 that X/IT is pseudo-metrizable.
Define ¢(4) = n(4)/K, where
n(4) = sup{e[ e >0 and N[A]C | JIT if Ael.

We first prove that #(A)>0 for all Ael. Let aed and let
&= (1/K)d(a, X— | JI). Olearly ¢> 0. To show 7(4) > 0, it is sufficient
to show that N,[A]C |JI, or, equivalently, that d(4,X— JI) >e.
S0 let ze 4, we X— | JTI', and let @ e II be such that ¢(z) = a. Then

Rd(z,u) = d(p(x), p(v) = dla, p(u) = d(a, X— | I) = Ke¢,

so d(x,u) > ¢, and consequently d(4d, X— [JTI) >s.

Tt is trivial that N,[4]C | I'for all A «I'; thus (i) is true since &(4)
§ 7(A) for all 4 e I'. It remains to prove (ii). Let A, B ¢ I'. By the defini-
tion of £(4) and ¢(B), it is sufficient to prove that Kd(4, B) = n(4)—
—n(B), i.e., that #(B) = n(4)—Kd(4, B); and to do this it is sufficient
to show that the following implication is true:

d(z,B) < n{d)—Kd(4,B) =welJI.
Suppose d(z, B) < n(4d)—Kd(A, B). Then there exists &> 0 such that
d(x, B) < n(A)—Kd(A, B)—c¢.
Nowilet 6 >0 be arbitrary. Then there exists b ¢ B such that
d(z,b) < d(z, B)+4,

and by the lemma there exists a ¢ A such that

d(a,b) < Kd(4,B)+46.
It follows thatb

d(w, 4) < d(x,a) < d(z, B)+ Kd(4, B)+26 < n(4)—s-+26 .
Hence d(w, 4) < n(d)—e < n(4) and z I
This concludes the proof of Theorem 5.
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The first order properties of Dedekind finite integers

by
Erik Ellentuck* (New Brunswick, N. I.)

1. Introduction. It is well known that mathematics is offen
simplified by the introduction of ideal elements. In the past it has been
said that even when their existence is entirely fictitious (points at infinity
in geometry, for example), theorems about the original structure which
are proved with their aid may be interpreted as relative consistency
results. More recently, our firm belief in set theory has led us to take
ideal elements which are constructed in set theory as bonafide mathe-
matical objects. In this paper such notions are applied to the Dedekind
finite cardinals 4 (cf. [4]). In theorem 1 we show that just as the finite
cardinals & can be extended to the ring of rational integers &%, 4 can be
extended to the ring of Dedekind finite integers A*. Of course all of this
is going on in a set theory & which does not include the axiom of choice.
Next, a series of lemmas shows that every function defined on &* can be
extended to @ function defined on A* Since this extension procedure
depends in an essential way on the methods of [4], we must require that S°
contains the axiom of choice for sets of finite sets. This does not force
A* = & as is shown in [4]. In order to study the first order properties
of A* we define a language L which contains equations between terms,
which are built up by composition of function symbols, as atomic formula.
I is interpreted in &* by lefting the function symbols denote funetions
on &, and interpreted in A* Dby letting the function symbols denote
extensions to 4* of functions defined on &. The bulk of our work is con-
cerned with giving necessary and sufficient conditions that a sentence A
which holds in & will also hold in 4* Our main sufficiency result is given
by corollary 2, which says in essence that if % is equivalent in &§* to a Horn
sentence, then % will also hold in A4* This theorem easily follows by & rou-
tine transeription of [4], theorem 8. The more interesting part of our
paper is concerned with necessity. We use metamathematical tools. In
Jemma 5 we show that in the Fraenkel-Mostowski model W (ef. [11]),
A* is isomorphic to a direct limit of reduced powers of &*. In lemmas 6

* Research for this paper was supported in part by National Science Foundation
contract number GP 5786.


GUEST


8 E. Ellentuck

and 7 we analyze the first order theory of this direet limit and in lemma 8
we show that it has the same theory as the system & which is defined to
be a countable direct power of &* reduced modulo the cofinite sets. Hence
in 9B+ the first order theory of A* is the same as that of 7. This result
is exploited in corollary 3 to show that there is an extension of &°, and
a class of sentences for which a necessary condition that 2 hold in 4*
is that % be equivalent in’ & to a Horn sentence. In theorems 5 and 6
certain results about W+ are actually modeled in &° by using a rather
pretty lifting technique of Kreisel. A section on applications follows.

2. The extension. Let G be a version of class-set theory whose
axioms are (i) A-D of [7] modified so as to allow for the existence of proper
individuals (urelemente), and (ii) an additional axiom.

1) There ewists an infinite set K of oll urelemente .

&° is obtained from & by adding the axiom of choice for sets of finite
sets, and &* is obtained from & by adding the full axiom of choice. It
is known that &% &° and &, in that order, are of strictly decreasing
strengths (cf. [11]). Each of the following lemmas, theorems, and corol-
laries, will be labeled as to the theory in which it ocours.

Define ordinal numbers by modified [7] in such a way that each
ordinal number is the set of all its predecessors, and denote them by lower
case Greek letters. An ordinal number is finite if both it and each of its
predecessors contains a largest element. Finite ordinals are denoted by
lower case Latin letters, in particular by ‘4°, ‘5%, and ‘%k’. » is the smallest
ordinal which is not finite, and as a set, is the set of all finite ordinals.

Define cardinal numbers by the abstractive method of [14] basing
our rank theory on K (cf. [4], p. 228), and denote them by lower case
German letters. Use ‘~' for set theoretic equivalence and [4| for the
cardinal number of the set A. Let I be the class of all cardinals. A cardinal
number is finite if it is the cardinal of a finite ordinal. Finite cardinals
are denoted by lower case Latin letters, in particular by ‘@, ¢5°, and ‘%,
and identified with finite ordinals in the usual way. Let & be the set of
all finite cardinals. A eardinal x is Dedekind finite it x = x-+1. Let 4 be
the class of all Dedekind finite cardinals. Clearly § C 4, however, the
converse inclusion is not a theorem of &°. The algebraic theory of A has
received an extensive treatment in [4], which will serve as the prinecipal
reference throughout this section.

For any class 4 and 0 < k< o let X*4 be the elass of all funetions
whose domain is % and whose range is contained in 4. Let T be the class
of all sets. Blements # ¢ X*V are called k-tuples. Write z; for x () and
exhibit them as z = {(x,, ..., #x—,>. Denote members of X"I" by lower
case German letters. We extend certain notions componentwise from ¥
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to X"V and use the same symbol for the extension as for the original
notion. For »eX*V let |z = <|ay|, ..., [zx_e]>, and for x, e XTI let
¥ <y if x; < y; for 4 < k. Context will always make it clear when a symbol
is to be understood in its extended sense.

Let &* be the rational integers: positive, negative, and zero. There
is a standard construction by means of which the system (&, +, -> can
be extended to the ring <{&*, 4, > in such a way that each z e &*
can be expressed as a difference # = y—= where ¥, 2 € §. This construction
can be carried out using only the following properties of (&, +, -):

(2) it 48 a commutative cancellation semigroup with zero element under
addition, it is a commutative semigroup with identity element under
multiplication, multiplication s distributive over addition.

‘We now list the principal steps of this extension, leaving the details to
the reader (cf. [3], p. 147).

(a) Define a relation ~ on X8 by (&g, B> & Yo, Yop i Tgt 4y = @+
9, and prove that it is an equivalence relation. Leb [z, 2,]s be the
equivalence class determined by <{#,, 2,>, and let & be the set of all such
equivalence classes.

(b) Define addition and multiplication on & by

[#oy 116+ [Yo, ¥2le = [+ Yo, 11 +Y1)e
and
[@os @6 - [Hos Yrle = [BoYot+ B1Y1 s Loty + T1Yole

and prove that these definitions are unigue.

(c) Show that <(&*, +, -> is a ring with [0, 0]¢ playing the role of
the zero element and [1,0]g playing the role of the identity element.

(d) Show that f: §—&* given by f(¢) = [, 0J¢ is an algebraic iso-
morphism into and use a transfer theorem to embed & in &*. Notice that
[#, yls = [=, 0]s—[y, 0] = 2 —y.

S-TueorEM 1. The system <A, +, > can be extended to a ring in
essentially the same way that the system <&, 4+, -> can be extended to the
ring 8%, +, -

Proof. By [4], p. 226 (iii), the system <4, 4+, - also satisfies (2).
Hence the same construction (a)-(d) should extend <4, 4, -)> o a ring
(A%, +, . The only difficulty is that we cannot provein & that the equiv-
alence classes in (a) are actually sets. (1) We remedy this situation ‘by

(1} From a personal communication with J. D. Halpern. See a forthecoming paper
of J. D. Halpern and A. Lévy where it is shown by Cohen’s method that even in set
theories without urelemente, a proper class of Dedekind finite cardinals can be introduced.
Note, however, that (10) and (11) of this paper imply the existence of models (with
urelemente) in which 4 %= & but 4 is a seb.
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using the abstractive method of [14] and defining [%,, 14 for <%y, %) € x4
as the set of all those <no, 1) € X°4 of least rank such that <z, %)
~ (Yo, D> (cf. [4], P. 228). The rest of our construction closely parallels
(a)-(d) above. q.e.d. )

DEFmNITION 1. Let A* be obtained from A by the construction
outlined in the proof of theorem 1. Elements of 4* are called Dedekind
finite integers.

¢4*, +, > is & commutative ring with 0 as zero element relative
to addition and 1 as identity element relative to multiplication. Sub-
traction is defined in the usual way. Since the function f: & —A4* given
by f([%, t.)s) = [, %14 is an algebraic isomorphism into, we may use
a transfer theorem to embed &* in 4*. Consequently our structures stand
in the following relation: § C 4, § C &%, 4 C 4*, and & C 4*. The usual
clasification of rational integers into three types (positive, negative,
and zero) does not carry over to 4*, since it is based on the comparability
of any two finite eardinals, which does not carry over to 4 (even in &°).
The elements of A* can be classified into four types: for %, % € 4, ¥ —%
is positive if x, > %, zero if %= %, negative if % < %, and newtral if %
is incomparable with ¥,. Denote members of &* (X*&*) by lower case
Latin letters, and members of A* (X*4*) by lower case German letters.

The following discussion is based on the theory &°. Let 0 <k < w
and f: XFg 6% It ¢(i) e &* are the Stirling coefficients of f (cf. [4], p. 231),
let ¢*(i) = max (c(4), 0), ¢=(4) = max(—e(i), 0) and define
(8) 5, XFe—>¢
to be the functions whose Stirling coefficients are ¢*(3), ¢—(4), respectively.
Clearly f© and f~ are a pair of k-ary combinatorial funetions whose dif-
ference f*(x)—f () = ().

er-Levya 1. If f: X*6—>6* and ¢°, 4" are any pair of k-ary com-
binatorial functions whose difference is f, then

0%(x)—ga(x) = fF(x)—fal(zx) for every x e X4 .

Proof. Since ¢°(x)+f () = gl(w)+f+(m) holds for » eX’“S, a corre-
sponding equation (with functions replaced by their extensions to A4)
holds for x e X*4 (cf. [4], theorem 8). g.e.d.

DEFINITION 2. We extend every function f: X*§-»&* to a function
fa: X*4 4% by requiring that fu(x) = fi(x)—fa(z) for every xeX"4,
where {7, fs extend f*,f” as in [4].

For f: X*6*>g* define f: X* §—8* by

() J(#) = f(%—1, ooy Bopoz—a2pa) for we X2kg
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©-Lmya 2. If f: X*8* 8% and %,y e XA are any elements such
‘tlmt ¥o— X1 = Yo—D1y ..., ¥2p—2— Xop—1 = Dag-a— Dag—1, the”ﬁ(x) = f:(l)) where
[ ts as in definition 2.

_ Proof. Since oty =@t Yo A vo A Bogont-Yor-1 = Tag_g+Yar—o) >
~F "(@)+F"(y) =F (@)+F Tly) holds for ®,yeX* a corresponding
implication holds for x,y D (ef. [4], theorem 8). g.e.d.

DEFINITION 3. We extend every function f: X"§*—»&* to a function
Jas: X*A* > A* Dby requiring that for every xeX*A%, fao(z)=fu(1)
where 1y is any member of X*4 such that X0 = Do D1y ery Fh1 = Yoo —
— Dag--1-

On the basis of definitions 1-3 ([4], theorem 8), and a great deal of
computation, we have the following lemmas which we state without
proof.

Go-LeMMA 3. (i) If f: X*6*>6% is a constant function, then fas is
also o constant function with the same value. (ii) If f: X"6* > & is a projection
onto the i < k component, then fi» 48 also a projection onto the same com-
ponent. (iii) If f: X°&*—§* is the arithmetical plus or times function then Sar
s also the plus or times function (as in theorem 1).

G’-Lmvma 4. (i) Let f: X658 and for each i< m, f': X6->8*
If h=Fo(f° ., ") ds the composition, then ha= fir o (fay ..., 5.
(ii) Let f: X"&*—&*, and for each i < n, [+ X' & Ifh=fo (f°, .., ),
then T = fuv o (fary cony far ).

The purpose of this paper is to discover general transfer principles
which will tell us when a first order property of &* also holds in A* We
will apply the same techniques to this problem as we did to the preceding
lemmas. Namely, we convert a property @ of & to an equivalent property g
of &, use [4], theorem 8, to show that % holds in 4, and then reconvert %
in 4 to an equivalent ¢ in A4*. In order to carry out this program it is
necessary to introduce an auxiliary language. This language is described
in the same metalanguage which is used for the description of the syntax
of &. Let us suppose that & contains: (i) an infinite list of variables %,
(ii) an infinite list of function constants, fr , k>0, where under inter-
pretation each fi: X¥6*—¢&* Then we define langnage L as follows. The
terms of L is the smallest set which: (i) contains each x;, (ii) contains for
each 0 < % and terms <, ..., 7r—1 the expression f’f(ro 5oy Tho1)e AN atomic
formula of L is an expression 7, = 7, where 7, and 7, are terms. The formulas
of I is the closure of its set of atomic formulas under truth table con-
nectives and quantification with respect to the x;. Let us take A (and),
v (or), and ~ (not) as our complete set of connectives, and define —
(implies) and == (if and only if) in terms of them. Our quantifiers are V
(for all) and & (there exists). A sentence of I is a formula in which no
variable x; appears freely. We always suppose that our sentences appear
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in prenex conjunctive normal form, that is, as a string of quantifiers
tollowed by a conjunction of disjunctions of atomie formula and their
negations. For such a sentence U, a sentence A’ is called a Horn reduction
of U if A can be obtained from A by striking out in each conjunct, with
at least two occurrences of unnegated atomic formulas, all but one un-
negated atomic formula. 9 is a Horn sentence if it coincides with one of
its Horn reductions, and a wniversal sentence if its prefix consists entirely
of universal quantifiers. Let Gft(Y) be the disjunction of all the (finitely
many) Horn reductions of %. Deno’ce a restricted quantifier by appending
the symbol for the restriction as a subseript to the quantifier bracket.
For any sentence U let Ags be obtained from A by restricting each quantifier
to &, and let Ays be obtained from A by restricting each quantifier to 4*
and replacing each function constant § which appears in % by f.i». Thus Wse
and Uy« are both meaningful sentences of .

If 9 is a universal Horn sentence then

&°-THEOREM 2. Wg. implies Wys.

Proof. We introduce still another lzmgufl,ge Let us suppose that &
contains: (i) an mﬁm’ue List of variables x7 and 7, (ii) an infinite list of
composite constants fi ,Tl which under interpretation are related to
the previous constants Tz as in (3) and (4). Then we define language L
as follows. The terms of I is the smallest set which: (i) contains each i
and ¥;, (ii) contains for each 0 < k and terms 7, ..., Tox—1 the expressions
f,~ *(%oy vy Ton—1) Where « is either 4 or —, (iii) contains for terms Toy Ty
the expression 7,+7;. Atomic formulas, formulas, and sentences of L
are defined in exactly the same way that they are defined for L. TFor
any sentence U of £'let As be obtained trom U by restricting each quantifier
to & and let Ay be obtained from A by restricting each quantifier to 4
and replacing each function constant 7° which appears in U by . Thus Ug
and U, are both meaningful sentences of G. By induction we define a map
from terms z of L into ordered pairs of terms (z*,z~) of I as follows.
If vis %, then <7 is x7 and =7 is x7. If 7 is f5(7o, ..., T5—1), then v° is ??'(rj',
Ty y ey Thot, Tho1) Where s is either 4 or —. By induction we define a map
from formulas % of L into formulas % of T as follows. If A is 7, =17,
then W is 79 + 70 = w5 7 . I Wis WA Wy, W VA, ~Uy, (Hx)) Wy, (V) Y,
then 9 is WA Xy, Wiy, ~Uy, (Fed) (@) Ay, (Vi) (V7)) Uy, vespectively.
This construction should make it clear to the reader that for any sentence 9
of L we can prove in &° that

(5) (i) g = gl'g, (ii) W = ﬁ_/; .
‘We complete our proof as follows. By hypothesis, % is a universal Horn
sentence such that Ug. By (51) Age—Ag. But A is also a universal Horn

sentence. Hence by [4], theorem 8, Wz—9,. Finally, by (5ii), Ng—>Wse.
q.e.d.
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If 9 is an arbitrary Horn sentence then
&°-CoROLLARY 1. g+ implies Wy,

Proof. Suppose Ag+. Since &* is well orderable, we can find Skolem
functions for the existential quantifiers which appear in M. Choose
constants f which do not already oceur in ¥ and identify them with these
Skolem functions. Let A" be the sentence obtained from 9 by deleting
existential quantifiers and replacing existentially quantified variables by
appropriate {’s. Then A’ is a universal Horn sentence and Ag«. By theo-
rem 2, Wy, from which Wy follows by restoration of quantifiers. q.e.d.

I_f Y is an arbitrary sentence, then

S°-COROLLARY 2. Gft(Wgs implies Wye.

Proof. By hypothesis there is a Horn reduction %’ of 9 such that Wps .
By corollary 1, ., from which A« follows by predicate calculus. q.e.d.

We delay specific applications of theorem 2 and its corollaries to
section 4, and instead continue with our theoretical development. Having
discovered a sufficient condition for sentences to extend from & to A%,
it is natural to ask whether it is necessary as well. Obviously we cannot
expect a converse to corollary 2. For otherwise, by adding the full axiom
of choice to &, we force 4*= & but can certainly find an example of
a sentence U such that s but not Sft(A)e« (for example a sentence
asserting the non-existence of zero divisors). Rather, the necessity con-
ditions we have in mind are of a metamathematical nature. Consequently,
their investigation involves entirely different techniques than those used
in theorem 2. Even so, we do not obtain a complete solution to the
problem. What we do get is a set of sentences and an extension of &°
for which a converse to corollary 2 holds. This extengion is found, and

shown to be consistent relative to S by an investigation of I‘raenkel—
Mostowski models.

3. The model. It is well known that if & is consistent, then so
is the theory &* which is obtained from & by adding the axiom of choice.
In [11] a model W*of & is constructed which does not satisfy the axiom
of choice. The construction takes place in the theory &*, which we will
take as the theory underlying the following informal discussion.

Let <3 be a dense linear ordering of K, without first, but with last
element #, sueh that for any two finite subsets 4 and B of K of the same
cardinality, with #e A ~ B there is a ~J-monotone permutation of K
which maps A onto B. Such orderings readily follow from the axiom of
choice. Let G be the set of all <-monotone permutations of K and let M+
be the set of all finite subsets of K which contain ¢. Then exactly as in [11]
we build a model 9" based on the group G+ and the G*-ring M*. A brief
résumé of this construction will be found in [4] or [5]. Let us indicate
notions relativized to W™ by appending a superseript ‘* o the symbol
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for that notion. For any two elements a,b ¢ K with o <b let (a,Dd)
={z: a<x<b} and (- oo, a)={z: z<a). For any A= {a,..,
a1} € M7 with @, < ... < @11t K* be the k-tuple with corﬁponents
K& = (—o0, a,) and Kfi= (as, aza) for ¢ < k—1. Finally let T = |K
— (K&, ..., | Kis|>. In general £* will be interesting only when if is
understood as relativized to T, and in the following discussion we assume
that it is.

In [5] we developed a theory of combinatorial series. A combinatorial

geries is a formal expression
. . U L
(6) Fltty ey tsea) = 3 0l o ) i) - (23]

where the u; are indeterminates and ¢ is a function with domain X8
and assuming values which are well ordered cardinals (finite and alephs).
The series is determined by the function ¢, (6) being simply a suggestive
representation of how combinatorial series are to be manipulated. With (6)
we associate a function fr: X*— I in much the same way as we extend
a combinatorial function. The prineipal results of [5] are that the following
assertions hold in a relativized sense for WB¥.

() < is a dense ordeﬁng of K, without first but with last eement 1, and
M* = the finite subsets of K which contain 1.

(8) For any cardinal m there is an A e Mt and an |A]-ary combinatorial
series f such that m= fr(fA ). )
(9) If AeM" and f, g are a pair of |A|-ary combinatorial series, then
© fr(#) = gr(®Y) if and only if there is an s e X8 such that f(u+s)
= g{u+s).

Here f(u-s) means the formal composition f(ug+Soy +ery Ujal-1-+
8j4j-1) as defined in [5]. In order to apply (8) and (9) in the present
context we make a number of observations about combinatorial series.
These are merely stated, but could be easily supplied by any reader
familiar with [4] and [5]. First, if f is a combinatorial series whose coef-
ficients ¢(3) € &, then f can be uniquely associated with a combinatorial
function. In this case the extension methods of [4] and [8] yield the same
function fr: X*I'>T, and the formal composition of series agrees with
the ordinary composition of functions. The last phrase of (9) could then
be replaced by ‘there is an s ¢ X'/g such that f(#) = g(@) for all w xi4lg
with # > &. Second, fr(f?) e 4 implies that no ¢(s) is an aleph. Hence
if in (8) we are only interested in representing m e 4, then the combina-
torial series mentioned in (8) could be replaced by a eombinatorial function.
Third, 4 ¢ X4 in the sense of the model (cf. [4], p. 243) and consequently
the extension fr in (8) may be restricted to f;. Thus, we have in the

- sense of W'
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(10) For any cardinal m e A there is an A ¢ M and an |A|-ary combina-
torial function f such that m = f(£4).

(11) If A« JlfglL and f, g are a pair of |A|-ary combinatorial Junctions
then fa(*) = gu(¥*) if and only if there is anm s X8 such that
flx) = g(®) for all e X“'s with 2> s.

Next let us see how the set A is chosen in (10). I we examine the
proof of [5], theorem 4, we see that 4 can be any support of some rep-
resentative set in the cardinal m. Hence if we wish to represent two
cardinals simultaneously, a single 4 will suffice. Now suppose that m e A4*
Ohooselmg y Ty € 4 such that m = m,—m, and represent them by my = fg(f“).
my = f4(F") (all in the sense of W™) in order to get m=f2(f‘4)*f1(f4)’
If f = f°—f* is the difference function, then by lemma 1 we have m — fA(fA :
Hence in B+ o

(12) If med*, then there is an A e M' and f: X868 such thai
= fa(f4).

Now (11) may be brought in line with (12) b i i
03 ‘ L 2) by observing that if f, g:
:x: f(?Af*"t}]fen JE) = F) it and only if £3(E4)+ga(E4) — f7(24 1
94 (I7), where the 4 and — is that of (3), and then lyi
show that 9B* satisfies g wepiving (1) o

(18) If Ae M and f, g: X468, then fu(8%) = gu(t*) if and only if
there is an s € XIg such that fl@) = g(@) for all e X8 with ¢ > s.

Finally in order to guarantee the non-trivialit
2 y of (12) and (13 -
plicitly state the fact that IB* satisfies 42 (180, we ex

(14) If AeM" them ¥4 ¢ X4,

‘Let GQ(A*E) be the theory which is obtained from &° by adding
3 bl'n'a.ry prefhca,te constant <7, and taking (7), (12), (13), and (14) as
a.}idlt1ona,1 axioms. Since these axioms all hold in 987, our informal digeus-
sion demonstrates.

METATHEOREM 3. If & is consistent, then so is GYA*).

. Our next job is to try and simplify the tangle of representations
given by (12) and (13). It turns out that the structure of A* in Si(4*)
can !:)est be described in terms of a direct limit of reduced powers. Although
at first glance the construction appears to be unmotivated, it quickly
peeomes Aappa,rent that we are defining an algebraic system which is
isomorphic to 4* as given by (12) and (13). Take & and (7) as the theory
underlying the following discussion.

For A e M let P = {f: f: Xlg~6% and let 54 be the set of
all R C X™g such that for some element s € X'/g, » ¢ R for every # « X4lg
with # > s. Members of 5! are called cofinite sels (generalizing the
usual one-dimensional nomenclature), and a property which holds for
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all elements of some B e F 4l iy said to eventually hold. & Mg g ;’Jxllj;lex;_ I(z)tfl
subsets of X'*§ and therefore we may form theurleduced pomar |F
whose members are the equivalence classes biEa .for feP". In ordelr
to keep these powers distinet for diﬂerﬁillat A with the same |4| pﬁt
74 = (i, 4> and let 94 = {f*: fe P} In lg‘:{alnera.l we will use the
letters ‘o, ‘y', and ‘@’ to denote elemjnts in P IE w7*<x0,*...,?9k_1>
eXkPl‘“, let = (xai, vy w‘;;i_o e X34, Functmns- fr X"&*—~>¢8 Wl]lg. Eﬁ
extended to functions fga: xhp4 g4 in the following way. If € X"P
put y* = fﬂ‘A(wA) where y is
(13) y=fo(Ly ., br-1) .
It is not difficult to show that y is independent of the representative
4 which justifies the definition of fs.
* wLe:hjzl,llg eM" with ACB. If A= {a(O)', ey a(J4]=1)} with «(0)
< ..<2a(j4]|-1), B= {(0), ..., b(|B|=1)} with 5(0) 2. ﬁ b(|B| 1),
define a function u3 by a(i)= b(uﬁ(i)) for each &< [4]. %.a: 1A|~>|BllP
and gives us the index, in the ordering for B, of any element ir% A. With w4
we associate a function A XPr-x I in the following way. If
£ = { gy ey BB Y € X0, leb Hi(x) = (9o, iy Ylaj—1y Where for each
j < |A]—1, and > standing for summation

(16) 1o = 15(0)+ O fxer i < ud(0)},

pisr = w0 +1) =) =14 )z () < & < wE(GHD)
 hag been defined in such a way that we have the important
1n HE) = .
With H we define a function ki pHl_, pi#! by requiring that for fe P'Al,
s5(f) is that function g e P'®! such that
(18) (@) = f(HH@) for
Tt is not difficult to see that if f, g e P! determine the same equivalence
class 1= g%, then af(f), nfi(g) determine the same equivalence class

in P!, Consequently we may think of al: 7% 508 as given by

(19) Aty = [5@)®  for weP.
Examination of (19) leads us to conelude that 5 is a O]Ji]e-(?ﬂ(-} mapping
of 94 into §%. Now suppose that f: X*g* & and @ e X°P-. Then the
chain of equalities
aB{fralady .o, i) = wA((f o (@0 -y 7))
B
= (wa(f o (@0, -y 7)) = (£ o (=(@0), e (1))

= fggt(nﬁ(wo))B, ey (Tfﬁ(-%‘;,_ﬂ)zg) = fg-B(ﬂg(wgt)a ey ”‘11?(50?——1))

zeX¥lg.
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demonstrates that rcﬁ is actually an algebraic embedding of 74 into 9%
with respect to extensions of functions f.

Now let P = {J(9%: A< M*}. Detine an equivalence relation ~
on P™ by putting #* ~ 4 if and only if there is & ¢ ¢ M* with A w B C ¢
guch that nﬂ(m‘l) = n%(yB ), and let [mA] be the equivalence class determi\n_ed
by z*. Finally let 7%= {[z]: = ePlKl}. The reader will recognize ¥ as
a direct limit of the systems 5 with respect to M directed by inclusion.
Functions f: X¥&*—+&* will be extended to functions fox: X*9% 9% in
the following way. If y € Xkﬂ‘x, then for some A ¢ MT and x ¢ X974 we
have y = ([xy], ..., [rx-1]y = [@]. If this is the case define

(20) Fox(y) = [fpal2)] -

Since =4 is an embedding, the expression on the right in (20) is independent
of the particular 4 used to represent y. Hence fyx is well defined by (20).
For zeT4 let my(e) = [2]. Again by the properties of % the function
74 $4>5% is an algebraic embedding. This completes the construction
of our fundamental algebraic object T%.

Let f (= ff, k> 0) be a double sequence of functions such that

(21) fF Xer 6

and let fs,frx denote the corresponding sequemces of fi.,fik, re-
spectively. If we think of <A*, fs)> and (g%, Jox as algebraic systems,
then we have

Gi4*)-Lsana 5. {A*, fue) is isomorphic to T, fux..

Proof. Define a function 6: §<—A* by

6([a"]) = au(t") for

We justify (22) as follows. If y ¢ P is another element such thab
= y"t, then as functions # and y are eventually equal, and consequently
by (13), 24(t?) = y4(F'). Now suppose that y « P'®! is another element
such that [«4] = [y¥]. Without loss of generality we may suppose that
ACB and y=wji(x). This means that y(i)= o(H() for ie Xl
Since composition generally commutes with extension, (17) implies that
:I/A(fﬂ) = a:J(H}i(fB )) = mJ(f‘l). Thus 6 is well defined. Conversely, in order
to show that 0 is one-one, suppose that 24(F") = y4(£”). As before we may
assume that 4 C B. Then a,(F) = a,(H#(E")) = (nii(2))4(£"). But by (13)
this implies that nf}'(m) and y are eventually equal. Hence [2*]= [¢"].
It follows from (12) that 0 is onto A*. If g: X*&*—&* and gex ([24]) = [y4],
then g o (#°, ..., #*1) is eventually equal to y. Hence by (13) and lemma 4,
9ar@i(E) oovy @S TEY)) = ya(B4), and by (22), gue(0([2"])) = 0([y"]). qe.d.

By lemma 5, first order properties of 4* in S)(4*) are equivalent
to first ovder properties of 5. ConsequenMextend our interpretations
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of sentences of language L to include the relativizations g, Wex in
the obvious way. We would like to do some model theory in &i(4*).
Let L be a formalization of I in & such that every formula U of L has
a name "9 7 in L. Sinee all of our structures are sets in &3(4*), it is possible
0 give a definition of satisfaction for them. For any set A let X4 be
the set of w-tuples (@, #;,..> each ®; A, such that for some =, all
entries 3, k > n are equal to one another. If f is as in (21) (and fixed in
the following diseussion), € X“2*, and U is a formula in L, let us define
a notion A* = A(x) which will intuitively mean that @ satisfies o in the
system {4*, f»>. Formally we require that if U is a formula of I, and &
asserts that §¥ = fF and x; = @; for every f; and x; which oceurs in %,
then we can prove in SY(4*) that

(23) @ implies (Wpe if and only if A*|="UA@)} .

Define notions |- and 9% |= which satisfy (23) in an analogous
fashion. Then we have

GU4*)-TEMmA 6. If A, Be M* with A C B, then 4 is an clementary
embedding of <€I‘A, fga> imto g®, feB>. (Note that (7) is the only property
beyond & that we use.)

Proof. We divide our proof into three parts.

Part (). §*= <84, 8,0, ~,7) (where S is the power set
of X"l and 1 is the relative complement) is a Boolean algebra which
contains F' as a proper filter. Hence the quotient B4 = 847 4 <T|A|,
@,u,n, D is also a Boolean algebra which we readily see is atomless.
For @ « 8! let [2] be the element of 7! to which & belongs. Algebras §°
and % are defined in a similar fashion. Now Ha: X™§— X', Hence
we may define a map 15 Sl gl %! given by @) = ﬁ‘fg(m) for z e S
(where ‘w’ means inverse). IZ is a Boolean homomorphism for which it
is easy to see that if weS[‘“, @eF? it and only if I5(x) ¢ 5. Con-
sequently I3 induces a Boolean isomorphism 15 r4l i given by
T5([2]) = [I5(x)] for = e 8. Note that the isomorphism is merely into.
Let IV be a language suitable for the elementary theory of Boolean algebras
which contains symbols for the Boolean operations as well as symbols v;
to serve as variables. For 2 « X)T! and & in N define a notion B4 |- & (x)
which intuitively means that « satisties @ in B*. By a straight elimination
of quantifiers it can be shown (without choice, cf. [18]) that every atomless
Boolean algebra is an elementary extension of each of its atomless Boolean
subalgebras. Consequently 1% is an elementary embedding of €4 into G°.

Part (i) If e XPPH put 2% = (o, 2, ..> and () = old),
#y(i), ..> for ie X, Also, it B is any formula of L, define J(B,x)
= [i e X8 §*|= B(w(i))}. By a slight modification of [6], theorem 3.1
we can associate with every formula % of L a sequence <@, By, ..., Br-1)

4]
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where @ is a formula of N with at most the free variables v, ..., vu_1,
where By, ..., By—1 are formulas of L containing no free variables which
do not appear in %, and such that for every e X“ P

(24) 9= Wat) if and only if C'l= BT (By, 2], vy [T (B, 2)]).

Part (iii). I » e TP put 2(@) = <nl(m,), 2h(@), ...» and a5()
= (mh(ag), mh(ai'), ...>. Then part (ii) gives

(28) 9% |=Ulwi(2™)) if and only if B 1= ([T (B, ()], v, [T(Bus, nﬁ(m))]).
Next we claim that for any formula B of L and re X@p
(26) TA([7(B, 2))) = [J(B, «4(@)] .

For ieHA(J (B, ) it and only if Ha(i)eJ(B,z) if and only if
& |- %(m(ﬂﬁ(i)}) it and only if &* |- B((#4(2)) (4)) if and only if ieJ(B,
a5(®)). Then (26) follows by taking quotients. Our lemma follows from (24),
(28) and (26) and the fact that I3 is an elementary embedding. g.e.d.

Gl4*)-Levva 7. If A e M*, then my is an elementary embedding of
4, foa> into (I, fox». (Note that (7) is the only property beyond &
that we use.)

Proof. Sinee each =7 is an elementary embedding, the result follows
by [10], theorem 4.1. g.e.d.

If £ is the terminal element in the ordering <2, then {t} ¢ M* and 7%
is simply the redueed power of unary functions modulo the cofinite
sets, indexed by ¢ Let & be the isomorphic system obtained from F%
by deleting the index i.

Si(4*)-LEaA 8. The systems (A%, fs and <8, g0 are elementarily
equivalent.

Proof. The result follows by lemmas 3, 6, and 7. q.e.d.

For any sentence % of language L

GY(4*)- TEROREM 4. s if and only if Ug.

Proof. The result follows by (23) and lemma 8. g.e.d.

Let A be a prenex conjunctive normal form sentence of L. Remember
that % was called wniversal if its prefix consisted only of universal quan-
tifiers. Call A a positive sentence if it only contains unnegated atomic
formula and call A a disjunctive sentence if its matrix consists of a single
conjunct. Finally call A a Bing sentence if it is either universal, positive,
or disjunctive.

If A is & Bing sentence, then

S}(4*)-COROLLARY 3. s implies SFt(Wpge.

Proof. In [1] it is shown that every arithmetical class (in the sense
of Targki) which is determined by a Bing sentence but by no Horn sentence

PAd
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is not closed under direct products. An easy transcription of that proof
shows that if 9 is & Bing sentence and g, then A must be equivalent to
one of ity Horn reductions, in &, ie., Gft(Ms. Hence our corollary
follows by theorem 4. g.e.d.

This is the converse to corollary 2 that was mentioned at the end.
of the last section. Its hypothesis is sharp, for in the next section we will
give an example of a non-Bing sentence 9 such that in G1(4*) we have Uys
and ~@&ft(A)e«. Consequently theorem 4 is by far the better result.

We conclude this section by applying an ingenious lifting method
(of Kreisel, and appearing in [10], p. 235 to our problem. A function
f: XFe* > 6* is called absolutely definable if it is definable, and its definition
ig absolute (cf. [7], p. 42) with respect to the model £ of [7] and the
model B* of [11]. Clearly such functions are constructible. Let ‘|- denote
proveability. Then we have

METATHEOREM 5. If U is a sentence of language L which is provided
with an interpretation by specifying definite absolutely definable functions
for the function constants which appear in A, then S |- W= implies S |- Ag.

Proof. We divide our proof into two parts.

Part (i). Let f= (fo, ..., fa-1> be a sequence of absolutely definable
functions sueh that f;: X¥igr g% for some ky. Let Z be an arithmetical
language which contains constants for plus, times, and for the functions
which appear in f. ¢: §—8* is arithmetical in f if there is a formula &
of Z with exactly two free variables such that g(z) =y if and ounly if
8 =B (<z, y>) for every me& and ye&. It is well known from the
literature that there is a hyperarithmetical predicate H such that
8= 0(<z, y») if and only if H(f, "¢, z,y). Since f is constructible,
the latter formula (for fixed f) is absolute with respeet to L (cf. [16]), and
trivially with respect to I8, Consequently it is clear that the set of all
functions ¢: &€—&* which are arithmetic in the functions of fis an absolutely
definable (set). Let T, be the quasi-reduced power consisting of all such
functions g, reduced modulo the cofinite subsets of & Let fg, denote the
sequence of extensions to F, of functions in 7. By the preceding remarks
the system <(T,, fg,> 1s absolute with respect to the models £ and w*,
and by [12], p. 114, or [6], (7, fg,> is elementarily equivalent to Ay fy-

Part (ii). Suppose G- Uy where f of part (i) is the list of abso-
lutely definable functions denoted by the function constants of A. In &0
build & model £ by the method of [7] which contains no urelemente.
£ satisfies the axiom of choice. Then build & model Wi in € by the method
of [11] where urelemente are introduced as the sets Ar=o0—{k}, k>0,
and @ is introduced as the set Ay = ©—{0}. The integers are not absolute

‘ with respect to this construction, however those of Wi and ¢ are isomorphic
and consequently may be identified. Wi satisties the axioms of Sh4™),

icm°®
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moreover, it satisfies these axioms in the strong sense that their relativiza-
tions to Wi are actually theorems of &0 For any model 46 and set theoretic
sentence g, let Rel(p, 46) be the relativization of ¢ to 6. Then by theo-
rem 4 and by part (i) we have the following sequence of implications:

S’ |-y implies & | Rel(Wp, W) implies  &° |- Rel (A, W)
implies & |- Rel(2Uy, , W) implies & |- Rel(Uy,, ) implies & - Ay,
implies &°[-UAg. g.e.d.

METACOROLLARY 4. If U is a Bing sentence, interpreted as in theorem 5,
then G| Wye mplies S0 |- SFt(Wes.

METATHEOREM 6. If U is a sentence of language L which is provided
with an interpretation by specifying definite absolutely definable functions
Jor the function constants which appear in A, then & |~ War implies S — Wge .

Proof. We use a simpler version of the lifting method that was
used in the proof of theorem 5. In &° build a model £ by the method
of [7]. In £ we have A* = &*, consequently:

&° |- Uy implies &° |- Rel (Wqv, £) implies S° |- Rel (Wge, £) impliesS® |- A .

The last implication follows from the absoluteness of the functions in 9.
q.e.d.

For theorems 5 and 6 to be non-trivial we must show that some
interesting class of functions is absolutely definable. In [16] it is shown
that every X3 u I7; function (functions whose diagram can be expressed
in either two function quantifier form) is absolute with respect to £. It
is immediate that such functions are also absolute with respect to 23*.
Hence we may use X u [7; funetions in theorems 5 and 6 instead of
absolutely definable ones. Incidentally, it has recently been shown in
[17] that under the hypothesis of a Ramsey cardinal, there exist
non-constructible 4; sets, It would be interesting to know whether versions
of theorems 5 and 6 hold in the 4; case. Certainly, theorem 6 looks as
though it ought to hold under much less restrictive hypotheses.

Actually our applications do not require the full force of the last
two theorems. Since we are interested in mnon-proveability, it is not
necessary to get sentences to be theorems of & Various consistent ex-
tensions of &° will do. We state a single instance of such a theorem. Note
that the word ‘definable’ appears below (ctf. ‘absolutely definable’ in the
hypothesis of theorem 3).

METATHEOREM 7. If U is a sentence of language L which is provided
with an interpretation by specifying definite definable functions for the
Sunetion constanis which appear in W, then, S consistent and S° '— ~ Ug,
imply non S0 - Wys.
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Proof. For otherwise &° has a consistent extension Gi(4*) in which
we can prove a statement contradicting the corresponding statement
given by theorem 4. g.e.d.

METACOROLLARY 5. If U is a Bing sentence, interpreted as in theorem T,
then, S consistent and & |- ~GSft(Wes, imply non S = Wy

MurTATHEOREM 8. If U is a sentence, interpreted as in theorem T,
then & consistent and G |- ~ Wge, imply non &° |- Asr.

4. Applications. In this section it will be convenient to have
2 method by which relations B C X"* can be extended to relations
R, C X*A*. A function 7: X*6* {0, 1} is called the characteristic function
of Rif xeR if and only if x(r) = 0 for every « ¢ X*6*. Then we have

DERINITION 4: We extend every relation E C X** to a relation
RAt_C_XkA* by putting Re= {x e X*A*: yuu(x) = 0} where » is the
characteristic function of E.

According to this definition, statements ¥ e B» can be replaced by
equalities ,4+(x) = 0, and the 0 can be replaced by fa+(%) where f is & func-
tion which is identically zero. Consequently statements involving relations
can be transcribed into language L. Let us enlarge I to a language LR
which contains an additional List of comstants Ri, 0 < %, where under
interpretation each R C X*g*. Define the various notions of LE exactly
as for I except that we include expressions RE(Tgy very To1), WHETE Tpy oy Tht
are terms of I, as additional atomic formula. Interpret Ry vrey Tr1)
o mean (Tg, ..., Tk-1> € Ry 50 a8 to avoid an e in LR. Define g and Wy
for LR exactly as for I except in the latter case add the clause ‘and re-
placing each relation constant R which appears in % by R’ According
to the remarks following definition 4 all results of the preceding two
sections apply to LR as well as to L.

We are going to discuss 4* in an extremely informal way, using &
as our underlying theory. LR will be used in a heuristic rather than
a formal sense. Most of this material hag already appeared in [3], section 3
for the analogous A* hence our presentation will take a brief form.

The fact that a function f: X*§*—~&* is one-one can be expressed by
a Horn sentence. Hence f4+ is one-one as well. The fact that f maps onto &*
can also be expressed by a Horn sentence. Hence, in this case, fi» maps
onto A* Let F= {(u,y> e X*7'&*: f(w) =y} be the k-41-ary relation
which diagrams f. Statements saying that F diagrams some function
can be expressed as Horn sentences in LR. Hence Fu« is the diagram of
a funetion. Another Horn sentence says that F diagrams f. Hence Fy«
is the diagram of fs». This method of extending functions by their dia-
grams suggests a way of extending functions whose domain is a proper
subset of X*&*. Let A C X¥¢*, B C &, and f a function mapping A onto B.
If F diagrams f, then by Horn sentences, F,» diagrams a funetion
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mapping 44+ onto Bys. Call this function fs. By our previous remarks,
if A = X"&* then this new f,+ is identical with the one given in definition 3.

‘We would like to characterize certain algebraic objects in 4* An
idempotent is an element x e 4* such that x? = x. Since 22= z if and
only if # € {0, 1} for x &%, a corresponding result holds in 4%, i.e., {0, 1}«
ig the set of idempotents of A* {0, 1} is a Boolean algebra in & under
the operations zAy = oy, oVy=o+y—ay, and o =1—2z. Since the
axioms of a Boolean algebra with respect to these operations can be
expressed by identities, {0, 1}, is also a Boolean algebra with respeet
to the extensions of A, v, and 71 to 4* By lemmas 3 and 4 these ex-
tiensions read in A4* exactly as they do in &* except that the ring operations
in &* must be replaced by their extensions to A*. Let Bg., B+ be the
Boolean algebra of idempotents in &*, A* respectively.

A nilpotent is an element x e 4* such that for some integer n, ¥* = 0.
Now z* = 0 implies # = 0 for 2 ¢ &* and therefore a corresponding result
holds in A%, i.e., 0 is the only nilpotent in A*. If the axiom of choice (in
the form of Zorn’s lemma) were available we could then show that {0}
is the intersection of the minimal prime ideals in A*. Since it is not, we
must do some extra work to obtain the result. A ring R is said to have
enough idempotents if there is a function e: R— R such that for allx, y ¢ B
we have

(27)  e(0)=10, e(xy)=e(v)e(y), ele(x)=-e(z), and e(z)z=w.

It is easy to show from these conditions that e(x)® = e(w), that if
2?2 = %, then e(x) = z, and that the function e iy unique. By [15], corol-
lary 2.3 the function e gives a one-one correspondence between the minimal
prime ideals of R and the prime ideals in the Boolean algebra of idem-
potents of R. This follows without the axiom of choice. We apply these
results to 4* by defining a function e: & —&* with ¢(0) =0 and e(z) =1
for # # 0. e clearly satisfies (27) and since identities extend from &* to 4%,
the function e, will also satisfy (27). Thus A* has enough idempotents.
It is shown in [8] that I3* satisfies the prime ideal theorem. If we are
willing to enlarge S;(4*) so as to include this fact then B, contains at
least one prime ideal. Simple algebra then shows that for every x e B,
% # 0, there is a prime ideal in B, which excludes x. Thus the inter-
section of all prime ideals in B, is {0}. Application of the function e
shows that 4* contains a minimal prime ideal and that the intersection
of the minimal prime ideals in 4* is {0}. Consequently 4* is a subdirect
product of integral domains. In [12] it is shown that A*(4) modulo a mini-
mal prime ideal is a model of all the true (in language L) statements of
the arithmetic of §*. Since the only fact used to obtain this result is an
isolic version of our corollary 2, & similar result holds for A* in the theory &
Combining this with our previous result we see that 4* is a subdirect
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product of (non-standard) models of the arithmetic of & in the theory
consisting of &(4*)+ {prime ideal theorem}.

A unit is an element x € 4* such that for some y e 4%, xy = 1. Since
oy =1 implies #* = 1 for all #, y « &, a similar result holds in 4*. Thus
the units of A* are simply the elements whose square is 1. Now #* = 1
if and only if # {1, —1} for @ ¢ &*. Hence a corresponding result holds
in 4% ie., {1, —~1}, is the set of all units of A*.

A prime is an element x ¢ 4*, x # 0, and ¥ not a unit such that for
every 1), 3 € 4% x = 13 implies that either 1) is a unit or 3 is a unit. A divisor
of zero is an element x e A4* such that for some e 4% 1 % 0 we have
=0

Si(4*)-LEMMA 9. (i) 4* contains non-zero divisors of zero. (ii) 4* con-
tains no primes. (i) Bye is an atomless Boolean algebra, (iv) A* contains
non-trivial square roots of unity.

Proof. Use theorem 4 and the fact that each of these statements
holds in 7. g.e.d.

As a consequence of this lemma we can show that there exists a sen-
tence A of L provided with an interpretation by specifying definite definable
functions for the function constants which appear in 9% such that

SN 4*)-THEOREM 9. Wge and ~SFt(Wgs.

Proof. Tet % be a sentence of L which says that the Boolean algebra
of idempotents is either atomless or contains exactly two elements. The
Boolean operations are certainly definable. By the previous lemma Q.
In order to show ~&ft(W)e« we use an idea of [2]. It As» for some Horn
reduction N’ of A then by [9] A’ would also hold in the direct product X&*.
Consequently % would hold in X*8* as well. But the Boolean algebra
of idempotents in X*6* contains exactly four elements. Thus every Horn
reduction fails in &*. q.e.d.

This shows that corollaries 3, 4, and 5 will fail if we leave out the
hypothesis that our sentences are Bing.
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