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ANR divisors and absolate neighborhood contractibility
by
D. M. Hyman (Los Angeles, Calif.)

1. Introduction. Let B be a compact subset of an ANR Y.
The purpose of this paper is to determine conditions which will guarantee
that the quotient space Y/B is an ANR. It is known [4] that the question
of whether or not ¥/B is an ANR depends only on B andnot on Y. Precisely,

1.1. THEOREM. Let B be a compact metric space. If there exists an
ANR Y, contasning B such that Y[B is an ANR, then for every ANR Y
containing B, Y|B is an ANR.

If B is an arbitrary closed subset (not necessarily compact) of an
ANR Y, then Y/B may be non-metrizable, in which case it cannot be an
ANR. However, we can still ask if ¥/B is an absolute neighborhood exten-
sor for metric pairs (abbreviated ANE). As before the question of
whether or not Y/B is an ANE depends only on B and not on Y [4]:

1.2. TeEOREM. Let B be a metric space, and let ANR(B) denote the
collection of all ANR’s that contain B as a closed subset. If there emists
a Y, e ANR(B) such that Yo/B is an ANE, then for every Y ¢ ANR(B),
Y/B is an ANE.

Playing a central role in our discussion will be the following

1.3. DEFINITION. A space B ig called an ANR divisor if it iy metrizable
and if Y/B is an ANE for every Y ¢ ANR(B).

We will obtain a number of sufficient conditions for a space to be
an ANR divisor. Special emphasis is placed on a certain class of ANR
divisors, the compact absolutely neighborhood contractible spaces. Many
examples of ANR divisors can be built up from these spaces.

2. Deformation neighborhood bases. (!) Let B be a "closed
subset of an ANR Y. In this section we will obtain a condition involving
the neighborhoods of B in ¥ which will guarantee that ¥/B is an ANR.
We first state the following result, which is an immediate consequence
of [4], Lemma 3.4:

(*) Some of the results in this section are taken from the author’s doctoral disserta-
tion, written at the University of Maryland under the direction of Professor G. R. Lehner.
The author was a NASA Fellow.
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2.1. LeMMA. Let B be a closed subset of an ANR Y. Then Y[B is
an ANE if and only if /B is strongly locally contractible (%) at the point p(B),
where p: ¥ —>Y/[B is the natural projection.

In view of 2.1, we must find a condition which will guarantee that
Y/B is strongly locally contractible at p(B). For this purpose we introduce
the notation of a deformation neighborhood basis.

2.2. DEFINITION. Let (Y, B) be a pair. (3) A sequence {( Un, k)] 7 > 1}
is called a deformation neighborhood basis for B in Y if

DNB-1) Each U, is a neighborhood (4) of B in Y.

DNB-2) Upt1C Uy for all n.

DNB-3) Every neighborhood V of B in Y containg some U,.

DNB-4) h: U, xI-—+Y is a deformation such that

hy(U, x1) C Uy,
and hp: UpXI—>Uy-y is a deformation such that
hﬂ( Tjnxl) C (7,”.1 )

DNB-5) hy(TUpXI)C Upy it m > n.

2.3. LeMMA. Let (Y, B) be a pair. If B has a deformation neighborhood
basis in Y, then Y|B is strongly locally coniractible at the point [ B] = p(B),
where p: ¥ —Y[B is the natural projection.

Proof. Let {(Ua, hu)] n>1} be a deformation neighborhood basis
for B. For each n and for all s e I, define hy: Un—Y by ho(z) = ha(e, ).
We define a map (°) h: U, x [0, o) > as follows: Let @ « U, and suppose
that ¢ e[k, k4-1], where k is a non-negative integer. Define h(z,t) by

Mo,y — |50 it k=0,
O S R o e Byo o Baohl@) i B> 1.

Since the range of ks, is contained in the domain of Fin1 for all m and s,
the composition is meaningful, and it is easily verified that & is single-
valued. Also, h is continuous, since it is continuous on each set of the
form U, x [k, k-+1].

The map h has the following properties:

(1) R(Unx [0, 00)) C Uppy for all m>1, where [n/2] denotes the
greatest integer less than or equal to n/2,

n>1.

() A space X is strongly locally contractible at a point o if for every neighborhood U
of & there is a neighborhood ¥ of = and a contraction % of V in U such that ke(w) = @
for all £. It is easily shown that X is strongly locally contractible at » if and only if there
i8 aneighborhood ¥ of # and a contraction k; of ¥ in X such that ke(x) = o for all t.

() By a pair (¥, B) we mean a space ¥ and a closed subset B.

() All neighborhoods are open.

(*) A map is a continuous function.
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(2) B(Tyx 1) C Uy for all te[1, oo), and

(8) h(Bx[0, o)) CB. .

To verify (1), let (#,%) € Un X [0, co) be.given. Choose a non-negative
integer % such that te[k, k+1]. If & > [n/2], then by DNB-4 and the
definition of h, h(w,1) € UxC Upyyy. I k< [n/2], then n—Fk—1> [n/2].
Apply DNB-5 in the definition of & k-1 times to conclnde that h(z, 1) «
€ Un—x—1. Therefore h(x, ) € Upnpy. This proves (1). (2) follows from the
fact that hei: is a deformation over U}, (see the definition of ). (3) follows

from (1) and the equation B = ﬁ Uh.
n=1

Let g be a homeomorphism fro;n [0, 1) onto [0, co) and let p: ¥ +>¥/B
be the natural projection. Define a map J: p(U,) xI+¥/B by
p(hp~(@), 9(2))) it
[B] if

zep(Uy),t<1,

J(a:,t):{ zep(U),t=1.

It follows from (3) that J is single-valued and that J([B]xI)=[B].
By DNB-3, the collection {p(Uy,)| n > 1} is a basis for neighborhoods
of [B] in ¥/B. In view of this, the continuity of J on p(U,)x1 follows
from (2), and the continuity of J on [B]x I follows from (1). J is obviously
continuous everywhere else. Observe that J|p(U,)x1=[B], and for
each zep(U,), J(x,0)= p(h(p—l(m), 0)) = pp~Y&) = . This completes
the proof.
Combining 2.3 and 2.1, we have

2.4. TEROREM. Let B be a closed subset of an ANR Y. If B has a de-
Jormation neighborhood basis in ¥, then ¥|B is an ANE. :

By 2.4 and 1.2, we have

2.5. CorOLLARY. Let B be a closed subset of an ANR Y. If B has
a deformation neighborhood basis in Y, then B is an ANR divisor.

3. Absolute neighborhood contractibility. One of the most
important classes of ANR divisors is the class of compact absolutely
neighborhood contractible spaces.

3.1. DerFiNtrioN. Let (¥, B) be a pair. B is said to be neighborhood
contractible in Y if B is contractible in every neighborhood U of B in Y.
A metric space B is said to be absolutely neighborhood contractible if it is
neighborhood contractible in every ¥ ¢ ANR(B).

By this definition, to verify that B is absolutely neighborhood
contractible, we must show that B is contractible in every neighborhood
of every Y ¢ ANR (B). Actually, to show that B is absolutely neighborhood
contractible we need only verify that it satisfies somewhat weaker condi-
tions:
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3.2. TerorEM. Let B be o metric space. The following statements
are equivalent:

(a) There exisis a ¥ ¢ ANR(B) such that B is neighborhood contractible
in Y.
(b) For every Y ¢ ANR(B), B is contractible in X.

(e) B is absolutely meighborhood contractible.

Proof. (a)—>(b). Given Z ¢ ANR(B), the map 4: B—B ig extendable
to g: U~Z, for some neighborhood U of B in Y. By (a), B is contractible
in U under a homotopy #; the homotopy ghs contracts B in Z.

(¢) >(a) is trivial.

(b)~>(e). Let U be a neighborhood of B in Y. Then U is an ANR,
and by (b) B is contractible in U. Therefore B is absolutely neighborhood
contractible.

Our goal in this section is to show that every compact absolutely
neighborhood contractible space is an ANR divisor. This will be accomplished
in several steps, the first of which is a characterization of absolute neigh-
borhood contractibility. First we state for future reference the Homotopy
Extension Theorem and one of its corollaries.

3.3. TuroREM. Let (X, A) be a metric pair and let f be a map from X
into an ANR Y. If l: A—Y is a homotopy such that hy = f|A, then h
can be extended to a homotopy Hy: X —Y such that Hy = f. [2]

Since any constant mapping on 4 can be extended to .X, it follows that

3.4. CorOLLARY. If (X, 4) is a metric pair and if f is a nulthomotopic
map from A into an ANR Y, then f has an extension F: X Y.

3.5. THEOREM. A melric space B is absolutely neighborhood con-
tractible if and only if for every ¥ ¢ ANR(B) there is a meighborhood V
of B in X such that for every meiric pair (X, A), each map f: A=V has an
extension F: X Y.

Proof. Suppose first that B is absolutely neighborhood contractible
and let ¥ ¢ ANR(B). Let k& be a contraction of B over ¥ to a point b,.
Define & map ¢: Y x {0} v BXI v ¥ x {1}»Y by

gy, 0=y for all y e ¥, -
g, ) ="h(d) forallbeB, 0Kt <1,
gy, 1)=b, for all ye ¥ .

Since ¥ is an ANR, g has an extension G: WY, where W is some open
seb in ¥ xI. Let V be a neighborhood of B in ¥ such that 7xIC W.
G|V xI contracts ¥V over ¥ to b,. Therefore any map into ¥ is nullhomo-
topie over Y, and by 3.4, extendable over Y.

Oonversely, if ¥ ¢ ANR(B) and if V hag the property stated in the
theorem, then the map f: ¥x {0} u Vx {1} >V defined by f(v, 0) = v,
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f(v,1) = b, has an extension F: ¥ xI Y. Therefore ¥ is contractible
over Y; in particular, B is contractible over ¥. The result now follows
from 3.2(Db).

3.6. LEMMA. Let B be a compact absolutely neighborhood contractible
metric space, and let ¥ ¢ ANR(B). Then B has a deformation neighborhood
basis in Y.

Proof. By 3.5, there is a neighborhood U, if B in ¥ such that any
map from a closed subset of a metric space into U, has an extension
over ¥. We may choose U, such that d(z, B) < 1 for all z ¢ U;, where d
is some metric on Y. By repeated application of 3.5, we can obtain
a sequence of neighborhoods {U,| n > 1} of B such that

(1) t_]‘n C Un—l;

(2) every map from a closed subset of a metric space into U, has
an extension over Up—i,

(3) d(x, B) < 1/n for all w € Uy.

It follows at once that the sequence {U,| n > 1} satisfies DNB1-3.

Choose a point by, e B. For each positive integer =, define a map
fa: ([77»— Upi1) v Uppa—> Ui bY fulw) = by if iﬁn— Uny1 and fu(w) = »
if @€ Upte. By (2), fu extends to a map F,: Up—> Upyyi. Define a map
gnt Unp1X {0} U Unsa XTI U Upya X {1} = Unta by

gn(@, 0) = @ if
iz, t) = if
gn(@, 1) = Fy(z) if

@€ Upya,
TeUpe, 0TI,

& e Un+1.

By (2), gn extends to & map Gt 17“+1 X I - Uy. Finally, define a map
kn: Upx {0} U UpyixI © Upx {1} =T, by

kn(z, 0)= o if
kn(w, t) = Gu(x,t) if
Ten(2, 1) = Fo(x) if

zeUn,
$€Un+1, Ogtél,

z2eUy.

By (2), ks extends to a map hp: UpXI->TUa it w>1; k extends to
by Uy xXI-Y. It is straightforward to verify that the sequence {hs| n > 1}
satisfies DNB4-5. Therefore {(Un, ks)| » =1} is a deformation neigh-
borhood basis for B in Y.

By combining 3.6 and 2.5 we obtain the main result of this
section.

3.7. THEOREM. If a compact metric space B is absolutely neighborhood
contractible, then B is an ANR divisor.

Fundamenta Mathematicae LXII 5
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4. Homotopy characterization of absolute neighborhood
contractibility. It is well known that if B is a contractible subset of
an ANR Y, then the projection p: ¥ —Y/B is a homotopy equivalence.
This conclusion is still valid if B is compact and absolutely neighborhood
contractible. )

4.1. TrEEOREM. Let B be o compact metric space. The following state-
ments are equivalent:

(a) B is absolutely neighborhood contractible.

(b) For every Y ¢ ANR(B), the natural projection p: ¥ ->Y[B is
a homotopy equivalence.

(c) For every ¥ e ANR(B), p has a left homotopy inverse.

Proof (a)—(b). Suppose first that B is absolutely neighborhood
contractible, and let ¥ ¢ ANR(B). By 3.7, ¥/B is an ANR; therefore
ther_e is a meighborhood U of [B]= p(B) in ¥/B and a contraction Js
of U to [B] in Y/B such that j([B]) = [B] for all i ¢ I. The Homotopy
Extension Theorem can be applied to yield a homotopy J;: Y/B->Y/B
extending j; and such that J, is the identity on ¥/B. Since J; extends j;,
we have

@) JI(U) = [B].

Since p~(U) is open in ¥, p~YU) is an ANR and therefore
p~Y(U) e ANR(B). Since B is absolutely neighborhood contractible, by 3.5
there is & neighborhood ¥V of B in p~*(U) such that, for any metric pair
(X, 4), every map f: A7V has an extension F': X —>p~YU). Let % be
a contraction of B to a point b, over V. Define a map f: 7 x {0} v Bx
XTI vV x {1}V by

fly, 0=y it ye?,
fo,)=Ikbd) i beB,0<<i<1
fly,1) =1 it yeV.
Since the ima.ge. of f is contained in ¥, f can be extended to a map F: ¥ x
XTI =p=Y U?. Smce. Y is an ANR, the Homotopy Extension Theorem
can be applied to yield a homotopy Ki: ¥ Y such that Eiy) =Ty, )

forally e ¥ and 0 < ¢ < 1, and such that X, is the identity on ¥. Since K
extends k;, we have

H

@) K,(B) = b,
and
(3) K{B)Cp~YT).

Let 4 and j be the identity maps on Y and ¥/B, respectively, and
let 9= K;p—*: Y/B-Y. By (2), ¢ i single valued, and since p is an
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identification, () ¢ is continuous. We will show that ¢ is a homotopy
inverse of p.

Combining (1) and (3), we see that J,pK;p~* is a single-valued (and
continuous) homotopy hetween the maps J,pK,p~! and J,pK,p~1 on
Y/B. Therefore we can write

j=do~d = pEpi~d pK;p~t = J pp~py: Y|B~>Y|B.
Also,
t=K~E =K pp=9p: Y>Y.
Therefore p is a homotopy equivalence with homotopy inverse ¢.

(b) —(e) is trivial.

(¢)—~(a). Let ¥ e ANR(B) and let ¢: ¥/B—-Y be a left homotopy
inverse of p. Then ¢p: ¥ —»Y is homotopic to the identity of ¥, and
¢p (B) is a single point. Therefore B is contractible in ¥, and B is absolutely
neighborhood contractible by 3.2(b).

By 3.2(b), every inclusion of an absolutely neighborhood contractible
gpace into an ANR is nullhomotopic. More generally,

4.2. TarOREM. A melric space B is absolutely neighborhood coniractible
if and only if every map from B into an ANR is nullhomotopic.

Proof. Suppose that B is absolutely neighborhood contractible,
and let f be a map from B into an ANR ¥. Choose some X ¢ ANR(B).
Since Y is an ANR, f has a neighborhood extension F: U—Y. Since B
is absolutely neighborhood contractible, the inclusion ¢: B —U is nullhomo-
topic; and therefore f= Fi iz nullhomotopic. The converse is trivial.

It is known that a space B is homotopically trivial if and only if
for every ANR Y, every map from Y into B is nullhomotopie. Therefore 4.2
shows that, among metric spaces, absolute neighborhood contractibility
and homotopic triviality are dual concepts. Unlike compact absolutely
neighborhood contractible spaces, not all compaet homotopically trivial
metric spaces are ANR divisors; in particular it follows that there exist
compact acyclic (using singular homology) spaces which are not ANR
divisors. It is an open question if every compact acyclic (using Cech
homology) metric space is an ANR divisor. Since it is easily seen that
every absolutely neighborhood contractible space is Cech-acyclie, an
affirmative angwer to this question would generalize 3.7.

An immediate consequence of 4.2 is

4.3. COROLLARY. If a meiric space B is homotopically dominated by
an absolutely neighborhood contractible space A, then B is absolutely neigh-
borhood contractible. In particular, absolute mneighborhood contractibility
is an invariant of homotopy type among metric spaces, and every retract

(%) A surjection g: X—Z having the property that U c Z is open if and only if
g{U)cX is open is called an identification.
5*
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of an absolutely neighborhood contractible space is absolutely neighborhood
contractible.

We can establish a similar result for ANR divisors.

4.4, TEEOREM. If a metric space B is homotopically dominated by
an ANR divisor A4, then B is an ANR divisor.

Proof. Let X e ANR(4) and Y ¢ ANR(B), and let p: X ->X/4 and
¢: Y-Y/B be the natural projections. To prove that Y/B is an ANE it
is sufficient by 2.1 to show that ¥/B is strongly locally contractible at ¢(B).

Let f: B »A and g: A->B be maps such that the identity on B is
hom(_)topic to gf under a deformation «;. Since ¥ is an ANR, there exists
a neighborhood N of 4 in X and a map ¢: N —+Y extending ¢. Since N
ig open in X, N is an ANR, and since 4 is an ANR divisor, ¥/4 is an ANE,
Therefore by 2.1 there is a neighborhood W of p(4) in X/4 and a strong

. fzontraetion h: of W to p(4) over N/A.Since p~*(W) is open in X, p—i(W)
is an ANR; therefore there exists a neighborhood U of Bin ¥ and a map
y: U~>p~W) extending f. Define a map A: Ux {0} uBXIv Ux {1}+Y by

Mu,0)=u for all u e U,
A, t) = ai(b) forall beB, 0<t<1,
A, 1)=op(u) forall weU.

Since ¥ is an ANR, 1 is extendable to a map J: F-Y, wheve ¥ is a neigh-
borhood of UXx {0} wuBxIu Ux {1} in UxI. Let V be a neighborhood
of Bin U such that VXICUJH and such that J(VXI)C U. Then the
restriction of J to VI defines a homotopy ji: VU such that j, is the
identity on V, j; = gy|V and j(B) C B for all t. Define a map k: q(V)x
XI-Y|B by

QJug~(?) for all zeg(V), 0t < %,

9P~ hu-apyg(z)  for all zeg(V), $ <t <.

It is easily verified that & strongly deforms ¢(V) to ¢(B), and the proot
is complete. ‘

N 4.5: CORf)LLAJ‘R.Y. Among metric spaces the properly of being an ANR
t.iwzsor 18 an invariant of homotopy type, and every retract of an ANR divisor
is an ANR divisor.

kyz) =

5. Quotients and unions of ANR divisors and absolutely
neighborhood contractible spaces. Suppose that 4 is a compact
ANR subset of a metric space B. If B is an ANR, then B/4 is an ANR; (7)
however, if B/4 is an ANR, it does not follow that B is an ANR. Tt fo]léws
from our next result, however, that B is at least an ANR divisor.

(") Every ANR is an ANR divisor [4].
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5.1. THEOREM. Suppose that (B, A) is a metric pair such that A s
a compact ANR divisor. Then B is an ANR divisor if and only if B[A is
an ANR divisor.

Proof. Choose some Y e¢ANR(B). Since A iz a compact ANR
divisor, ¥/A is an ANR. Therefore Y/4 ¢ ANR(B/A). Notice that ¥/B
is homeomorphic to (¥/4)/(B/4). If B is an ANR divisor, then ¥/B is
an ANTE. Since Y/4 is an ANR and since ¥Y/B =~ (¥/A)/(B[A4), it follows
from 1.2 that B/A is an ANR divisor. If B/A is an ANR divisor, then
(ZJA)|(B/A) is an ANE. Since (Y/A)/(B/4) = Y|B, it follows that B
is an ANR divisor.

Suppose that 4 is a compact AR subset of a metric space B. If B
is an AR, then B/4 is an AR; however, if B/4 is an AR, it does not follow
that B is an AR. By 5.1, we can say that B is an ANR divisor. Our next
result (5.3) enables us to say even more, namely, that B is absolutely
neighborhood contractible.

5.2. LEMMA. Suppose that (B, A) is a pair such that both A and B
are absolutely neighborhood contractible. Let ¥ ¢ ANR(B) and let U be a neigh-
borhood of A in Y. Then B is deformable into U under a deformation that
leaves A pointwise fived.

Proof. By 3.5, there is a neighborhood ¥V of B in Y such that any
map from a closed subset of a metric space into ¥ is extendable over ¥;
similarly there is a neighborhood W of 4 in U ~V such that any map
from a closed subset of a metric space into W is extendable over U n V.
Choose a point a € A and define a map f: 4 v (B—W)->W by

z if wzed,
@

f(”)‘:{ it oeB—W.

f has an extension F: B—~U n V. Define a map g: BXx {0} v AXI v BX
X {1} >V by

g(w,o)zw if :L‘EB,
gz, )= if wed,0<L1t<1,
g(m,l):lﬂ(x) if reB.

g extends to a map G: BXI—Y. @ is the desired deformation.

5.3. THEOREM. Suppose that (B, A) is a melric pair such that A is
compact and absolutely neighborhood contractible. Then B is absolutely
neighborhood contractible if and only if BJA is absolutely meighborhood
contractible. .

Proof. Let ¥ e ANR(B) and let p: ¥->¥/A Dbe the natural pro-
jection. By 8.7, Y/A is an ANR; therefore ¥/4 ¢ ANR(B/A).

Assume first that B is absolutely neighborhood contractible. To show
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that B/A is absolutely neighborhood contraectible it is sufficient, by 3.2(a),
to show that B/A is contractible in an arbitrary neighborbood U of B/4
in Y/A. Since Y/4 is an ANR, the open set U is an ANR, and it follows
that there is a neighborhood V of p(4) contractible in U. By 5.2, there
is a deformation k: B->p~YU) leaving A pointwise fixed and such that
¥y(B) C p~YV). The homotopy pk«(p|B)~1: B/A—U deforms B/A into V,
which is contractible in U. Therefore B/A4 is contractible in U, and it
follows that B/A is absolutely neighborhood contractible.

Conversely, assume that B/A is absolutely neighborhood contractible.
Since ¥/4 is an ANR, BJA is contractible in ¥/A under a deformation %.
By 4.1, p hag a homotopy inverse g: ¥/4 Y. Let i: B—Y be the inclusion.
Then we have i~gp|B = gkop|B~gqk,p|B. Since %, is constant, ¢ is null-
homotopie, and it follows from 3.2(b) that B is absolutely neighborhood
contractible.

Given a finite collection of ANR’s, it is possible to build up a
new ANR by fitting them together in a sufficiently ‘smooth’ way. For
example, if a metric space X can be written as the union of two closed ANR
subsets X; and X, such that X; ~ X, is an ANR, then X is an ANR.
Similarly, we can build up compact ANR divisors from smaller ones by
fitting them together properly.

5.4. TEEOREM. Let B be a compact metric space. Suppose that By, ..., By

are closed subsets of B such that L,_lj B;= B and such that for every sub-
=1

. k
collection {Bq,, ..., By} of {By, ..., Bu}, [} By, is an ANR divisor (or empty).
Then B is an ANR divisor. =

Proof of Theorem 5.4. We show first that the disjoint union
4, v 4, of compact ANR divisors 4, and 4, is an ANR divisor. Let
YeANR(A_lqu). Then Y/4, is an ANR. Let p: Y->Y/4, be the
natural projection. Since 4, ~ 4, = @, p|4, is a homeomorphism. Therefore
Z = (Y|4,)[p(4,) is an ANR. Let q: ¥/4,~>Z be the natural prbjeetion.
qp(4,) and qp(4,) are singletons, therefore Z(qp(4,) v gp (Ag)) is an
ANR.() But Z/(gp(4,) v ¢p(4,)) is homeomorphic to ¥/(4,w Aj)
Therefore 4, v A, is an ANR divisor. ' v
) .Retuming to the theorem itself, we note that if » = 1, the ]
is trivial. .Assume inductively that any metric space which can’ bg wif:tﬂ
as tl‘xe'umon of k compact subsets satisfying the conditions in the hypo-
thesis is an ANR divisor, and let n = k1. For § = 1,0,k et C;= By~
N Byyi. By hypothesis, each € is an ANR divisor (or empty); and by

.. . : E k
the induction hypothesis, D = 1U1B¢ and F=|) C; are ANR divisors
= o],

(or empty). If B +# @, Byy,/E i ivisor
_ +1/F is an ANR divisor by 5.1. But Bj../F is
homeomorphic to B/D. Therefore, by 5.1, B is an ANR divisor. Ifk;ﬂ1/= .
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then B is the disjoint union of By, and D. By the above paragraph, B is
an ANR divisor.

An immediate consequence of 5.4 and 3.7 is

5.5. CorOLLARY. Let B be a compact metric space. Suppose that

By, ...y Bn are closed subsels of B such that OB;: B and such that for
i=1

E
every subcollection {By, ..., By} of {Biy o) Ba}, [ By is absolutely neigh-
=1

borhood contractible (or empty). Then B is an ANR divisor.

Most of the simple examples of ANR divisors can be written as the
union of absolutely neighborhood contractible spaces satistying the
hypothesis of 5.5. For example, every compact polyhedron, when trian-
gulated, is the union of cells, intersections of which are lower dimensional
cells (or empty). Each cell, of course, is absolutely neighborhood con-
tractible.

6. Absolute neighborhood contractibility and proximate
retracts. Recently, Yandl [5] extended the theory of retracts to the
category of compact metric spaces and “gpproximately continuous”
functions. The AR’s of this category are called WPAR’s. In this section
we will show that the WPAR’s are precisely the compact absolutely
neighborhood contractible spaces.

6.1. DEFINTTION. Let (X, d) and (¥, o) be compact metric spaces.
A function f: XY is called an e-map, ¢ >0, if there is a 6 >0 such
that @(zy, @,) < 0 implies o(f(2y), f(w,)) < &

6.2. DErFmNITION. Let ¥ be a closed subset of a compaet metrie
space X. An ¢-map f: XY having the property that f(y) =y for all
g e Y is called an s-retraction.(®) Y is called a prowimate reiract of X if
for every s > 0 there is an z-retraction of X onto Y. A compact metric
space is called a weak provimate absolute retract (WPAR) if it is a proximate
yetract of every compact metric space in which it is embedded.

Tt is clear that if X, ¥ and Z are compact metric spaces, if f: X->¥
is o map and if g: ¥ 7 is an s-map, then the composite gf is an ¢-map.
Algo, a compact metric space is a WPAR if and only if it is a proximate
retract of the Hilbert cube [5].

6.3. THEOREM. A compact metric space B is absolutely neighborhood
contractible if and only if it is @ WPAR.

Proof. Consider B to be embedded in the Hilbert cube H, and let d
be a metric on H.

(%) This definition differs slightly from that in [5]; however, it is easily seen that
the class of WPAR’s considered here is the same as that in [5].
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Assume first that B is absolutely mneighborhood contractible. To
show that B is a WPAR, it is sufficient, by the above remarks, to e-re-
tract H onto B, where ¢ >0 is given. Let U= {z ¢ H| d(», B) < ¢/3}.
Since U is open in H, U is an ANR; and since the inclusion of B in U
is nullhomotopic, there is by 3.4 a map f: H—->U such that f(b)= b for
all b ¢ B. Define a function g: U B by assigning to each ¢ U~ B a point
g(u) ¢ B such that d(g(u),u) < ef3, and by setting g(u)= u for each
weB. If d(uy, up) < &/3, then d(g(uy), g(uz)) < &; therefore g is an &-map.
Consequently gf: H-—>B is an e-map, and clearly gf(b) =b for all b ¢ B.
This proves that B is a WPAR.

Conversely, assume that B is a WPAR. Let W be a neighborhood
of B in H. To show that B is absolutely neighborhood contractible, it is
sufficient, by 3.2(a), to contract B to a point over W. Let X be a compact
ANR such that BC X C W. (*) Since X is closed in H, there exists a re-
traction r: U X, where U is a neighborhood of X in H. Since U is open
in H, U is locally convex; and since B is compact, there exists an ¢ > 0
such that

(%) any set of diameter < & meeting B lies in a convew subset of T.

Let s: H-B be an ¢/3-retraction; there is a § > 0 such that d(w, y) < 6
implies d{s(e), 8(y)) < ¢/8. We may and do assume that &< e/3. Let
{Va}aea be a canonical cover [3] of H— B such that diam {star(V,)} < é/2
for all a. Choose, for each a, a point p,eV,, and let P = {p,| acAd).
Define a retraction #: P v B->B by assigning to each p,e P a point
t(po) € B such that d(p,, t(pa)) < 2d(paq, B), and by setting ¢(b)= b for
all b ¢ B. Define a function Ai: P v B—+B by

_[i@) i d(x, B)< §/2,

s(z) if d(w,B)>=4/2.
Since 1 agrees with ¢ on a neighborhood of B and since P is discrete, it
follows that A is continuous. Moreover, if V, A Vp# @, then d(A(pa),

Mpy)) < &: For if d(pa, B) < 6/2 and d(ps, B) > §/2, choose a b ¢ B such
that d(pa, b) < 6/2. Then

A(w)

AA®a); B) < A(A(p), Pa) + d(pa, b) < 6+ 62,
and

d(Pm b) < d(pﬁy pa)+d(par b) < 6/2+6/2 =0,
which implies that '

a(a(pe), b) = d(s(pp) , 8(b) < ¢/3.

(*) The existence of such & set X follows from the methods in [1].
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Therefore
A{A(pa) s Mpp)) < A(A(pa), )+ d(b, Mpp)) < 6+6/2+¢/3 <=

The other cases are easier to verify and omitted.
Tt now follows from (¥) that there is a map ¢: H—U defined by

gb)=>= if beB,
g@) = O gula) 2(ps) it weH—B,

where {p,} is a partition of unity subordinated to {V.}. (*) Let k:: B—~H
be @ contraction of B to a point in H. Then the homotopy rgki: B~>X
contracts B in X C W. This completes the proof.

() The continuity of g follows as in [3], 4, 3.
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