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3.2. If M is an is.s. of topological space X between points a and b,
and if H is a clopen subset of X—M such that a e H but b ¢ H, then each
point p of M either is a limit point of H or is such that {p} has @ limit point
in H. *

4. TusOREM. Any irreducible separating set M of a topological space X
is the union of two disjoint sets (not always non-empty) one of which is open
and the other closed.

Proof. The closed set is H ~ K. For a point p in M—(H ~ K),
the lemma guarantees a limit point of {p} in H and another in K. Then
the intersection W of suitable neighborhoods of each satisfies

peWCM——(EnK).

Incidental use was made of this result in the author’s University
of Wisconsin Ph. D. thesis, partly supported by N. 8. F. through the
Research Participation for College Teachers program (University of
Oklahoma, summer 1963) and through A. Y. BE. grant GE-2687.
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Prime :-ideal structure of C(R)
by

Mark Mandelker * (Rochester, N. Y.)

Introduction. In the study of the ideal structure of the ring C(X)
of all real-valued continuous funetions on a topological space X, a special
role is played by the class of z-ideals. A #-ideal is an ideal that is maximal
with respect to the sets of zeros of its members. Maximal ideals are
z-ideals, and every z-ideal is an intersection of prime ideals. These and
other basic facts concerning the algebraic structure of C(X) are found
in the Gillman and Jerison text Rings of Continuous Functions [GJ].
Barly results concerning the prime ideal structure of C(X) are summarized
and extended in [GJ], Chapter 14. For example, a prime ideal is contained
in & unique maximal ideal; in fact, the prime ideals containing a given
prime ideal form a chain. Later results are found in [GJ], [FG], and [K].

Of special interest is the family of prime z-ideals. For example,
minimal prime ideals ave z-ideals, and prime z-ideals have interesting
connections with the topology of the space. In the case of a completely
regular Hausdorff space X, prime z-ideals in O(X) are related to con-
vergence problems in the Stone-Cech compactification fX.

In this work we consider the real line R and examine the prime
s-ideal structure of C(R). However, some basic results are obtained in
Part I for a completely regular Hausdorff space. The main results for
the real line are obtained in Part II. The main effort is directed toward
the determination of the order types of chains of prime z-ideals in C(R).

We find that the prime z-ideal structure contrasts greatly with the
prime ideal structure. For example, although every maximal chain of
prime ideals, of cardinal greater than one, has cardinal at least 2% and
contains 7, -sets, we shall demoinstrate, assuming the continunm hypothesis,
the existence of maximal chains of prime z-ideals in C(R) of all cardinals m
with 1 << m << . In fact, we characterize all countable decreasing well-
ordered maximal chains; they exist precisely for all countable ordinals

* The results of this paper were obtained in the author’s 1966 Rochester dissertation.
The author is deeply grateful to Professor Leonard Gillman, who suggested the problem
and offered valuable, stimulating advice and encouragement.
This work was supported by the National Science Foundation.
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not i or A+1, where 1 is a limit ordinal (Theorem 13.3). The case m =
yields & maximal ideal in C(R) that containg no other prime ideal. In
contrast, there is no such maximal ideal in the subring C*(R) of bounded
continnous functions or in the ring C([0,1]).

Minimal prime ideals in O(R) are characterized as those for which
each member vanishes on some nonempty open set (Theorem 8.1). It is
shown that the intersection of a countable chain of nonminimal prime
2-ideals is never minimal (Theorem 8.4).

Concerning the lengths of chains of prime z-ideals in C(R), we show
that there exist uncountable decreasing well-ordered chains (Theorem 8.5),
and there exist countable increasing well-ordered chains for every countable
ordinal (Theorem 14.1). The question of uncountable increasing well-
ordered chains is open (Question 14.2). Other questions are also raised.

Other results concern the predecessors, in the family of all prime
z-ideals, of a given prime z-ideal in ¢'(R). A large class of prime z-ideals
is found for which every predecessor is-contained in an immediate prede-
cessor (Theorem 10.6). In contrast, there exists a prime z-ideal that has
an immediate predecessor but also a predecessor that is contained in no
immediate predecessor (Corollary 14.3). A fundamental result is that
every nonminimal prime z-ideal has a family of predecessors that is
order-isomorphic with the family of all prime z-ideals (Theorem 12.8).

The structure of the prime z-ideals in ¢(R) is the same as the structure
of the prime z-filters on R; it is convenient to study these directly, thus
all the discussion is in terms of prime z-filters.

The methods used are primarily set-theorefic considerations in-
volving ultrafilters on R, the topology of R, and the Stone-Cech com-
pactification SR.

PAarT I. Completely regular spaces

Many of the basic properties of prime z-ideals in C(R) are also valid
for an arbitrary topological space Y. However, since ((¥) is isomorphic
with C(X) for some completely regular Hausdorff space X ([GJ], 3.9),
it suffices to consider only completely regular Hausdorff spaces.

1. Preliminaries. In all of the following, inclusion is denoted
by C and C is reserved for proper inclusion.

Throughout Part I, X denotes & completely regular Hausdorff space.
In this and the next section, we recall some basic concepts developed
in [GJ].

L.1. C(X) will denote the ring of all real-valued continuous functions
on X For f « 0(X), the zero-set Z(f) of f is the set of points of X at which f
vanishes. The family Z(X) of all zero-sets in X iz a- lattice and forms
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a base for the closed subsets of X. The zero-set-neighborhoods of a point
in X form a base for the neighborhoods of the point.

A z-filter on X is a nonempty family of nonempty zero-sets that is
closed under finite intersection and supersets. The union and intersection
of a chain of z-filters are also z-filters. A z-ultrafilter is a maximal z-filter.
The z-filter generated by a z-filter & and a zero-set Z that meets every
member of ¥ is denoted by (F, Z); it is easily seen that

(F,Zy={W eZ(X) for some FeF, F~AZCW;.

1.2. A z-ideal in O(X) is a proper ideal I that contains a function f
in ¢(X) whenever Z(f) = Z(g) for some g in I. A z-ideal is characterized
algebraically as a proper ideal I -that contains a function f in C(X)
whenever f belongs to the same maximal ideals as some function in I.
Minimal prime ideals are z-ideals.

For every ideal I of C(X), the family Z[I]= {Z(f): fe I} is a z-filter
on X, and T[Z[I]]: {geC(X): Z(g)eZ[I]} is the smallest z-ideal
containing I. The mapping I--Z[I] is an order-isomorphism from the
family of all z-ideals in O(X) onto the family of all z-filters on X. This
mapping yields a one-to-one correspondence between the maximal ideals
of (¢(X) and the z-ultrafilters on X.

1.3. Let X be dense in a completely regular Hausdorff space T.
A z-filter F on X converges to a point p in T if every neighborhood of »
contains a member of F. For every point p in T there is at least one
z-ultrafilter on X converging to p. If T is compact, every z-ultrafilter
on X converges to a point of T.

The Stone~Cech compactification of X, denoted by X, is a compact
Hausdorff space such that X is dense in fX and distinet z-ultrafilters
on X converge to distinet points of X. These properties characterize fX.

The z-ultrafilter on X converging to a point p in AX is denoted
by AP, and is given by

M ={Z eZ(X): peclixZ).
For each p e pX, the family
O = (ZeZ(X): peintgxelpxZ)
is u z-filter on X. When necessary, we write 0%, etc. In the case that p
is in X, AP consists of all zero-sets containing p and 07 is the family of
all zero-set-neighborhoods of p.

A z-filter is fized if its members have a point in common, otherwise
it is free. The z-ultrafilter A7 is fixed if and only if p is in X.

2. Prime z-ftilters. A z-filter F is prime if whenever the union
of 1wo zero-sets is in F. then one of them is in . Throughout the paper,
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§,Q,d,, ... denote prime z-filters. The family of all prime #z-filters on X
is denoted by P(X).

A prime z-filter is minimal if it is a minimal element of P(X). If
$CQ, we say that § is a predecessor of @ and that Q is & successor of 7.
Tn the case where § C @ and there is no prime z-filter between them,
we use the terms immediate predecessor and immediate successor.

2.1. The order-isomorphism I ->Z[I] maps the prime z-ideals of 0(X)
onto the prime z-filters on X, thus the prime z-ideal structure of 0(X)
is the same as the structure of P(X). For each resull stated in terms of
prime z-fillers, the ccrresponding statement concerning prime z-ideals s
also valid. . '

Every z-ultrafilter is prime. The union and intersection of a chain
of prime 2-filters are also prime. A prime z-filter is contained in a wnique
z-nltrafilter; when @ C M, Q is fixed if and only if p e X.

For any z-filter ¥, the following are equivalent: (a) & is prime.
{b) ¥ contains a prime z-filter. (¢) If the union of two zero-sets is all of X,
then one of them is in &. (d) The prime z-filters containing F form a chain.
(e) The z-filters containing F form a chain.

‘When X is dense in a completely regular space T and p e T, a prime
z-filter § on X converges to p if and only if p e clpZ for every Z ¢ 4.

For Qe P(X) and p € pX, the following are equivalent: (a) @ con-
verges t0 p. (b) QC M. (¢) O C Q.

Let p e BX. The prime 2-filters contained in J form a chain if and
only if 07 is prime. The z-ultrafilter 47 is a minimal prime z-filter if
and only if M7= 0",

2.2. It is clear that a prime z-filter ¥ has an immediate successor
if and only if it is not the intersection of its successors. In this case, the
immediate successor is unique and will be denoted by §7.

23. Let $CQ. Then Q=9" if and only if Q= (F,F) for every
FeQ—9. .

Prooi. The necessity is clear. Now let @ = (7, F) whenever F' ¢ Q—f.
‘.Ilf:ﬂ‘gg‘i?’ CQ, then for any F ef'—F we have Q= (7, F) C 9. Hence

2.4. Q has an immediate predecessor if amd only if there ewist f CQ
and F ¢ Q such that Q = (3, F).
Proof. The necessity is clear. Conversely, let C @, FeqQ, and
Q = (ﬂ”,F?. ]s’ollcwmn,c,l.r (GJIJ, 3.7, let T, be the union of the chain of all
prime z-filters containing § but not F; it is clear that Q = 5 .
) 2.er The followi'{zg are equivalent: (a) Ewvery predecessor of Q is con-
tained in an immediate predecessor. (b) Q is mot the umion of o chain of

grede(c;ssovs. (¢) For every predecessor § of Q there is an F e @ such thot
= ).
E
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Proof. (b) implies (a). X ¥ is a predecessor of @, and ¥, is the
union of the chain of all predecessors of Q containing «f, then clearly
Q=147.

(a) implies (¢). Let § CQ, and choose #, so that ¥ C ¥, and & — 47 .
Choose F € Q—,. Since ¥, and (F, F) are comparable, but F ¢, we have
§,C(F, F) C @, and thus (¥, F) = Q.

(¢) implies (b). Suppose that @ is the union of a chain Q of predecessors.
Choose any ¥, € Q and choose F e Q such that @ = (F,, F'). Choose ;¢ Q
such that Fed,. Since F ¢T,, we have ,C#,. Thus Q= (§,. F) C T,
contradicting the choice of ¥,. '

Remark. There is a prime z-filter that satisfies the conditions
of 2.4 but not those of 2.3; see Corollary 14.3.

3. Co-ideals. A proper dual ideal in a lattice L is prime if and only
it it is the complement-of an ideal. Thus the proper prime dual ideals
(e.g., the prime z-filters in the lattice Z (X)) correspond to the decomposi-
tions L = D v I, where D ~I = 0, D is a dual ideal, and I is an ideal.
M. H. Stone has studied these decompositions in the case where L is
distributive; in this section his results are applied to Z (X).

The main fact about co-ideals (see definition helow) in Z(X) is that
svery co-ideal contains a prime z-filter. This will be applied in Section 4:
if & prime z-filter properly contains a co-ideal, then we know that it has
a predecessor. Among other applications of co-ideals is the construction
of increasing sequences in Section 14.

3.1. A nonempty subset of a lattice L will be called a co-ideal in L
if its complement is an ideal. Thus 2 co-ideal in Z(X) is a nonempty
tamily of nonempty zero-sets that is closed under supersets and that
contains at least one of a pair of zero-sets whenever it confains their
union.

32. Let D be a eco-ideal in Z(X). (a) D contains a prime z-filter.
(0) If Z is a member of D, then D contains @ prime z-filter containing Z.
(¢) If F is a z-filter contained in D, then D contains a prime z-filter con-
taining F. (d) If F is o z-filter that is maximal among the z-filters eon-
tained in D, then F is prime. ([St], Theorem 6.)

Proot. We first prove (d). Let Zy, Z; ¢ Z(X) with Z, v Z, ¢ F. Suppose
Zi ¢ F, i= 1,2 For each i, there is WieJ such that Win Z; ¢ D, for
otherwise & C (F, Zi) C D, contradicting the maximality of . Define
W=, W, Thus W~ Zi¢D, i=1,2, and hence W A (Z; v Z;) ¢ D.
Thus W ~ (Zyw Z,) ¢ Fso WeTF, contradicting the choice of W, and W..
This completes the proof of (d). Now (c) follows from (d) and Hausdorff’s
maximal principle. For (b), we apply (¢) to the z-filter generated by Z.
Finally, (a) follows immediately from (b).
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4. Nonminimal prime z-filters. The construction of decreasing
sequences requires a supply of nonminimal prime »-filters. We give
a characterization of these in Corollary 4.4; it will be used in Section 8
to obtain a simpler characterization in the case ‘of the real line.

4.1. For any ¥ C X, we define
5(B) = {Z < Z(X): ECZ}.

This 2-filter replaces, for arbitrary X, the single zero-set clE that we
associate with F in the case of the line.

4.2. TaeEoREM. Let F be a member of Q, and let Z be any zero-set.
Then Z is a member of some predecessor of Q mot containing F if and only
if 3(Z—F) C Q.

Proof. Let § be a predecessor of @ not containing ¥, with Z 9.
¥ Wes(Z—F), then Z CF v W, so that F v W «7; hence W ¢¥. Thus
s(Z—F) C a.

Conversely, let z(Z—#) C Q. We define

§= (WeZ(X): 53(W—F)Ca}.

1t is clear that & is a nonempty family of nonempty zero-sets that con-
tains Z but not F. Let W be a member of § and T a zero-set with W C T.
Clearly z(T'—F) C s(W—F) and hence 7' belongs to §. Now let Wy, W,
be zero-sets not in 8. Choose Tiez(W;—F) with T:;¢Q, for i=1,2.
Clearly T) T, e 2((Wy v W;)—F) with T, w T, ¢Q so that Wy u W, ¢&.
Thus § is a co-ideal in Z(X) that contains Z but not F. By 3.2(b), & con-
tains a prime z-filter §* that contains Z but not F. If W € §, then since
VfVe (W —F), we have W ¢ @; thus § C @. It follows that 7 is a predecessor
of Q.

4.3. CoROLLARY. A zero-set Z is a member of some predecessor of Q
if and only if there exvists F ¢ Q such that s(Z—F) C Q.

4.4. CoROLLARY. Q is nonminimal if and only if there ewists FeQ
such that (X —F) C Q.

4.5. CoROLLARY. If a prime z-filter has a nowhere dense member,
it 18 nonminimal.

Remark 1. A special case of Corollary 4.5, for a z-ultrafilter or
4 prime z-filter with an immediate successor, is found in [K], p. 238.

Remark 2. The converse to Corollary 4.5 does not hold generally.
An‘example may be given as follows. Let X be the one-point compactifi-
cation of an uncountable discrete space 8. It is easy to see that 4™ consists
of the subsets of X that contain co and have countable complements,
while 0% consists of those with finite complements. Thus G is non-
minimal, but every member of 4> meets 8, and hence has nonempty
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interior. (This example iy used in [K], p. 238.) However, the converse
is true for real line, see Theorem 8.1.

5. Traces and induced zfilters. If T C X and § is a z-filber
on Y, it is clear that

FH o {ZeZ(X): ZnYeF)

is a z-filter on X; it is called the z-filter induced on X by F. B & is prime,
then it is easy to see that % i5 also prime.
If YCX and & is a z-filter on X, then

FIT=4{Zn~Y: ZeF}

is called the trace of ¥ on Y.

We say that a subspace Y of a space T'is 2- embedded in T if for every
% ¢ Z{Y), there exists W e Z(T) such that Z = W A~ Y. Any C*-embedded
subspace is z-embedded; thus X is z-embedded in pX.

5.1. Let Y be z-embedded in X. If F is a z-filber on ¥, it is easily
seen that .‘F#]Y= F. Tt follows that P(¥) is order-isomorphic with
a subfamily of P(X).

5.2. TemoREM. If Y is z-embedded in X and F iz a 3-filter on X
every member of which meets Y, then & |Y is @ z-filier on X; if & is prime,
so 48 F|Y.

Proof. It is easy to verify the first statement. Now let F be prime
and let Z, W eZ(Y) with Z v W= Y. Choose 8, TeZ(X) such that
Z=8~Y, W=TnY. Clearly ¥ C(F |T)%; it follows that (F ]I’)'*‘E #ixs
prime. Since (S v T) ~n ¥ =%, wehave S w T e (:TIY)#. If, say, S e (FIY)™,
then Z ¢ F1Y. Hence F|¥ is prime.

53. Let p e pX. (a) 0" = 0| X. (b) Ofx = (0P () O is prime if
and only if Ofx is prime. ([GJ], 7.12(a), 2B.1.)

Proof. (b) follows from [GJ], 7.12(a); (a) from (b) and 5.1; and (¢)
from Theorem 5.2.

6. Associated ultrafilters. An important tool used in the eon-
struction of immediate predecessors in Section 12 is a result of [GJ] relat%ng
prime 2-filters with ultrafilters, it is restated below in 6.4. An extension
that will be needed in seetions 13 and 15 is given in Theorem 6.2.

For any ultrafilter U on X, we define

it, is easy to verify that z(U) is a prime z-filter on X. If Q= z(V), we
say that U is associated with Q.
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6.1. If D is a co-ideal in 2% and B is & member of O, then D contains
an ultrafilier containing H; and if a filter & is contained in D, then D con-
Tains an ultrafilter that contains F. (See 3.2).

6.2. THEOREM. @ has an associated wulirafilter
set. B if and only if 2(Z ~E) CQ, for all Z Q.

Proof. The necessity is clear. Oonvérsely, let z(Z ~ B) C Q, for all
ZeQ. Define D= {§ C X: 2(8 ~ B) C Q). It is easy to Verif%r“ that D is
a co-ideal in 2%, and that the filter ¥ on X generated by @ and is con-
tained in D. By 6.1 there is an ultrafilter U on X with F C U C D: i,
follows that £ eV and @ = z(V) -

containing o given

6.3. CoroLLARY. Let Q = ’WJ Qi, where J is any index sel. If By is
1€,

a member of some ultrafilter associated with Q;, for each iy then B = | ) B;
] ) i€y
1.0 member of some wlirafilter associated with Q. b

Proof. Let Z ¢Q. For all 4, 5(Z ~ By) C 9, and thus 7
B y s als i}
C Q. Hence 5(Z ~ F) C Q. = tehe @)

6.4. Buery prime z-filter has at least one associated (! [
e associated ultrafilier. ([
14F.1). (Apply Theorem 6.2 with B — X.) g e

4]

PART II. The real line

‘ Attention if§ novt' restricted to the space of major interest. However
each result obtained in Part IT for the real line may be extended to metri(z.

¢ i . P & 2
spaces with various restrictions In par [;ICUIQJ, each res alt s Vﬂhd n any

7. Preliminaries. For p ¢R and 1 - 0, we nse the notation

B(p,7)= {weR: o(p, o) <1},
Byp,r)= B(p,r)—{p}.

v <) e 1

;gﬁ:glﬁ Z(IB) Is now the lattice of all closed subsets of R. For applica-

o ! bvethme;_ we may now replace the condition z(E) C Q, used in

iy ; by the simpler c})ndltlon clE Q. For any ultrafilter U on R
¢ prime z-filter z(VU) is now given by z(V) = {clB: Fean 7

subspace of R is z-embedded. P Bven

The derived set of B is denoted by E'.
say that @ is closed.

'}‘he cardinal of R is denoted by ¢
are 2° prime z-filters on R, and 2%
is designated by [CH].

If Z' eq for every % €, we

thus the cardinal of AR is 2°, there
ultrafilters. The contintum hypothesis
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A chain of prime z-filters is said to be full if it contains with each
pair of its elements, all prime z-filters between them. Thus a chain is
maximal if it is full and has a z-ultrafilter as greatest element and a mini-
mal prime z-filter as least.

We denote by P*(Y) the family of all free prime z-filters on a space Y.

7.1. A prime z-filter is free if and only if each of its members is un-
bounded.

Proof. If p is a point Delonging to each member of Q, then the
bounded set B(p, 1) is a member of Q. Conversely, if @ has a bounded
member F, then F is compact, and it follows that @ is fixed.

7.2. Let u{Q) denote the number of ultrafilters associated with Q.
Clearly u(M°) =1 when p ¢R. On the other hand, since there atre 9%
ultrafilters, but only 2° prime z-filters, it is easily shown that there is
a prime z-filter @ with u(Q) = 2%.

7.3. QUESTION. What other cardinals occur as 1u(Q)?

7.4. For any p R and v >0, P*(Ba(p, 7)) 48 order-isomorphic with
P*R).

Proof. Since By(p, r) is homeomorphic with the subspace ¥ = { « R:
o(p, ®) > r}, it follows that P*(By(p,r)) is order-isomorphic with P*T).
Finally, it is easy to verify that g 9% iz an order-isomorphism from
P*(Y) onto P*R).

7.5. For any p € R, the family of predecessors of M is order-isomorphic
with P*R).

Proof. It is easy to verify that §->F|By(p, 1), where §C MP, s an
order-isomorphism into P*(Byp, 1)); by 5.1, it is onto. The conclusion
now follows from 7.4. :

8. Nonminimal prime z-filters. In this section we characterize
a nonminimal prime z - filter as one that has a nowhere dense member. A fun-
damental result is that the intersection of a countable chain of non-
minimal prime z-filters is also nonminimal. We use this to demonstrate
the existence of uncountable decreasing sequences. ’

8.1. THEOREM. A prime z-filter is nonminimal if and only if @ has
a nowhere dense member.

Proof. Tet @ be nonminimal. Choose $CQ and Ze@—4. Since
R=Zucl(R—2Z) with Z ¢4, we have cl(R—Z)ed. Thus the nowhere
dense set bdryZ = Z ~cl(R-%) is in Q. The sufficiency is a special
case of Corollary 4.5.

8.2. COROLLARY. Hvery nonminimal prime z-filter has @ nonelosed,
nonminimal predecessor.
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Proof. Let @ be nonminimal and choose a nowhere dense set F Q.
Choose a discrete set D such that D’ = F and define G = ¢l D. It is clear
that ¢l(G—F) Q. By Theorem 4.2, @ has a predecessor § containing &
but not F. Since ¢' = F, 7 is nonclosed, and since & is nowhere dense,
4 is nonminimal.

Remark. For any nowhere dense FeQ, there is a predecessor
of @ with a member G such that ¢' = F.

83. COROLLARY. Hvery nonminimal prime z-filter has RONCOMPa-
rable predecessors.

Proof. Let @ be nonminimal and choose a nowhere dense set F e Q.
Choose disjoint discrete sets D, and D, such that Di= P, for 4 = 1,2,
and define Gy =clD;. As in 8.2, @ has a predecessor 7; containing Gy
but not F, for i=1,2. Since G; ~n G,=F, ¥, and T, are noncom-
parable.

8.4. TurorEM. The intersection of & countable chain of nonwminimal
prime z-filters is also nonminimal.
Proof. We index the chain by N: {Qulnen, and define @ = ) @,.

neN
For each #, choose a nowhere dense set FyeQ,. By 7.5, it suffices to

consider the case in which Q is free. Define Z, — R—(—=n,n). By 7.1,
Zn € Qu; hence we may assume that F, C Za, for all n. Since the family
{Zu}nex is locally finite, F = U Fn is closed and nowhere dense; clearly

neN ’
Fea.

Remark 1. If each element of the chain has a countable member,
then so does the intersection of the chain, If each element of the chain

contains a subset of a fixed set K, then the intersection also contains
4 subset of K.

Remark 2. On a different space, there is an example of a decreasing
w-sequenee with minimal intersection (K], Example 2); this shows
that Theorem 8.4 does not extend to arbitrary spaces.

8.5. THEOREM. Hvery mnonminimal prime

a-filter has a decreasing
wy -sequence of predecessors. :

Proof. The construction proceeds by transfinite induetion, using
Corollary 8.2 and Theorem 8.4.

‘9. Minimal prime z-filters. In this section we discus
basic properties of a minimal prime z-
and its associated ultrafilters.

9.1. THEOREM. Let Q be .minimal. Then
Z €Q, we have el(int.Z)

5 S0INe
filter, its relation to its successors.

) () Q s closed; (ii) for each
€Q; and (iii) Q is generated by its regular members.

©
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Proof. Let Ze@. We have Z=bdryZ v cl{intZ), with bdryZ
nowhere dense; hence cl(intZ) ¢ Q. Since cl(intZ) C Z’, we have Z'¢Q.
Finally, cl(intZ) is regular and is contained in Z.

0.2. THEOREM. There is & minimal prime s-filter that is the inter-
section of its successors. Under [CH], it is the intersection of a decreasing
wy-Sequence of Successors.

Proof. By transfinite induction, we define a decreasing -seql.lence
(Q4)e 0f nonminimal prime z-filters, using Corollary 8.2 and tak.m‘g inter-
sections ab limit ordinals. The process must terminate with a minimal &,
with 2 o limit ordinal. It is clear that Q, is the intersection of its successors.
By Theorem 8.4, 4> ;. It is easy to see that ca{df. < carc".lZ.(R) =¢
Under [CH], cardi= ¥, so that by Theorem 8.4, 4 is the limit of an
increasing o, -sequence of lesser ordinals. The last statement now follows.

Remark 1. In Theorem 12.6 we construct, under [CH]J, a minimal
prime z-filter that is not the intersection of its successors.

Remark 2. Theorem 13.2 will show that the intver§e(.:tion of a de-
creasing o;-sequence of prime z-filters is not always minimal. ‘

9.3, If Q is minimal and B is any dense set, thef{z Q has an'assocwted
ultrafilter containing E; hence Q has af least ¢ associated ultrafilters, each
with a countable member.

Proof. Let Z Q. We have cl(intZ) C cl(Z ~ E). 'I-‘hus, by T%wu-
rem 9.1, cl(Z ~ E) e Q. By Theorem 6.2, Q has an a_ssoelated ultrafilter
containing E. Since we can find a family of ¢ d:lslomt countable dense
sets in R, we obtain ¢ associated ultrafilters, each with a countabI'e member.

9.4, [CH]. There is a minimal prime 2-filter with an associated ulira-
filter that has no countable member.

Proof. Under [CH], there exists an uncountable sgt E such that
B ~ T is countable for every nowhere dense set T' (see [Sl],.p. 36). Let C
denote the filter of all sets with countable complement. Since E .meets
every member of G, we may extend C to an ultrz.uf]]ter U that co'ntajms E;
clearly U has no countable member. We define @ = =(U); it follows
that @ has no nowhere dense member. .

Remark. We have used only the condition C; of [Si], the existence
of Lusin’s set, which follows from [CH].

10. Noneclosed prime z-filters. The main .result concerning
a nonclosed prime z-filter is that every predeeessPr is contained ;n z;n
immediate predecessor (Theorem 10.6). This gener@z% a property oddth s
when p is in R; in that case, no predecessor co'ntams the set {p}, aFn e
maximal prineiple may be applied to the family of predecefssors. orba(;rlxn
arbitrary nonelosed prime z-filter, we use Theorem 10.3 to find & mem

that plays the role of {p}.
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It follows from Theorem 9.1 that every nonclosed prime z-filter is
nonminimal.

10.1. TEEOREM. A prime z-filter is nonclosed if and only if some
associated wltrafilter has a diserete member. In this case, it has only ome
associated ultrafilter.

Proof. If Q is nonclosed, we choose ZeQ with Z’ ¢ Q; it follows
that the diserete set Z—Z' is a member of any associated ultrafilter.

If @ has an associated ultrafilter U with a discrete member D, we
have elD € Q but (e1D)’ ~ D = @ so that (cl.D)’ ¢ Q; hence Q is nonclosed.

Tinally, let @ have an associated ultrafilter U with a discrete mem-
ber D. Suppose that U is another ultrafilter associated with Q. We may
agsume that D ¢ U. Since ¢lD = D v D’ and clD eQ, we have D' e U
and thus D’ e, contradicting the fact that D ~ D'= 3. Hence U is
the only ultrafilter associated with Q.

10.2. Question. If a prime z-filter has a unique associated ultrafilter,
is it necessarily nonclosed?

10.3. TureoreM. If 7 is a member of Q, then Z' ts a member of every
successor of Q.

Proof. Let QC¢ and suppose Z’ ¢ . Choose an ultrafilter U asso-
ciated with § and define D = Z—Z'; thus D ¢ V. Choose W ¢4 —Q and
define E = W ~ D; thus Ee?U and clE¢Q. Since D is discrete, B ~
~el(D—E)= @; hence cl(D—E)¢Q. Also Z'¢Q and Z = Z' v clE v«
wel(D—E). Hence Z ¢Q, contradicting our hypothesis.

10.4. CoroLrArY. If a prime z-filter is either (a) the intersection
of its successors, or (b) the union of its predecessors, then it is closed.

Remark 1. The converse to (a) is false, even for a mnonminimal
prime z-filter; see Remark 2 following Theorem 15.6. The question of
the converse to (b) is open, see Section 15.

Remark 2. If (Qp)s<, is any full decreasing or increasing a-sequence,
then it is easily seen that Q, is closed for each limit ordinal A.

10.5. ProBLEM. Give o necessary and sufficient condition, in terms
of ils members, that a prime z-filler have an immediate successor.

10.6. TrroREM. Let Q be nonclosed.

(a) Every predecessor of Q is contwined in an mmediate predecessor.

b} @ has a nonclosed immediate predecessor.

{c) @ has an immediate successor.

Proof. Choose Z <@ with Z' ¢ Q. By Theorem 10.3; Z belongs to
no .predeeessor of &. Thus (a) follows by Hausdorff’s maximal principle.
It is clear that the nowhere dense set F'— cl(Z— Z') also belongs to @
but to no predecessor of Q. By the remark following Corollary 8.2, @

©
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has o predecessor ¥ with a member @ such that @' = F. By (a), @ has
an immediate predecessor 4, containing #. Since ¥, contains @ but not F,
it is nonclosed; thus we have (b). Finally, it follows from Theorem 10.3
that (Q, Z’) is the immediate successor of Q.

Remark 1. Property (a) does not hold for all prime z-filters, see
Corollary 14.3.

Remark 2. (b) may be iterated to obtain a full decreasing w-se-
quence. By Corollary 10.4, the intersection of this sequence is closed,
and thus (b) cannot be used to obtain a longer full sequence. A construction
of longer full sequences will be given in Section 13.

Remark 3. @ = (@, Z') for any Z¢Q with 2’ ¢q.

10.7. QuesTION. Is the converse of Theorem 10.6(a) true? Equi-
valently, is every closed nonminimal prime z-filler the union of a chain
of predecessors?

11. Remote points. In this section we give several characteriza-
tions of a remote point of SR, i.e. a point not in the closure of any discrete
subset of R. Fine and Gillman have shown that the existence of such
points follows from the continuum hypothesis. Remote points will be
used to demonstrate the existence of minimal immediate predecessors
in Section 12, and thus they are used for the construction of countable
maximal chains in Section 13.

11.1. A point p of AR is a remote point if and only if " has no no-
where dense member. Under [CH), there exist remote points in pR. [FG).

11.2. THEOREM. For p ¢ fR, the following are equivalent.

(a) p s a remote point.

(b) M” is a minimal prime z-filter.

(¢) M2 = 0%

(d) O is prime.

(e) Ofr s prime.

Proof. From the characterization of minimal prime z-filters obtained
in Theorem 8.1 and from 11.1 above, it follows that (a) and. (b) are equiv-
alent. The equivalence of (b) and (¢) was noted in 2.1. Clearly () implies (d).
If M2 is not minimal, then by Corcllary 8.3, 4" has noncomparable pre-
decessors, so that by 2.1, O? is not prime; thus (d) implies (b). Finally.
(d) and (e) are equivalent by 5.3.

Remark. The fact that (¢) implies (a) is due to Donald Plank [P1, 5.3.

11.3. CoroLLARY. [CH]. There evists a z-ultrafilier on R that con-
tains no other prime z-filter.

Remark. Hence there exists a maximal ideal in C(R) that contains
no other prime ideal. In contrast, it is easily shown that there is no such
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maximal ideal in the subring C*R) of bounded continuous functions
or in the ring C([0, 1]).

11.4. ProBLEM. When p is a remote point, determine the orvder type
of the chain of prime z-filters on PR contained in Mopr.

12. Construction of predecessors. In Theorem 12.1 we give
a fundamental construction that yields immediate predecessors for a large
class of prime z-filters. The construction will be used in Section 13 to
construct full decreasing w,-sequences. Theorem 12.6 provides minimal
immediate predecessors; these will be used in Section 13 to construct
countable maximal chains. In Theorem 12.8, we shall construct, for any
given nonminimal prime z-filter, a family of predecessors order-isomorphic
with the family of all prime 2-filters.

If {f;}rep is any family of real numbers, indexed by a countable
set B, then by £ —0 we mean that for any &> 0, we have [t;] <& for
all bub finitely many z in E.

Let T be any countable subset of R. For each ¢ e T, let Hy be a subset
of R with elH;= Hr v {#}, and let diamH;->0. If H = (] Hs, then
W= Hodr. e

If, in addition, H, is discrete and Hy ~ el T = @, for each x e 7, then
H is diserete. (The proofs are straightforward.)

12.1. TuworEM. Let Q be a prime z-filter and U an associated ultra-
filter. Let B € U and define F = cLE. For each ¢ B, let 8 be any nonemply
subset of R such that 8z ~F = @, and suppose that T, is a prime z-filter
on 8z, converging to x. For each Z ¢ Z(R), define '

Z*={reB: Zn Sz e Fs} .
Then
S ={Z e Z(R): Z*c V}
is a prime z-filter, I is a predecessor of Q, and F ¢9.
If, in addition, B is countable, diam 8; >0, and for each x < B, clS,

= 8 v {z} and T: is a z-ultrafilter on Sz, then § is an immediate predecessor
of Q. .

Proof. For any Z, W ¢ Z(R), it is clear that
(@) (Z ~ W= Z* ~ W*,

(b) (Z© Wy = 25w W,

€ ZCW 7 C W,

(d)yz*CZ.

implies

It is now easily seen that ¢ is a prime z-filter and is a predecessor of @
not containing F.

©
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Now assume that the additional conditions are satisfied and let
S C 4§ C Q. Choose W ed' —¢; since W* ¢V, we have E—W* e V. Define
V = E—W*. For each x ¢V we have W ~ 87 ¢ 7 50 Wwe can choose Hy e T,
with W ~ Hy= 0. Let Z<Q and define T= Z ~T. Define H = | Hy;

xelT

thus WA H=0 and clH = H < clT. Also T C (clH)* with T ¢, s0
that clH e¥. Thus §’ contains W ~clH, with W ~clH C Z; so that
Z e 9. Hence T = Q. It follows that  is an immediate predecessor of Q.

12.2. TurorEM. If Q is nonminimal and has an associaled ultrafilter
with & countable member, then @ has a nonclosed immediate predecessor ¥.

Proof. Choose an associated ultrafilter U with a countable member E
such that F = ¢lE is nowhere dense. For all » ¢ B, define S; as the set
of terms of a sequence of points of R—F, converging to x, chosen in such
a way that diamSz-—0. Define § = | ;Sz; thus el§= S U F and § is

discrete. For each « ¢ H, choose a free“ultmﬁlter ¥z on Sz; by the choice
of Sy, ¥z converges to z. Let T be the immediate predecessor of Q obtained
by Theorem 12.1. Since (el8)* = HE, we have clS €7 with (cl8) = F.
Thus § is nonclosed.

12.3. QUESTION. Does
mmediate predecessor?

Remark. Not every nonminimal prime z-filter satisfies the hypo-
thesis of Theorem 12.2. To obtain an example we apply a method due
to W. F. Eberlein; see [FG], 1.3. Let M be a z-ultrafilber containing
the z-filter F of all closed sets with complements of finite Lebesgue
measure. Since F has a nowhere dense member, At is nonminimal. If &
is countable, then there exists Z ¢ & such that F ~ Z = 0. Hence nn
ultrafilter associated with .4 has a countable member.

12.4. The condition on a nonminimal prime z-filter Q@ used in
Theorem 12.2, that “Q has an associated ultrafilter with a countable
member”, is actually weaker than the condition “Q@ has a countable
member”, An example may be given as follows. Choose any uncountable
nowhere dense closed set ¥, and choose any countable dense subset ¥
of . Tt is easy to verify that D = {8 C R: cl§ is uncountable} is a co-
deal in 2% with B « D. By 6.1, D contains an ultrafilter VU that contains E.
Define @ = z(V); since @ has the nowhere dense member F, it is non-
minimal. Tt is clear that Q has no countable member, but Q has the
associated ultrafilter U with the countable member E.

12.5. QUESTION. Is there a monminimal z-ultrafilier with no countable
member but with an associated ulirafilier with a countable member?

12.6. TeEOREM. [CH]. If Q is nonminimal and has an associated
ultrafilter with a'countable member, then i has a minimal immediate pre-
decessor. '

every nonminimal prime z-filter have an

rundamenta Mathematicae, T. LXIIL 1
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Prooi. Choose an associated ultrafilter U with a countable member E
such that F = c1¥ is nowhere dense. For each ¢ E, choose a z-ultra-
filter Q; on R~ {z}, converging to x, that has no nowhere dense member.
(It suffices to show that this may be done in the case that # = 0. By 11.1,
choose a free z-ultrafilter 4 on R with no nowhere dense member, and
define @, as the image of |(R—{0}) under the mapping ¢-1/t.)

Since F' is nowhere dense, we have F n (R—{z}) ¢ Qz, and hence
we can choose Sz € Qg such that 8; ~ F = @, for each # ¢ H, in such a way
that diam 8; 0. Clearly el 8z = Sz v {&} for all # e H. We define §; = Q48,3
clearly ¥ is a #-ultrafilter on Sz, converging to #, for each x ¢ E. Thus
Theorem 12.1 yields an immediate predecessor T of Q.

If Zef, then Z A 8; e, for some 4 ¢ B, and hence Z ~ Sy e Qy;
thus Z ~ 8y has nonempty interior in R—{#} and hence Z has nonempty
interior in R. It follows that  is minimal. .

12.7. TaEOREM. Every nonminimal prime z-filler Q has 2° noncom-
parable nonclosed predecessors. If Q has an associated ultrafilter with
& countable member, they may be chosen o be immediate predecessors.

Proof. By Corollary 8.2, @ has a nonclosed, nonminimal predecessor.
By Theorem 10.1, this predecessor has an associated ultrafilter with
a countable member, thus it suffices to prove the second statement.
Choose an associated ultrafilter U with a countable member B such that
F = clE is nowhere dense. For all & ¢ B, define 8z to be the set of terms
of some sequence of points of R—F, converging to x, chosen in. such
a way that diamg8;->0. Define § = L%as,; thus cl8= S F and § is

2€

discrete. It is clear that every free ultrafilter on S, converges to .

Choose a fixed family of correspondences N -8, #e¢X. For any
free ultrafilter U on N, let VU, be the corresponding ultrafilter on S,
for each » ¢ F, and let 9oy be the immedinte predecessor of Q obtained
by Theorem 12.1, using the family {VUslzer. Since (cl8)* = E, we have
cl8 € Fay, but (clS)’ = F ¢ Foy. Thus Jqy is nonclosed.

Let U and U be distinet free ultrafilbers on N. Thus W # U,
for all # ¢ E. By the choice of the sets 8z, the set 8z ~ 8, is finite whenever
Y # z. Also, each Uy and UV, containg each subset of 8, with finite com-
plement in §;. Thus we can choose, by induction in E, sets Uy e Uy and

Vze Uz, for all e B, such that the sets U — Uz and V= |V, are
. xeE T34
disjoint. (Suppose that U, and V, have been chosen for all # in a finite

setJ C B, and y is in B but not in J. Since 7' = 8y ~ | 8z is finite, §y—T
reJ
belongs to both Wy and Vy,. We now choose any K e Uy and L ¢ U, with
K~ L= @. Finally, we define Uy=EK—-T and V,=L-T.)
Define C:,Y= U and H=clV; hence Gefq and H e Jay. Sinee
G~ H=F, it follows that Ja, and Fqy are distinet and noncomparable.

e ©
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Since there are 2° free ultrafilters on N, we have 2° noncomparable non-
closed immediate predecessors of Q.

12.8. THEOREM. Every nonminimal prime z-filter has a family of
predecessors that is order-isomorphic with the family of oIl prime z-filters.
(Conjectured by L. Gillman.)

Proof. We first choose, by Theorem 12.7, a family of 2° noncom-
parable nonclosed predecessors of the given prime z-filter @, and index
them by fR: {Qp}pesr. For each p e AR, let P” denote the family of prime
z-filters contained in M”, thus P(R)= LFL PP, Suppose that for cach

g
p € fR we have found a family QF of prime z-filters contained in @, that
is order-isomorphic with P”. Elements of distinct P?, as well as elements

of distinct QF, are noncomparable; thus L;R Q% is a family of predecessors
'3

of @ that is order-isomorphic with P(R). Hence it suffices to find the

families Q.

Suppose that we have found QF for all p ¢ fJR—R. Tt follows that
any nonminimal prime z-filter has a family of predecessors that is order-
isomorphic with P*(R). To obtain Q7 for p ¢ R, we apply this last statement
t0 @, and obtain a family Q*” of predecessors of Qyp that is order-isomorphic
with P*(R). It follows from 7.5 that it suffices to define Q° = Q*" U {Qp)}.
Thus if we can find the families Q for p ¢ fR—R, we can also find them
for p e R.

Hence it suffices to fix p ¢ fR—R and find a family Q° of predecessors

© uf Qp that is order-isomorphic with PP.

Choose a discrete member E of the ultrafilter U associated with Qp.
Define F = clE, and choose a disjoint family {S:}zcz of sets of the form
8z = By(x, rz), sueh that 8z ~F = @, in such a way that diamS8;->0.
For each # ¢ B, choose by 7.4 a family Qy = {F,: § ¢ P?} of prime z-filters
on S8z that is order-isomorphic with P?. For each T e P”, let 9’ be the
predecessor of Qp obtained by Theorem 12.1. using the family {Fz: 2 < H}.
Thus

$'=1ZecZR): {weB: Z8yeds}eV}.

Let f, R ¢ P”. If § C R, then Tz C Rz, for all z ¢ B, and thus §* € R'. Now
let ¢ ,(3; R. Then ¥ g Rz, for each 2 € E, and we can choose Hy e Tz— Rs-
Define H = | J H; and Z = clH; thus Z= H v F. Hence Z n 8z = Hg,

zEeE

for all ze B, so that {#xeB: ZnSseTs}=F and {sel: Z A SpeRa}
=@. Thus Ze¥' — R’ and we have §’ L\;.‘R’. Hence §->9’ is an order-

isomorphism and QF = {J': ¥ ¢ P’} is the required family.
12.9. CorROLLARY. If there is a chain of prime z-filters of order
. . . *
type T, with nonminimal intersection, there is also a chain of type t- wi.
11*
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(For any order type o, .the order type obtained from o by reversing the
ordering is denoted by o)

13. Maximal chains. We now iferate the construction of imme-
diate predecessors to obtain full sequences, and in Theorem 13.3 we
apply the construction of minimal immediate predecessors to obtain
countable maximal chains.

13.1. TororeM. If @ has an associated ultrafilter ‘wz.'th a o.mmm{ﬂe
member, there is a full decreasing cw,-sequence, beginning with Q, in which
cach term also has an associated ulirafilter with a countable member.

Proof. We proceed by transfinite induetion. Define Q,= Q. Let
a < o, and suppose that we have a full decreasing a-sequence (Qp)p<a
where each ©; is nonminimal and has an associated ultrafilter with
a countable member. If « is not & limit ordinal, then by Theorem 12.2,
@,_; has & nonminimal immediate predecessor Q, that has an associated
wltrafilter with & countable member. If o is a limit ordinal, define Q. = 590 Q.

By Theorem 8.4, @, is nonminima} and by Corollary 6.3, @, has an asso-
ciated ultrafilter with a countable member. This completes the induction.

13.2. TezorEM. If Q has a couniable member, there is & full decreasing
g - Sequence, beginning with Q, and with nonminimal intersection.

Proof. Define Q,= @, choose a countable member F, of Q,, and
choose a perfect nowhere dense set K with F, C K. Proceeding by transfinite
induction, let a < w, and suppose we have a full decreasing a-sequence
(Qp)s<a, Where each Q; has a countable member Fj with F; C K.

First consider the case that a is not a limit ordinal. Since F,—, is
a nowhere dense subset of K, we can choose discrete sets S» C K, for
all 2 ¢ F,_,, such that S; ~ Fo—y = @ and cl8y = 8z v {#}, in such a way
that diamS;~0. Define B = F,_,. For each # € B, choose an ultrafilter 7,
on 8; that converges to #, and let @, be the immediate predecessor of Qo
obtained by Theorema 12.1. Define H = | J 8, and F, = clH; thus F, ¢ Q,,

z€R
F, is countable, and F, C K.
In the case where a is a limit ordinal, define Q, = (") @;. It follows

from Remark 1 following Theorem 8.4 that Q, has a m)mﬁ;ble member F,
with F, C K.

This completes the induction. Clearly K € Q,, for all a < w;; hence
7 Q. contains K and is nonminimal.

wTemy

Remark 1. For limit ordinals i, (@), is a decreasing w,-sequence
of closed prime z-filters, each with a countable member, and each the
intersection of its successors.

Remark 2. By Corollary 12.9, we obtain a decreasing w’-sequence
of prime z-filters.

©
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13.3. TerorEM. [CH). For 0 < a< @, there is a decreasing well-
ordered maximal chain of prime z-filters of type o* if and only if a is not 7
or A+1 for a limit ordinal 2.

Proof. Since a maximal chain has a least element, it cannot be of
type A* for a limit ordinal A; by Theorem 8.4, the least element, since
it is a minimal prime z-filter, is not the intersection of countably many
successors, thus the chain cannot be of type (A-41)*.

Conversely, we first note that Corollary 11.3 yields a maximal chain
of type 1*. Now choose any point p on the line, and let (Qs)s<y, be the
tull chain constructed in Theorem 13.1, starting with ". By Theorem 12.6,
choose a minimal immediate predecessor 5. of @z, for each f < .
If 1<a< w and a is not of the excluded form, then a—2 is also an
ordinal and thus {@g}sca—z v {Ja-1} is @ maximal chain of type o

14. Increasing sequences. In contrast with the decreasing
well-ordered maximal chains found in the preceding section, we now
give a construction which shows that not every maximal chain is de-
creasing well-ordered. The construction depends on none of the preceding
except the fact that every co-ideal contains a prime z-filter.

14.1. TErROREM. For each u < wy, there is an increasing u-sequence
of prime z-filters.

Proof. For a closed set F, (F),<., will denote the sequence of derived
sets of I; i.e., F* = F, F*™' = (F°), for all a, and F* =p FPif ais a limit

<a
ordinal. Choose, by [H], p. 279, a countable closed set F such that F* = O,
for all a < u. Define D, = F“»F““‘Ll, for each ; thus elD, = F® for all a.
For any closed set Z, we define

Zy= Dy~ Z, and Za:Dan(rxelzﬁ) O<a<p).
B<a

For any closed sets Z and W, and for all a < g, it follows by transfinite
induction that

(a) Zog C Dy~ Z,
(b) Z C W implies Zy C W,
(e) (Zv W= Zq o Wa,
() Zy= O implies Zg= O, for a < < p,
(e) Ry = Dy.
Define
E={ZecZR): Zog# O, all a <pu}.

Clearly D, 5= @, for all a < g, so that R € §, by (e), and thus & 5 @; it is
also clear that @ ¢ & If Z 8 W ¢ Z(R), and Z C W, then, by (b), aqso
We§ Now let Z, WeZ(R) with Z ¢ & and W ¢ & Choose o, <p with
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Zy =@, Ws= 0. Say B> a. By (d), we have also Zg = O. (This is the
reason we define the sets Z, recursively, rather than simply Z, = Dg ~ Z.)
Thus, by (¢), (Zv W)s=@ so that Zw W¢& Hence & is a co-ideal
in Z(R).

Choose, by 3.2(a), any prime z-filter Q contained in &. If o < u, and
ZeQ, then Z~F* D Z, + @, by (a); hence F* meets every member
of Q. Define Q, = (Q,F), for all a < p.

If a < B < i, then F*D F” so that F*e (@, F*) = @; and thus Q, C Q.
Hence (Qu)ec, is nondecreasing.

Suppose @, = Qp With « < f < p. Thus @, = Quyy and F*™ ¢ (@, F7).
It follows that we may choose Z ¢@Q such that Z ~ F* C F* 1 and thus
D, ~ Z = @. By (a), Z.= @, contradicting the choice of Z. Hence (Qy)e<,
is increasing.

Remark 1. It follows from Theorem 12.8, that every nonminimal
prime z-filter is an element of a maximal chain that is not decreasing
well-ordered.

Remark 2. It follows from Theorem 10.6, Remark 3, that Q..
= a7, for all a < g. Thus (Qy)u<o is & full increasing w-sequence.

14.2. QUESTION. Is there an increasing w,-sequence of prime z-filters?

14.3. CoroLLARY. There i8 a prime z-filter that has an immediate
predecessor but also a predecessor contained in no immediate predecessor.

Proof. For any limit ordinal A < %, the prime z-filter ;= {JQ,
a<i

has the countable member F,. Hence, by Theorem 12.2, §; has an immediate
predecessor. On the other hand, it is clear that no immediate predecessor
of ¥, contains the predecessor Q.

14.4. PROBLEM. Give a necessary and sufficient condition, in terms
of its members, that a prime z-filter be the union of a chain of predecessors.

15. Union of predecessors. In this section we study condi-
tions that a prime z-filter @ be the union of its predecessors. A necessary
condition is that @ be closed (Corollary 10.4), and in the cage that @ has
& countable member, we show that this condition is also sufficient (The-
orem 15.2). For the general case, a necessary and sufficient condition
is given in Theorem 15.1. It is easily seen that a prime z-filter cannot be
the union of finitely many of its predecessors.

15.1. THEOREM. Q is the union of its predecessors if amd only if for
every Z e Q there exists F € Q such that cl(Z—F) < Q.

Proof. This follows immediately from Corollary 4.3.

) 15.2. THEOREM. Let Q have & countable member. Then Q is the union
of 4ts predecessors if amd only if it s closed.

icm°
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Proof. The necessity is a special case of Corollary 10.4. Now let @
be closed and choose a countable member F. Let Z ¢ @ and define W = Z ~
~F. Since W is countable, W = cl(W—W') so that el(W—TW")eq;
hence also cl(Z—W') e @, with W’ e Q. The conclusion now follows from
Theorem 15.1.

Remark. The examples of Remark 1 following Theorem 13.2 provide
a decreasing w;-sequence of prime z-filters, each of which is both the
intersection of its successors and the union of its predecessors.

15.3. QUESTION. Is every closed monminimal prime z-filter the union
of its predecessors?

15.4. THEOREM. If Q is nonminimal and no associaied wulirafilier
has a countable member, then Q is the union of its predecessors.

Proof. Let Z ¢ Q. Choose a countable dense subset E of Z; thus E
is a member of no associated ultrafilter. By Theorem 6.2, Q has a member F
such that cl(F ~ F) ¢ Q. Since Z = clF = cl(# ~ F) v cl(E—F), we have
cl{(E—F) ¢ Q; hence also cl(Z—F) e Q. By Theorem 15.1, @ is the union
of its predecessors.

15.5. CorROLLARY. There exists a nonminimal free z-ulirafiller that
is the union of its predecessors.

Proof. It suffices to consider the example given in the remark
following Question 12.3.

15.6. THEOREM. Every nonminimal prime z-filter Q has a closed
nonminimal predecessor § that is the union of its predecessors. If Q is non-
closed or has a countable member, then § may be chosen to be an immediaie
predecessor. ’

Proof. By Corollary 8.2, it suffices to prove the second statement.

First let @ be nonclosed. Let U be the associated ultrafilter and
choose a discrete set B in U, Define F = cl¥, and choose a family {8;}zer
of sets of the form By(z, 73), with S8z ~ F = @, in such a way that diam 8z 0.
For each x ¢ H, choose a free z-ultrafilter 9, on 8, converging to , such
that for any countable set J, there is & member of 9, disjoint from J.
(It suffices to show that this may be done for the case z = 0. Let 46 be
the z-ultrafilter obtained in the remark following Question 12.3, let R
be the image of AGJR—{0}) under the mapping t-1/i, and define g,
= R|8,.) Let ¥ be the immediate predecessor of Q obtained by Theorem 12.1.
Let J C R be countable. For each z e H, choose Zz € I with J ~ Zz = 0.
Define W = cl(|J Zz); thus W*=E so that Wed. Since Jn WCF

zeE

with 7 ¢ ¥, we have cl(J ~ W) ¢ 7, so that J is a member of no ultrafilter
associated with 4. Hence § has no associated ultrafilter with a countable
member. By 9.3, T is nonminimal; by Theorem 10.1, ¥ is closed; and by
Theorem 15.4, T is the union of its predecessors.
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Now let @ have a countable member F. For each 2 e ¥, choose a free
z-ultrafilter 5 on Ty = By, 1), converging to «, such that every count-
able subset of Ty is disjoint from some member of Qs. For each ze¢F,
choose Sgze @ such that Sz ~nF =0, in such a way that diam§:-0.
Define §; = Q4|Sz. We now apply Theorem 12.1 with B = ¥, and proceed
as in the first case.

Remark 1. By 12.4 and Corollary 8.2, we can find a nonminimal
nonclosed prime z-filter with no countable member. By Remark 1 fol-
lowing Theorem 13.2, we can find a closed nonminimal prime z-filter
with a countable member. Hence the two alternative conditions used are
independent.

Remark 2. Theorem 15.6 yields an example of a closed nonminimal
prime z-filter with an immediate successor, and provides & counterexample
to the converse of Corollary 10.4(a).

15.7. QuEstioN. When a prime z-filter is the wnion of all its pre-
decessors. does it follow that it is the umion of a chain of predecessors?
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A lower bound for transfinite dimension
by
David W. Henderson (Ithaca, N. Y.)

1. Introduction. In this paper, essential mappings are used to
give a lower bound for the (large, strong) transfinite induetive dimension
of a space. Transfinite inductive dimension (Ind) is defined by transfinite
induction as follows: (See [3], p. 161).

DErFINITION 1. (2) Ind(R) = —1, if B = 0. (b) Ind(R) < a (an ordinal
number) if every pair of disjoint closed subsets of R can be se-
parated by a closed subset S such that Ind(S) < a. (8 separates 4 and B
in B if R— 8 is the union of disjoint open (in E) sets U, ¥V such that AC U
and BCV.)(¢) Ind (R) = aif Ind(R) < aand it is not true that Ind (R) < a.
(d)y B is said to have transfinite dimension (Ind) if Ind(R) exists.

It is known ([3], p. 209) that if a normal space B has an essential
mapping onto the n-cell, I", then Ind(R) > » or Ind(R) does not exist.
(A mapping f: R—I" is essential if there does not exist a mapping ¢: R—
>Bd(I") (Bd = Boundary) such that flf (Ba(I") = glf '(BA(I").) We
shall construct, for each countable ordinal e, a space J* such that (with
“essential’’ suitably defined), if a normal space B has an essential mapping
onto J% then Ind(R) > o or Ind(R) does not exist.

Some of the ideas behind the definition of J* and the proofs below
can be found in [1], § 8, by Yu. M. Smirnov (¥0. M. Cmupros).

2. Results and questions.

DErFINITION 2 (J°, T°% and p°). For each ordinal number a, greater
than or equal to 0 and less than  (the first uncountable ordinal), we
shall define a compact metric set J* with & compact subset T* and a point
p*eT" Let J°= T°= p”= (a point). If a is positive and finite, then
let J* be the a-dimensional cube, T be the (a—1)-dimensional sphere
which is the combinatorial boundary of J% and p* be any point of T°.
If ¢ is not a limit ordinal, then define

J =TT g, = (T )Y (ST TY,  and  pt=p"Txp’.
If a is a limit ordinal, then let K”, for 8 < a, be the union of J* and a half-
open arc Aﬁ, such that A7 ~ J® = p® = (the end point of A®); and define J*
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