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Now let @ have a countable member F. For each 2 e ¥, choose a free
z-ultrafilter 5 on Ty = By, 1), converging to «, such that every count-
able subset of Ty is disjoint from some member of Qs. For each ze¢F,
choose Sgze @ such that Sz ~nF =0, in such a way that diam§:-0.
Define §; = Q4|Sz. We now apply Theorem 12.1 with B = ¥, and proceed
as in the first case.

Remark 1. By 12.4 and Corollary 8.2, we can find a nonminimal
nonclosed prime z-filter with no countable member. By Remark 1 fol-
lowing Theorem 13.2, we can find a closed nonminimal prime z-filter
with a countable member. Hence the two alternative conditions used are
independent.

Remark 2. Theorem 15.6 yields an example of a closed nonminimal
prime z-filter with an immediate successor, and provides & counterexample
to the converse of Corollary 10.4(a).

15.7. QuEstioN. When a prime z-filter is the wnion of all its pre-
decessors. does it follow that it is the umion of a chain of predecessors?
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A lower bound for transfinite dimension
by
David W. Henderson (Ithaca, N. Y.)

1. Introduction. In this paper, essential mappings are used to
give a lower bound for the (large, strong) transfinite induetive dimension
of a space. Transfinite inductive dimension (Ind) is defined by transfinite
induction as follows: (See [3], p. 161).

DErFINITION 1. (2) Ind(R) = —1, if B = 0. (b) Ind(R) < a (an ordinal
number) if every pair of disjoint closed subsets of R can be se-
parated by a closed subset S such that Ind(S) < a. (8 separates 4 and B
in B if R— 8 is the union of disjoint open (in E) sets U, ¥V such that AC U
and BCV.)(¢) Ind (R) = aif Ind(R) < aand it is not true that Ind (R) < a.
(d)y B is said to have transfinite dimension (Ind) if Ind(R) exists.

It is known ([3], p. 209) that if a normal space B has an essential
mapping onto the n-cell, I", then Ind(R) > » or Ind(R) does not exist.
(A mapping f: R—I" is essential if there does not exist a mapping ¢: R—
>Bd(I") (Bd = Boundary) such that flf (Ba(I") = glf '(BA(I").) We
shall construct, for each countable ordinal e, a space J* such that (with
“essential’’ suitably defined), if a normal space B has an essential mapping
onto J% then Ind(R) > o or Ind(R) does not exist.

Some of the ideas behind the definition of J* and the proofs below
can be found in [1], § 8, by Yu. M. Smirnov (¥0. M. Cmupros).

2. Results and questions.

DErFINITION 2 (J°, T°% and p°). For each ordinal number a, greater
than or equal to 0 and less than  (the first uncountable ordinal), we
shall define a compact metric set J* with & compact subset T* and a point
p*eT" Let J°= T°= p”= (a point). If a is positive and finite, then
let J* be the a-dimensional cube, T be the (a—1)-dimensional sphere
which is the combinatorial boundary of J% and p* be any point of T°.
If ¢ is not a limit ordinal, then define

J =TT g, = (T )Y (ST TY,  and  pt=p"Txp’.
If a is a limit ordinal, then let K”, for 8 < a, be the union of J* and a half-
open arc Aﬁ, such that A7 ~ J® = p® = (the end point of A®); and define J*
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to be the one-point compactification of the (locally compact) disjoint

union | J K?, T°= J°— {J (J’—T?), and p’ be the compactifying point.
B<a B<a

(Le., neighborhoods of p* are complements (in J%) of compact subsets
of | j E?. Note that each J%, § < a, is joined (in J%) to p® by an are.)

B<a
The main advantage of the J* as compared to the spaces of Smirnoy

(1], § 3, Def. 2) is that Smirnov’s spaces do not satisfy Theorem 1.

TrroreM 1. Each J° is a retract of the Hilbert cube amd therefore
cach J° is an absolute retract (AR).

THEEOREM 2. Ind(J°) = a

DermnrTioN 3 (Essential mappings). A continuous function (mapping
or map) f: X —>J° of a space X onto J° is called inessential if there exists
another map g: X—>J* such that g|f ™ (T%) = fIf *(T% and g¢(X)+J"
Otherwise, f will be called essential.

THEOREM 3. If there is an essential mapping of o mormal space X
onto J°, then Ind(X) > a or Ind(X) does not exist.

It will become clear later that the identity mapping of J° onto itself
is essential; therefore, the inequality in Theorem 3 is the best possible.
It would be very interesting to know if the converse to Theorem 3 is
true, namely:

QUESTION. If Ind(X) > a, does X have an essential mapping onio J°t

The answer is “yes” if X is normal and « is finite; but nothing else
is known even for compact metric spaces. The next question is related
to Alexandroff’s unsolved problem which asks whether each weakly
infinite-dimensional compact metric space is countable-dimensional.
(See [2], Chapter ITI, §1.)

QUESTION. If a compact metric space X has an essential mapping
onto J°, for each a <R, then is X strongly infinite-dimensional¥ (X is
strongly infinite-dimensional if there is a map f of X onto the Hilbert
Cube I° such that, for each finite-dimensional face F of I® fif (F):
fT{F)~TF is essential. Such a map, f, is called an essential mapping
onto I°.)

In proving Theorem 2 the following Proposition is used which may
be of interest in its own right.

ProposTIION 1. Let X be o hereditarily paracompact space which is
the union of two closed subsets A and B. If Tnd (A ~ B) is finite and both
Tnd(4) and Ind (B) exist, then Ind (X) equals the larger of Tnd (A) and Ind (B).

3. Proof of Theorem 1. In order to prove Theorem 1, we shall
prove (by transfinite induction) the following. (We consider I° as the

Cartes{ian product, ‘I, X I,x ;X ...X I;X .., where I, is the interval
[0,2771)
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THEOREM 1'. For each o > 0, there is an embedding h%: J°—1" of J*
into I? and & map 7*: I°>h(J") such that B*(p°) equals the point all of
whose coordinates are zero and such that r*(p) = p, for all p e K(J).

Proof. The theorem is trivialy true for a = 0. Assume inductively
that the theorem is true for all § < e. In the case that a= y+1, we
know by the inductive hypothesis that J” can be embedded (by a map k)
in I” so that A(p*) = (0,0,..,0,..) and so that there is a map r: I” >
—>h(J”) such that r(p) = p, for all p  A(J"). Now, I x I” is homeomorphic
to I” under a homeomorphism % such that

5(0;0,0,.0,0,...0=(0,0,0,...,0,..);

and the map s: IXI“>IXhk(J"), defined by s(t,p)=1ixr(p), is
a retraction onto IXh(J') which is homeomorphic to J**'=J°
under a homeomorphism which takes

E10,0, ..., 0, ...} = 0 X h(p*)

onto the point pe. 'We now only have to check the theorem in the case
that a is a limit ordinal.

For each % e N, let N (i) be some infinite subset of the set of natural
pumbers, N, such that, for ¢ + j, N (i) is disjoint from N(j) and such
that N = N(1)uv N(2) U ...u N (i) v ... Note that, for each i, .

I= {(D1s Doy Doy ey Piy o2) €IDIPJ= 0, for je N—N(i)}

is homeomorphic to I”. Let {y(i)|4 € N} be the set of all ordinals less than a,
where we have indexed this set by the natural numbers. From the in-
ductive hypothesis we know that there is an embedding B 01
and a retraction #@: I? >k (J"?). Combining this retraction with Lemma 1
below, we conclude that there is a retraction

it IXIP>[I% (0,0, ...y 0,..0] w [{1} X (™),

where the image space is homeomorphie to B9 2% (See Reﬁnition 1.)

Let he: B Up®—I2 be an embedding and ri: I3 —E"" v p® a re-

traction such that hi(p%) = (0,0, ..., 0,...). Define & J*+I" to be the

map such that B E"® u p® = h;. By Lemma 1, there is a retract of I

onto | JI%. But, for each i+ j, If ~n I = (0,0,..,0,..) and therefore
i

by following the retraction of I7 onto U I by a retraction which is, for

each 4, equal to r; on I%, we obtain a retraction r": I? »J° This finishes
the proof of Theorem 1’ and therefore Theorem 1, except for the proof
of Lemma 1.
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LeMMA 1. Let X be a melric space which is equal to the Cartesian
product [] A;, where M is finite or countable, and where, for each ie M.
ieM

there is o deformation retraction hs of Ai onto Py e Ar. Then there is a defor-

mation retraction b of X onto { A, where 4;= Aq xig 5.
(131 1

Proof. A deformation retraction of X omto Y is a map g
Xx[0,1]>X such that g(Xx{I})CE, g(p,{0})=2p, for al peX,
and g(yx[0,1]) =y, for each ye Y. Let & be the distance function
for X, and define

Bi= (p e X| (p, 49) <8(p, ) 43)

The reader can check that we obtain the desired deformation retraction
of X by setting, for p € By,

t-0 AN
hip,t) = hi(?’ﬁ—ﬂ)))xll h(p, 1) .
\ =i i#i

4. Proot of Proposition 1. The proof will be by transfinite
induction on the maximum of Ind(4) and Ind(B). The proposition is
known for finite-dimensional spaces (see [3], page 199). Let F and &
be any two disjoint closed subsets of X and let U and V be disjoint open
subsets such that FC U and ¢ CV. Let U’ and V' be open subsets of X
such that FCU'CU, GCV'CV, Ind(BANU ~A4)) <Ind(4), and
Ind (Bdz(V' ~ B)} < Ind(B), where Bds and Bdg denote the boundaries
in the subspaces 4 and B, respectively. Let

W = Bd(U' ~ A) w Bds(V’ ~ B) G[(4d ~ B)—(U" © V')].

Then W separates F and ¢ in X, and by the induction hypothesis Ind (W)
equals the maximum of

Ind{Bds(U' ~ A) v [(4d ~ B)—(U" v V)=«
and

Ind{Bds(V' ~ B) v [(4 ~ B)—(T' v V)]} = 8.

Making use of the proposition in the finite-dimensional case and the
induction hypothesis, we can conclude that « and g are either finite or
are < Ind(4) and < Ind(B), respectively. But since the proposition is
already true for finite-dimensional spaces, we may assume that either
Ind(4) or Ind(B) are infinite and thus conclude that Ind (W) is less than
the maximum of Ind(4) and Ind(B). Because F and G were arbitrary,
we have reached the desired conclusion.

.
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5. Proof of Theorem 2. The theorem is obvious if « is finite.
If @ is a limit ordinal, then J°= R"u B°, where R® is the compactum
J*— | (Ef —J%) and
f<a

B* = p"u |J 4" = Closure (| (B*—J%) .
B<a B<a

If ¢ is equal to y-+ %, where y is a limit ordinal and k is finite, then
J°=R"u B, where R*=R'XJ* and B®= B'xJ*. Clearly, IndB°
= k+1. Thus the theorem will follow from Proposition 1 if we ean
establish

Levva 2. IndR* = a.

Proof of Lemma 2. A comparison of definitions will show that
for finite and positive k, R°"* = Q"% (w = the first infinite ordinal)
where Q° is the compactum defined by Smirnov ([1], Definition 2).
A straightforward, transfinite induction gives us the conclusion that @°
is a closed subset of R", for all  between w and Q. Therefore, by Lemma 8
of [1], we can conclude that IndR*> ¢. That IndR’ < e follows from
Lemma 6 of [1], since R* is easily shown to be one of the compacta K~
([1], Definition 3). [Note: there is a misprint in the English translation
of [1], Lemma 6; the conclusion of the Lemma should read “Ind K® < $7.1

6. Three propositions. These results are needed for the proot
of Theorem 3.

PROPOSITION 2. For each a = 0, every component of J*—T° is an open
set which is homeomorphic to some finite-dimensional Euclidean space and
has as closure (in J°) a cell, C, of the same dimension. In addition, €' ~ {elo-
sure (J°—C)) is a cell.

The proof follows from a straight-forward (transfinite) induetion
and is left to the reader.

PROPOSITION. 3. For each a>1, a map f: X -»J° is essential if and
only if f is essential when resiricted to the inverse images of the closure each
of the components of J*—T". (See Proposition 2.)

Proof. We shall prove the countra-positive of the proposition.
Firstly, suppose that f is inessential when restricted to the inverse image,
4 =F7Y0), of one of the cells, ¢, which is the closure of a component
of J*—T° Then there is a map ¢: 4 - such that g equals f on Fi®ac)
and such that g(4) # €. The map G: X —J" defined by setting GAd=g
and @|closure (X — 4) = flclosure(X —4), shows that f is inessential.

Secondly, suppose that f: X —J is inessential and thus that there
exists a map ¢: X—J° such that g(X)#J° and gf T = fIf NTY-
For the closure ¢! of some component of J*—T° it must be true that
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¢ ¢ g(X). Since (Proposition 2) € ~ (closure (J*—0)) is a cell, the map
allg™(C) ~ f7I(C)) can De extended to a map h: F{0)—+C such that

RIFTH(BAO) = ¢If (BAC) = fif (BAC)

and h{f7NC)) = C.

ProPOSITION 4. If f: X~ (J*XJ') = J*7 is essential, X is normal,
and Y is a closed subset of X such that X~ Y is the union of two disjoint
open sets, U, V, each of which contains the inverse image of ome of the two
components of J*x T', then nf|¥: ¥ ~J* is essential where m: By SV AN
is the siandard projection.

Proof. We first assume that ¢ is finite (and positive, in order to
exclude a trivial case). If =f|Y is inessential, then there is easily seen
to be a map g: ¥ -»T° such that ¢ agrees with xf|¥ on (af|X) T, We
now define & new map h: (f(I°*) w T) ~T*"", by setting & equal to f on
=31 and, for y € ¥, letting h(y) be that point of T°x J* whose first o
coordinates are equal to g(y) and whose last coordinate is the same as the
iast coordinate of f(y). Call the two points of T, u and v, so that
UDf ™ J*xw) and VD f YJ*xv). Now

hf(f“(T’“) v ¥) - QD))

is contained in (T%xJ%) v (J*X %), a a-cell, and so we can extend h so
that it takes all of U into T°*'. (A closed subset of a normal space in
pormal.) We can do the same for V. and thus extend % to a mapping which
takes all of X into 7*** and which agrees with f on f~*(Z**"). This is a con-
tradiction, because f is essential. Thus the proposition is true if « is finite.
If'a is infinite and #f|Y is inessential, then there is a map ¢g: ¥ —J which
agrees with af|Y on (sf|¥Y)"(T%) and such that there is a point ped--
~-g(Y)CJ*—T" But then p belongs to the interior of one the finite-
dimensional cells mentioned in Proposition 2. Restricting f to the inverse
image of the closure of this cell, we reach (using Proposition 3) a con-
tradietion of Proposition 4 in the case that o is finite. Thus Proposition 4
in true for all a.

7. Proof of Theorem 3. (By transfinite induction). Any mapping

of the empty set into J° is inessential, therefore X is non-empty and.

thus Ind (X) = 0 if « = 0. Now assume that the theorem has been proven
true for all ordinals less than o. If « is a limit ordinal, then J° is the union
of |JJ° and a certain countahle collection of ares. Proposition 3 shows

f<a
that f]f~ YJIP): I ->J? is essential for each B < a. Therefore X con-
taing closed subsets of dimension > § for each 8 < a. Thus, since Ind is
monotone on closed subsets, we conclude that Ind(X) > a, if a i a limit

©

Lower bound for transfinite dimension 173
ordinal. If a equal f-41, then by Proposition 4 any closed set which
separates the inverse image (under f) of one component of J°x T* from
the inverse image of the other component has an essential mapping
onto J? and therefore that separating set has dimension (Ind) > 8. There-
fore, by definition, Ind(X) > +1 = a.
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