A note on pretopologies
by
D. C. Kent (Pullman, Wash.)

Introduction. A pretopology \mathcal{P} on a set S can be defined by means of a generalized interior operator $I_\mathcal{P}$ on S, that is, a set function which has all of the properties of a topological interior operator except idempotency. Repeated application of $I_\mathcal{P}$ yields a chain of pretopologies called the “decomposition series for \mathcal{P}” which terminates with the finest topology $\lambda(\mathcal{P})$ coarser than \mathcal{P}. The primary goal of this paper is to give an alternate description of the decomposition series in terms of a primordial uniform-like structure called a “diagonal filter.” In the process, we define the notion of “symmetry” for pretopologies, a concept closely related to the “weakly uniformizable convergence structure” discussed in [3].

1. Pretopologies and diagonal filters. Let S be a set, $\mathcal{F}(S)$ the set of all filters on S, and $\mathcal{F}(\mathcal{F})$ the set of all subsets of S. For each $\mathcal{F} \in \mathcal{F}(S)$, let $\hat{\mathcal{F}}$ denote the ultrafilter generated by \mathcal{F}.

DEFINITION 1. A convergence structure \mathcal{Q} on S is a mapping from $\mathcal{F}(S)$ into $\mathcal{F}(S)$ which satisfies the following conditions:

1. $\mathcal{F}, \mathcal{G} \in \mathcal{F}(S)$ and $\mathcal{F} \subseteq \mathcal{G}$ implies $\mathcal{Q}(\mathcal{F}) \subseteq \mathcal{Q}(\mathcal{G})$;
2. $\mathcal{F} \neq \mathcal{G}$ implies all $\mathcal{F} \not\in \mathcal{F}$;
3. $\mathcal{F} \neq \mathcal{G}$ implies $\mathcal{Q}(\mathcal{F}) \not\in \mathcal{Q}(\mathcal{G})$.

If \mathcal{Q} is a convergence structure and $\mathcal{Q}(\mathcal{F})$, then the filter \mathcal{F} is said to \mathcal{Q}-converge to \mathcal{F}. Let $\mathcal{U}_\mathcal{Q}(\mathcal{F})$ be the filter obtained by intersecting all of the filters that \mathcal{Q}-converge to \mathcal{F}; $\mathcal{U}_\mathcal{Q}(\mathcal{F})$ is called the \mathcal{Q}-neighborhood filter at \mathcal{F}.

DEFINITION 2. A convergence structure \mathcal{Q} is called a pretopology if $\mathcal{U}_\mathcal{Q}(\mathcal{F})$ \mathcal{Q}-converges to \mathcal{F} for each $\mathcal{F} \in \mathcal{F}(S)$.

Then term “pretopology” was introduced by G. Choquet [1]; other discussions of this concept can be found in [2] and [3].

Let $\mathcal{F}(S)$ be the set of all pretopologies on S, partially ordered as follows: $\mathcal{P} \subseteq \mathcal{Q}$ means $\mathcal{U}_\mathcal{Q}(\mathcal{F}) \subseteq \mathcal{U}_\mathcal{Q}(\mathcal{F})$, all $\mathcal{F} \in S$. With this ordering $\mathcal{F}(S)$ is a complete lattice which contains the lattice of all topologies on S (as a subset, not as a sublattice).
DEFINITION 3. A diagonal filter D on S is a filter on $S \times S$ with the property that each member D of D contains the diagonal $\Delta = \{(x, x): x \in S\}$.

Before investigating the relationship between pretopologies and diagonal filters, it will be convenient to introduce some additional notation. If D is a diagonal filter, let $D^{-1} = \{D^{-1}: D \in D\}$ (where $D^{-1} = \{(x, y): (y, x) \in D\}$). The filter D is symmetric if $D = D^{-1}$. Given a diagonal filter D and $x \in S$, we denote by $D[x]$ the filter on S generated by $\{D[x]: D \in D\}$ (where $D[x] = \{y \in S: (x, y) \in D\}$). If D is a uniformity, then $D[x]$ is the filter of neighborhoods at x in the uniform topology. The symbol Δ denotes the diagonal filter consisting of all sets in $S \times S$ that include Δ.

If F and G are filters on S, then let $F \times G$ be the filter on $S \times S$ generated by the base $\{F \times G: F \in F, G \in G\}$. Given diagonal filters \mathcal{U} and \mathcal{V}, we denote by $\mathcal{U} \cdot \mathcal{V}$ the filter on $S \times S$ generated by all compositions of the form UV, for $U \in \mathcal{U}$, $V \in \mathcal{V}$.

PROPOSITION 1. Let (\mathcal{U}_a) be a collection of diagonal filters.
 (1) $\bigcap (\mathcal{U}_a)[x] = \bigcap \{\mathcal{U}_a[x]: x \in S\}$.
 (2) $\bigcup (\mathcal{U}_a)[x] = \bigcup \{\mathcal{U}_a[x]: x \in S\}$.

A diagonal filter D is said to be compatible with a pretopology p if $D[x] = \mathcal{U}_p(x)$ for all x in S. It follows from Proposition 1 that if (\mathcal{U}_a) is a collection of diagonal filters, each compatible with the same pretopology p, then $\bigcap \mathcal{U}_a$ and $\bigcup \mathcal{U}_a$ are also compatible with p.

PROPOSITION 2. To each pretopology p there corresponds an equivalence class $[p]$ of compatible diagonal filters. For any $p \in P(S)$, $[p]$ contains both a least element and a greatest element; the latter is given by $\mathcal{U}_p = \bigcap \{x \in \mathcal{U}_p(x): x \in S\}$.

DEFINITION 4. A pretopology p is symmetric if $[p]$ contains a symmetric diagonal filter.

THEOREM 1. The following statements about a pretopology p are equivalent:
 (1) p is symmetric;
 (2) $\mathcal{U}_p \subseteq [p]$ is compatible with p;
 (3) $\mathcal{U}_p \subseteq \mathcal{U}_p(y)$ if and only if $y \in \bigcap \mathcal{U}_p(x)$;
 (4) p is the infimum in $P(S)$ of a set of completely regular topologies.

Proof. (1) and (2) are obviously equivalent.

0. Choose $D \in [p]$ such that $D = D^{-1}$. Let $y \in \bigcap \mathcal{U}_p(x)$. Then, for each symmetric set $D \in D$, we have $y \in D[x]$, which implies $x \in D^{-1}[y]$. But this means that $x \in \bigcap D^{-1}[y] = \bigcap \mathcal{U}_p(x)$.

1. Let \mathcal{F} be an ultrafilter which p-converges to x, then form the diagonal filter $\mathcal{U}_p \mathcal{F} = \mathcal{F} \cap (\mathcal{F} \circ \Delta)$. It can be shown that $\mathcal{U}_p \mathcal{F}$ is a uniformity for S; let $\tau_{p, \mathcal{F}}$ be the topology compatible with this uniformity. For any ultrafilter \mathcal{G}, $\tau_{p, \mathcal{G}}$ is finer than $\tau_{p, \mathcal{F}}$; if $\mathcal{F} = \mathcal{G}$ is a principal ultrafilter, one needs (2) to establish this result. A second application of (2) enables us to deduce that $p = \inf \tau_{p, \mathcal{F}}$, $x \in S$, \mathcal{F} an ultrafilter on S, and $x \in q(\mathcal{F})$.

4. Let (\mathcal{F}) be a set of completely regular topologies such that $p = \inf \tau_{p, \mathcal{F}}$. With each $\tau_{p, \mathcal{F}}$, associate a compatible uniformity $\mathcal{U}_{\mathcal{F}}$, and let \mathcal{D} be any $\mathcal{U}_{\mathcal{F}}$. Then \mathcal{D}, being an intersection of symmetric filters, is itself symmetric, and $D \in [p]$ by Proposition 1.

2. The decomposition series for a pretopology. Starting with a pretopology p on a set S, let I_p be the set function on S defined by $I_p(A) = \{x \in A: x \in \mathcal{U}_p(x)\}$ for each $A \subseteq S$. Except for idempotency, I_p satisfies the conditions for being a topological interior operator. The collection $(U \subseteq S): I_p(U) = U$ is the finest topology coarser than p, and $p = \lambda(p)$ if and only if I_p is idempotent. These results, in slightly modified form, are proved in [4].

We shall now give a recursive definition of a generalized interior operator for each ordinal number $\alpha \geq 1$.

DEFINITION 5. Let $I_\alpha = I_{I_{\alpha-1}}$. If α is an ordinal number with an immediate predecessor $\alpha-1$, let $I_{\alpha} = I_{I_{\alpha-1}}(I_{\alpha-1}(A))$ for each $A \subseteq S$. If α is a limit ordinal (that is, an infinite ordinal with no immediate predecessor) then $I_{\alpha} = \bigcap \{I_{\alpha}(A): \beta < \alpha\}$.

DEFINITION 6. For each ordinal number α, let p^α be the pretopology whose neighborhood filter at each point x is given by $\mathcal{U}_p(x) = \{A \subseteq S: x \in I_{p}(A)\}$.

For each ordinal number α, I_{α} satisfies the following conditions:
 (1) $I_{\alpha}(A) \subseteq A$, all $A \subseteq S$;
 (2) $A \subseteq S$ implies $I_{\alpha}(A) \subseteq I_{\alpha}(B)$;
 (3) $I_{\alpha}(A \cap \beta) = I_{\alpha}(A) \cap I_{\alpha}(B)$;
 (4) $I_{\alpha}(S) = S$.

Let τ_{p^α} be the smallest of the ordinal numbers α such that $I_{\alpha}(I_{\alpha}(A)) = I_{\alpha}(A)$, all $A \subseteq S$.

PROPOSITION 2. (a) $1 < \alpha < \beta < \gamma$, then $p^\alpha > p^\beta$.
 (b) $p^\alpha = \lambda(p)$.

Proof. (a) If $\alpha < \beta$, there is $A \subseteq S$ such that $I_{\alpha}(A) \subseteq I_{\alpha}(A)$, but $I_{\beta}(I_{\alpha}(A)) = I_{\alpha}(A)$. If $x \in I_{\alpha}(A)$ and $x \in I_{\beta}(A)$, then A belongs to $\mathcal{U}_p(x)$, but not to $\mathcal{U}_p(x)$, and the pretopologies p^α and p^β are distinct.

(b) Since I_{p^α} is idempotent, it follows from the remarks following Definition 6 that p^α is a topology; by definition of $\lambda(p)$, this topology
must be coarser than \(\lambda(p) \). But if \(I_p(U) = U \), the \(I^*_p(U) = U \) for all ordinal numbers \(\alpha \); thus the topologies coincide.

Definition 7. The collection \(\{ \lambda^\alpha : 1 \leq \alpha \leq \gamma \} \) is called the decomposition series for \(p \). \(\gamma_p \) is called the length of this series.

The length of the decomposition series can be regarded as a criterion for describing quantitatively how non-topological a given pretopology is. In the example that follows, we show that decomposition series can have arbitrary length; that is, for any ordinal number \(\delta \) there is a pretopology \(p \) such that \(\gamma_p = \delta \).

Example. Let \(\delta \) be a fixed ordinal number greater than 0, and let \(S \) be the set of all ordinal numbers less than \(\delta \) (including 0). We define a pretopology \(p \) on \(S \) by specifying convergence on ultrafilters as follows:

1. \(p(\beta) = (\beta, \beta + 1) \), all \(0 < \beta < \delta \);
2. If \(\alpha \) is a limit ordinal, then any ultrafilter finer than the filter \(F_\alpha \) generated by sets of the form \(\gamma : 0 < \gamma < \beta \), for \(\beta < \alpha \) order converges to \(\alpha \).
3. \(p(F) = \emptyset \) (i.e., \(F \) diverges) for all other ultrafilters \(F \). If \(S \) is a finite set, then \(\gamma_p = \delta - 1 \) if \(S \) is infinite, then \(\gamma_p = \delta \).

3. The decomposition series in terms of diagonal filters.

Recall that \(\omega_p = \bigcap \{ u \times \omega_p : u \in S \} \) is the largest diagonal filter compatible with \(p \).

Definition 8. Let \(\omega_p^\alpha = \omega_p \). If \(\alpha \) is an ordinal number with an immediate predecessor \(\alpha - 1 \), let \(\omega_p^\alpha = \omega_p^{\alpha - 1} \setminus \omega_p \). If \(\alpha \) is a limit ordinal, let \(\omega_p^\alpha = \bigcap \{ \omega_p^\beta : \beta < \alpha \} \).

Lemma 1. Suppose \(U \in \omega_p \) and \(U(A) \subseteq I_p^*(V) \) for some ordinal number \(\alpha \) and for subsets \(A \) and \(V \) of \(S \). Then there is \(W \in \omega_p^\alpha \) such that \(W \subseteq U(A) \cap V \).

Proof. (Transfinite induction on \(\alpha \).) Suppose \(U \subseteq I_p^*(V) \), then let \(W = \bigcup \{ \alpha \times V : \alpha \in \alpha \} \), where \(V \) is \(p \)-for all \(U(A) \cap V \) and \(V = S \) otherwise. If \(\alpha \) is in \(W \subseteq U(A) \cap V \), then there is \(y \in V \) and \(\beta \in A \) such that \(\beta < \alpha \) implies \(y \in U \). It is a simple matter to verify that \(W \in \omega_p^\alpha \).

Next, assume that \(\alpha \) is a limit ordinal. Then \(U(A) \cap I_p^*(V) = \bigcap \{ I_p^*(V) : \beta < \alpha \} \). By the induction hypothesis there is, for each \(\beta < \alpha \), \(W \subseteq \omega_p^\beta \) such that \(W \subseteq U(A) \cap V \). If \(W = \bigcup \{ W \subseteq \omega_p^\beta \), \(\beta < \alpha \), then \(W \in \omega_p^\alpha \), and \(\omega_p(A) \cap V \subseteq \bigcup \{ \omega_p(A) : \beta < \alpha \} \subseteq V \).

Finally, assume that \(\alpha \) is an ordinal number with an immediate predecessor \(\alpha - 1 \). Let \(y \in U(A) \), then \(y \in L_p^\alpha(V) \) implies that \(L_p^\alpha(V) \subseteq \omega_p^\alpha \). Let \(T \subseteq U \) be defined by \(T = \bigcup \{ \alpha \times V : \alpha \in \alpha \} \), where \(V = L_p^\alpha(V) \), for \(\alpha \in U(A) \), and \(V = S \) otherwise. Then \(T(A) \subseteq L_p^\alpha(V) \), all \(y \in U(A) \), and it follows from the induction hypothesis that there is \(W \subseteq \omega_p^\alpha \) such that \(W \subseteq U(A) \cap V \).

Theorem 2. For each ordinal number \(\alpha \), where \(1 < \alpha < \gamma_p \), and each \(x \in S \), \(\omega_p^\alpha(x) = \omega_p(x) \). (In other words, \(\omega_p^\alpha = \{ \alpha \}_p \) for \(p \).

Proof. Let \(\alpha \) be any ordinal number with an immediate predecessor \(\alpha - 1 \). Let \(W \subseteq \omega_p \); then there are \(U \subseteq \omega_p \) and \(T \subseteq \omega_p^{\alpha - 1} \) such that \(T \subseteq U \subseteq \omega_p \).

By Lemma 2, \(U(A) \subseteq I_p^\alpha(U(A)) \), all \(x \in S \), and hence \(I_p^\alpha(U(A)) \subseteq \omega_p(x) \), which implies that \(I_p^\alpha(U(A)) \subseteq \omega_p(x) \). Thus \(W \subseteq \omega_p(x) \). On the other hand, if \(V \subseteq \omega_p(x) \), then \(I_p^\alpha(V) \subseteq \omega_p(x) \), and so there is \(W \subseteq \omega_p(x) \). By Lemma 1, there is \(W \subseteq \omega_p \) such that \(W \subseteq U \subseteq \omega_p \). Finally, if \(\alpha \) is a limit ordinal and \(\beta < \alpha \) and \(\beta < \alpha \), then \(\omega_p^\beta(x) = \omega_p^\gamma(x) = \omega_p^\gamma(x) = \omega_p(x) \). Thus the proof is complete.

Concluding remarks. Following the recent development of quasi-uniformities (for example, see [4]) diagonal filters seem to be the next logical step in the process of generalizing the notion of a uniformity. Diagonal filters also provide some insights in the theory of pretopologies; for instance, given a pretopology \(p \), it is easy to see that \(\lambda(p) \) is completely regular and only if \(\omega_p^\alpha \) for some ordinal number \(\alpha \).

If we define a "diagonal structure" to be the pair \((S, D) \), where \(D \) is a diagonal filter on \(S \), then we can easily define such terms as Cauchy structure, completeness, and total boundedness for diagonal structures by analogy to the definitions currently in use for quasi-uniform spaces. This leads to other interesting questions: for example, can a meaningful \(\ast \)
completion theorem be proved for diagonal structures? (The latter question was recently answered in the affirmative for quasi-uniform spaces by R. Stoltenberg [5].)

References

WASHINGiON STATE UNIVERSITY

Reçu par la Rédaction le 2. 9. 1967