M. Mandelker

Now let $\mathfrak Q$ have a countable member F. For each $x \in F$, choose a free z-ultrafilter $\mathfrak Q_x$ on $T_x = B_0(x,1)$, converging to x, such that every countable subset of T_x is disjoint from some member of $\mathfrak Q_x$. For each $x \in F$, choose $S_x \in \mathfrak Q_x$ such that $S_x \cap F = \emptyset$, in such a way that diam $S_x \to 0$. Define $\mathfrak T_x = \mathfrak Q_x | S_x$. We now apply Theorem 12.1 with E = F, and proceed as in the first case.

Remark 1. By 12.4 and Corollary 8.2, we can find a nonminimal nonclosed prime z-filter with no countable member. By Remark 1 following Theorem 13.2, we can find a closed nonminimal prime z-filter with a countable member. Hence the two alternative conditions used are independent.

Remark 2. Theorem 15.6 yields an example of a closed nonminimal prime z-filter with an immediate successor, and provides a counterexample to the converse of Corollary 10.4(a).

15.7. QUESTION. When a prime z-filter is the union of all its predecessors, does it follow that it is the union of a chain of predecessors?

References

[FG] N. J. Fine and L. Gillman, Remote points in βR , Proc. Amer. Math. Soc. 13 (1962), pp. 29-36.

[GJ] L. Gillman and M. Jerison, Rings of continuous functions, Van Nostrand. Princeton, N. J., 1960.

[GJ₁] — Quotient fields of residue class rings of function rings, Illinois J. Math. 4 (1960), pp. 425-436.

[H] F. Hausdorff, Grundzüge der Mengenlehre, Veit, Leipzig 1914 (Chelsea, New York 1949).

[K] C. W. Kohls, Prime z-filters on completely regular spaces, Trans. Amer. Math. Soc. 120 (1965), pp. 236-246.

[P] D. Plank, On a class of subalgebras of C(X) with applications to $\beta X \setminus X$, to appear in Fund. Math. 64.

[Si] W. Sierpiński, Hypothèse du continu, Monografie Matematyczne IV, Warszawa-Lwów 1934 (Chelsea, New York 1956).

[St] M. H. Stone, Topological representations of distributive lattices and Brouwerian logics, Časopis Pěst. Mat. Fys. 67 (1937), pp. 1-25.

UNIVERSITY OF ROCHESTER

Recu par la Rédaction le 25, 1, 1967

A lower bound for transfinite dimension

by

David W. Henderson (Ithaca, N. Y.)

1. Introduction. In this paper, essential mappings are used to give a lower bound for the (large, strong) transfinite inductive dimension of a space. Transfinite inductive dimension (Ind) is defined by transfinite induction as follows: (See [3], p. 161).

DEFINITION 1. (a) $\operatorname{Ind}(R) = -1$, if $R = \emptyset$. (b) $\operatorname{Ind}(R) \leqslant \alpha$ (an ordinal number) if every pair of disjoint closed subsets of R can be separated by a closed subset S such that $\operatorname{Ind}(S) < \alpha$. (S separates A and B in R if R - S is the union of disjoint open (in R) sets U, V such that $A \subset U$ and $B \subset V$.) (c) $\operatorname{Ind}(R) = \alpha$ if $\operatorname{Ind}(R) \leqslant \alpha$ and it is not true that $\operatorname{Ind}(R) < \alpha$. (d) R is said to have transfinite dimension (Ind) if $\operatorname{Ind}(R)$ exists.

It is known ([3], p. 209) that if a normal space R has an essential mapping onto the n-cell, I^n , then $\operatorname{Ind}(R) \geqslant n$ or $\operatorname{Ind}(R)$ does not exist. (A mapping $f \colon R \to I^n$ is essential if there does not exist a mapping $g \colon R \to \operatorname{Bd}(I^n)$ (Bd = Boundary) such that $f|f^{-1}(\operatorname{Bd}(I^n)) = g|f^{-1}(\operatorname{Bd}(I^n))$.) We shall construct, for each countable ordinal a, a space I^a such that (with "essential" suitably defined), if a normal space I^a has an essential mapping onto I^a , then $\operatorname{Ind}(R) \geqslant a$ or $\operatorname{Ind}(R)$ does not exist.

Some of the ideas behind the definition of J^a and the proofs below can be found in [1], § 3, by Yu. M. Smirnov (IO. M. Смирнов).

2. Results and questions.

DEFINITION 2 $(J^a, T^a, \text{ and } p^a)$. For each ordinal number a, greater than or equal to 0 and less than Ω (the first uncountable ordinal), we shall define a compact metric set J^a with a compact subset T^a and a point $p^a \in T^a$. Let $J^0 = T^0 = p^0 = (a \text{ point})$. If a is positive and finite, then let J^a be the a-dimensional cube, T^a be the (a-1)-dimensional sphere which is the combinatorial boundary of J^a , and p^a be any point of T^a . If a is not a limit ordinal, then define

$$J^a = J^{a-1} \times J^1$$
, $T^a = (T^{a-1} \times J^1) \cup (J^{a-1} \times T^1)$, and $p^a = p^{a-1} \times p^1$.

If a is a limit ordinal, then let K^{β} , for $\beta < a$, be the union of J^{β} and a half-open arc A^{β} , such that $A^{\beta} \cap J^{\beta} = p^{\beta} =$ (the end point of A^{β}); and define J^{α}

to be the one-point compactification of the (locally compact) disjoint union $\bigcup_{\beta < \alpha} K^{\beta}$, $T^{\hat{\alpha}} = J^{\alpha} - \bigcup_{\beta < \alpha} (J^{\beta} - T^{\beta})$, and p^{β} be the compactifying point. (I.e., neighborhoods of p^a are complements (in J^a) of compact subsets of $\bigcup K^{\beta}$. Note that each J^{β} , $\beta < \alpha$, is joined (in J^{α}) to p^{α} by an arc.)

The main advantage of the J^a as compared to the spaces of Smirnov ([1], § 3, Def. 2) is that Smirnov's spaces do not satisfy Theorem 1.

THEOREM 1. Each Ja is a retract of the Hilbert cube and therefore each Ja is an absolute retract (AR).

Theorem 2. Ind $(J^{\alpha}) = \alpha$.

168

DEFINITION 3 (Essential mappings). A continuous function (mapping or map) $f: X \to J^a$ of a space X onto J^a is called inessential if there exists another map $g: X \to J^a$ such that $g|f^{-1}(T^a) = f|f^{-1}(T^a)$ and $g(X) \neq J^a$. Otherwise, f will be called essential.

THEOREM 3. If there is an essential mapping of a normal space X onto J^a , then $\operatorname{Ind}(X) \geqslant a$ or $\operatorname{Ind}(X)$ does not exist.

It will become clear later that the identity mapping of J^{α} onto itself is essential; therefore, the inequality in Theorem 3 is the best possible. It would be very interesting to know if the converse to Theorem 3 is true. namely:

QUESTION. If $\operatorname{Ind}(X) \geqslant a$, does X have an essential mapping onto J^{a} ?

The answer is "ves" if X is normal and α is finite; but nothing else is known even for compact metric spaces. The next question is related to Alexandroff's unsolved problem which asks whether each weakly infinite-dimensional compact metric space is countable-dimensional. (See [2], Chapter III, § 1.)

QUESTION. If a compact metric space X has an essential mapping onto J^a , for each $a < \Omega$, then is X strongly infinite-dimensional? (X is strongly infinite-dimensional if there is a map f of X onto the Hilbert Cube I^{ω} , such that, for each finite-dimensional face F of I^{ω} , $f|f^{-1}(F)$: $f^{-1}(F) \rightarrow F$ is essential. Such a map, f, is called an essential mapping onto I".)

In proving Theorem 2 the following Proposition is used which may be of interest in its own right.

Proposition 1. Let X be a hereditarily paracompact space which is the union of two closed subsets A and B. If $Ind(A \cap B)$ is finite and both $\operatorname{Ind}(A)$ and $\operatorname{Ind}(B)$ exist, then $\operatorname{Ind}(X)$ equals the larger of $\operatorname{Ind}(A)$ and $\operatorname{Ind}(B)$.

3. Proof of Theorem 1. In order to prove Theorem 1, we shall prove (by transfinite induction) the following. (We consider I^{ω} as the Cartesian product, $I_1 \times I_2 \times I_3 \times ... \times I_4 \times ...$, where I_i is the interval $[0, 2^{-i}].$

THEOREM 1'. For each $a \ge 0$, there is an embedding $h^a: J^a \to 1^{\infty}$ of J^a into I^{ω} and a map r^a : $I^{\omega} \to h^a(J^a)$ such that $h^a(p^a)$ equals the point all of whose coordinates are zero and such that $r^a(p) = p$, for all $p \in h^a(J^a)$.

Proof. The theorem is trivialy true for $\alpha = 0$. Assume inductively that the theorem is true for all $\beta < a$. In the case that $a = \gamma + 1$, we know by the inductive hypothesis that J^{γ} can be embedded (by a map h) in I^{ω} so that $h(p^{\gamma}) = (0, 0, ..., 0, ...)$ and so that there is a map $r: I^{\omega} \rightarrow$ $\rightarrow h(J^{\gamma})$ such that r(p) = p, for all $p \in h(J^{\gamma})$. Now, $I \times I^{\omega}$ is homeomorphic to I^{∞} under a homeomorphism k such that

$$k(0; 0, 0, ..., 0, ...) = (0, 0, 0, ..., 0, ...);$$

and the map $s: I \times I^{\omega} \to I \times h(J^{\gamma})$, defined by $s(t, p) = t \times r(p)$, is a retraction onto $I \times h(J^{\gamma})$ which is homeomorphic to $J^{\gamma+1} = J^{\alpha}$ under a homeomorphism which takes

$$k^{-1}(0, 0, ..., 0, ...) = 0 \times h(p^{\gamma})$$

onto the point p^{α} . We now only have to check the theorem in the case that α is a limit ordinal.

For each $i \in N$, let N(i) be some infinite subset of the set of natural numbers, N, such that, for $i \neq j$, N(i) is disjoint from N(j) and such that $N = N(1) \cup N(2) \cup ... \cup N(i) \cup ...$ Note that, for each i,

$$I_i^\omega \equiv \{(p_1,\,p_2,\,p_3,\,...,\,p_j,\,...)\;\epsilon\;I^\omega|p_j=0\;,\;{
m for}\;j\;\epsilon\;N-N(i)\}$$

is homeomorphic to I^{ω} . Let $\{\gamma(i)|i \in N\}$ be the set of all ordinals less than a. where we have indexed this set by the natural numbers. From the inductive hypothesis we know that there is an embedding $h^{\gamma(i)}: J^{\gamma(i)} \rightarrow I^{\infty}$ and a retraction $r^{\gamma(i)}$: $I^{\omega} \to h(J^{\gamma(i)})$. Combining this retraction with Lemma 1 below, we conclude that there is a retraction

$$r_i: I \times I^{\omega} \to [I \times (0, 0, ..., 0, ...)] \cup [\{1\} \times h(J^{\gamma(i)})],$$

where the image space is homeomorphic to $K^{\prime(i)} \cup p^a$. (See Definition 1.) Let $h_i: K^{\gamma(i)} \cup p^a \to I_i^w$ be an embedding and $r_i: I_i^w \to K^{\gamma(i)} \cup p^a$ a retraction such that $h_i(p^a) = (0, 0, ..., 0, ...)$. Define $h^a: J^a \to I^w$ to be the map such that $h^a|K^{(i)} \cup p^a = h_i$. By Lemma 1, there is a retract of I^a onto $\bigcup I_i^\omega.$ But, for each $i\neq j,\ I_i^\omega\cap I_i^\omega=(0,0,...,0,...)$ and therefore by following the retraction of I_i^{ω} onto $\bigcup I_i^{\omega}$ by a retraction which is, for each i, equal to r_i on I_i^{ω} , we obtain a retraction r^a : $I^{\omega} \to J^a$. This finishes the proof of Theorem 1' and therefore Theorem 1, except for the proof of Lemma 1.

LEMMA 1. Let X be a metric space which is equal to the Cartesian product $\prod_{i \in M} A_i$, where M is finite or countable, and where, for each $i \in M$, there is a deformation retraction h_i of A_i onto $p_i \in A_i$. Then there is a deformation retraction h of X onto $\bigcup_i A'_i$, where $A'_i = A_i \times \prod_{i \neq i} p_i$.

Proof. A deformation retraction of X onto Y is a map $g: X \times [0,1] \rightarrow X$ such that $g(X \times \{1\}) \subset Y$, $g(p,\{0\}) = p$, for all $p \in X$, and $g(y \times [0,1]) = y$, for each $y \in Y$. Let δ be the distance function for X, and define

$$B_i = \{ p \in X | \delta(p, A_i') \leqslant \delta(p, \bigcup_{j \neq i} A_j') .$$

The reader can check that we obtain the desired deformation retraction of X by setting, for $p \in B_i$,

$$h(p,t) = h_i\left(p, \frac{t \cdot \delta(p, A_i')}{\delta(p, \bigcup_{j \neq i} A_j')}\right) \times \prod_{j \neq i} h_j(p, t).$$

4. Proof of Proposition 1. The proof will be by transfinite induction on the maximum of $\operatorname{Ind}(A)$ and $\operatorname{Ind}(B)$. The proposition is known for finite-dimensional spaces (see [3], page 199). Let F and G be any two disjoint closed subsets of X and let U and V be disjoint open subsets such that $F \subset U$ and $G \subset V$. Let U' and V' be open subsets of X such that $F \subset U' \subset U$, $G \subset V' \subset V$, $\operatorname{Ind}(\operatorname{Bd}(U' \cap A)) < \operatorname{Ind}(A)$, and $\operatorname{Ind}(\operatorname{Bd}_B(V' \cap B)) < \operatorname{Ind}(B)$, where Bd_A and Bd_B denote the boundaries in the subspaces A and B, respectively. Let

$$W = \mathrm{Bd}_A(U' \cap A) \cup \mathrm{Bd}_B(V' \cap B) \cup [(A \cap B) - (U' \cup V')].$$

Then W separates F and G in X, and by the induction hypothesis $\operatorname{Ind}(W)$ equals the maximum of

$$\operatorname{Ind}\left\{\operatorname{Bd}_A(U' \cap A) \cup \left[(A \cap B) - (U' \cup V')\right]\right\} = a$$

and

$$\operatorname{Ind}\{\operatorname{Bd}_B(V' \smallfrown B) \smile [(A \smallfrown B) - (U' \cup V')]\} \equiv \beta \; .$$

Making use of the proposition in the finite-dimensional case and the induction hypothesis, we can conclude that α and β are either finite or are $< \operatorname{Ind}(A)$ and $< \operatorname{Ind}(B)$, respectively. But since the proposition is already true for finite-dimensional spaces, we may assume that either $\operatorname{Ind}(A)$ or $\operatorname{Ind}(B)$ are infinite and thus conclude that $\operatorname{Ind}(W)$ is less than the maximum of $\operatorname{Ind}(A)$ and $\operatorname{Ind}(B)$. Because F and G were arbitrary, we have reached the desired conclusion.

5. Proof of Theorem 2. The theorem is obvious if a is finite. If a is a limit ordinal, then $J^a = R^a \cup B^a$, where R^a is the compactum $J^a - \bigcup_{\beta \leq a} (K^\beta - J^\beta)$ and

$$B^a = p^a \cup \bigcup_{\beta < a} A^\beta = \text{Closure} \left(\bigcup_{\beta < a} (K^\beta - J^\beta) \right).$$

If a is equal to $\gamma+k$, where γ is a limit ordinal and k is finite, then $J^a=R^a\cup B^a$, where $R^a=R^\nu\times J^k$ and $B^a=B^\nu\times J^k$. Clearly, $\mathrm{Ind}\,B^a=k+1$. Thus the theorem will follow from Proposition 1 if we can establish

LEMMA 2. Ind $R^a = a$.

Proof of Lemma 2. A comparison of definitions will show that for finite and positive k, $R^{\omega+k} = Q^{\omega+k}$ (ω = the first infinite ordinal) where Q^a is the compactum defined by Smirnov ([1], Definition 2). A straightforward, transfinite induction gives us the conclusion that Q^a is a closed subset of R^a , for all α between ω and Ω . Therefore, by Lemma 8 of [1], we can conclude that $\operatorname{Ind} R^a \geqslant \alpha$. That $\operatorname{Ind} R^a \leqslant \alpha$ follows from Lemma 6 of [1], since R^a is easily shown to be one of the compacta K^a ([1], Definition 3). [Note: there is a misprint in the English translation of [1], Lemma 6; the conclusion of the Lemma should read "Ind $K^{\beta} \leqslant \beta$ ".]

6. Three propositions. These results are needed for the proof of Theorem 3.

Proposition 2. For each $a \ge 0$, every component of $J^a - T^a$ is an open set which is homeomorphic to some finite-dimensional Euclidean space and has as closure (in J^a) a cell, C, of the same dimension. In addition, $C \cap (\text{closure }(J^a - C))$ is a cell.

The proof follows from a straight-forward (transfinite) induction and is left to the reader.

PROPOSITION 3. For each $a \ge 1$, a map $f \colon X \to J^a$ is essential if and only if f is essential when restricted to the inverse images of the closure each of the components of $J^a - T^a$. (See Proposition 2.)

Proof. We shall prove the countra-positive of the proposition. Firstly, suppose that f is inessential when restricted to the inverse image, $A = f^{-1}(C)$, of one of the cells, C, which is the closure of a component of $J^a - T^a$. Then there is a map $g \colon A \to C$ such that g equals f on $f^{-1}(\operatorname{Bd} C)$ and such that $g(A) \neq C$. The map $G \colon X \to J^a$, defined by setting G|A = g and $G|\operatorname{closure}(X - A) = f|\operatorname{closure}(X - A)$, shows that f is inessential.

Secondly, suppose that $f\colon X\to J^a$ is inessential and thus that there exists a map $g\colon X\to J^a$ such that $g(X)\ne J^a$ and $g|f^{-1}(T^a)=f|f^{-1}(T^a)$. For the closure C of some component of J^a-T^a , it must be true that

 $C \not\subset g(X)$. Since (Proposition 2) $C \cap (\text{closure } (J^a - C))$ is a cell, the map $g|(g^{-1}(C) \cap f^{-1}(C))$ can be extended to a map $h: f^{-1}(C) \to C$ such that

$$h|f^{-1}(\operatorname{Bd} C) = g|f^{-1}(\operatorname{Bd} C) = f|f^{-1}(\operatorname{Bd} C)$$

and $h(f^{-1}(C)) \neq C$.

Proposition 4. If $f\colon X{\to}(J^a{\times}J^1)=J^{a+1}$ is essential, X is normal, and Y is a closed subset of X such that X-Y is the union of two disjoint open sets, U,V, each of which contains the inverse image of one of the two components of $J^a{\times}T^1$, then $\pi f|Y\colon Y{\to}J^a$ is essential where $\pi\colon J^a{\times}J^1{\to}J^a$ is the standard projection.

Proof. We first assume that α is finite (and positive, in order to exclude a trivial case). If $\pi f|Y$ is inessential, then there is easily seen to be a map $g\colon Y\to T^a$ such that g agrees with $\pi f|Y$ on $(\pi f|Y)^{-1}(T^a)$. We now define a new map $h\colon (f^{-1}(T^{a+1})\cup Y)\to T^{a+1}$, by setting h equal to f on $f^{-1}(T^{a+1})$ and, for $g\in Y$, letting h(g) be that point of $T^a\times J^1$ whose first a coordinates are equal to g(g) and whose last coordinate is the same as the last coordinate of f(g). Call the two points of T^1 , g and g so that f(g)=f(g)=f(g) and g and g so that f(g)=f(g)=f(g) and g so that

$$h(f^{-1}(T^{a+1}) \smile Y) \cap \operatorname{Cl}(U)$$

is contained in $(T^a \times J^1) \cup (J^a \times u)$, a a-cell, and so we can extend h so that it takes all of U into T^{a+1} . (A closed subset of a normal space in normal.) We can do the same for V and thus extend h to a mapping which takes all of X into T^{a+1} and which agrees with f on $f^{-1}(T^{a+1})$. This is a contradiction, because f is essential. Thus the proposition is true if a is finite. If a is infinite and $\pi f|Y$ is inessential, then there is a map $g\colon Y\to J^a$ which agrees with $\pi f|Y$ on $(\pi f|Y)^{-1}(T^a)$ and such that there is a point $p\in J^a-g(Y)\subset J^a-T^a$. But then p belongs to the interior of one the finite-dimensional cells mentioned in Proposition 2. Restricting f to the inverse image of the closure of this cell, we reach (using Proposition 3) a contradiction of Proposition 4 in the case that a is finite. Thus Proposition 4 is true for all a.

7. **Proof of Theorem 3.** (By transfinite induction). Any mapping of the empty set into J^0 is inessential, therefore X is non-empty and thus $\operatorname{Ind}(X) \geqslant 0$ if $\alpha = 0$. Now assume that the theorem has been proven true for all ordinals less than α . If α is a limit ordinal, then J^{α} is the union of $\bigcup_{\beta < \alpha} J^{\beta}$ and a certain countable collection of arcs. Proposition 3 shows that $f|f^{-1}(J^{\beta}): f^{-1}(J^{\beta}) \to J^{\beta}$ is essential for each $\beta < \alpha$. Therefore X contains closed subsets of dimension $\geqslant \beta$ for each $\beta < \alpha$. Thus, since Ind is monotone on closed subsets, we conclude that $\operatorname{Ind}(X) \geqslant \alpha$, if α is a limit

ordinal. If α equal $\beta+1$, then by Proposition 4 any closed set which separates the inverse image (under f) of one component of $J^{\beta} \times T^{1}$ from the inverse image of the other component has an essential mapping onto J^{β} and therefore that separating set has dimension (Ind) $\geq \beta$. Therefore, by definition, Ind $(X) \geq \beta+1 = \alpha$

References

[1] Yu. M. Smirnov, On universal spaces for certain classes of infinite-dimensional spaces, American Mathematical Society Translations (2) 21 (1962), pp. 21-34. [Translated from: Ю. М. Смирнов, Изв. Акад. Наук СССР, Сер. Мат., 23 (1959), pp. 185-196.]

[2] P. S. Aleksandrov, On some basic directions in general topology, Russian Mathematical Surveys 19 (1964), # 6, pp. 1-39. [Translated from: П. С. Александров, Успехи Мат. Наук 19 (1964), № 6.]

[3] J. Nagata, Modern Dimension Theory, P. Noordhoff N. V., Groningen, (and John Wiley & Sons, Inc., New York) 1965.

CORNELL UNIVERSITY Ithaca, New York

Reçu par la Rédaction le 14. 2. 1967