Note on metrization

by

P. R. Andenæs (Oslo)

I. Introduction. In [1] Alexandroff has proved the following theorem:

A T₁-space is metrizable if and only if it is paracompact and has a uniform base.

A base \mathcal{B} for a topological space X is called uniform if for each $x \in X$ and each neighbourhood U of x at most finitely many members of \mathcal{B} contain x and intersect $X \setminus U$. The theorem quoted above contrasts other metrization theorems in the fact that it requires neither a decomposition of the base into countably many subfamilies nor the existence of a sequence of open covers with "nice" properties; cf. the theorems of Bing, Nagata-Smirnov ([3], p. 127), Arhangel'skiï, Morita, Stone ([4], p. 190), and Alexandroff-Urysohn ([2]). On the other hand, it invokes the explicit requirement of paracompactness. In Section 3 of the present paper we shall prove that a T₁-space is metrizable if and only if it has a base which is locally finite outside closed sets. (The necessary definitions are given in Section 2). Bases that are locally finite outside closed sets generalize in a natural way the concept of a uniform base, and, as we shall see, no decomposition into countably many subfamilies is required in their definition.

Section 2 contains the necessary lemmas for the proof of the metrization theorem in Section 3. As corollaries we obtain new characterizations of metacompact and paracompact spaces. In Section 3 we also briefly discuss how the classical metrization theorems of Urysohn ([2]), p. 135, [7], [8]) can be deduced from our theorem.

For notation not explained here the reader is referred to Kelley [5].

We recall that a topological space is called metacompact (or pointwise paracompact) if each open cover has a point-finite open refinement. Finally, if $\{A_i\}_{i \in I}$ is a finite collection of covers of a space X, then $\bigwedge \{A_i\}_{i \in I}$ is the cover consisting of all non-empty sets of the form $\bigcap \{A_i\}_{i \in I}$.
2. Local finiteness outside closed sets. Let \(X \) be a topological space. If \(A \) is a cover of \(X \) and \(B \) a subset of \(X \), we put
\[
A_B = \{ A \in A : A \cap B = \emptyset \}.
\]
A cover \(A \) of \(X \) is called point-finite outside closed sets if for each closed subset \(F \) of \(X \) a point \(x \in X \setminus F \) is contained in at most finitely many members of \(A_B \). Similarly, \(A \) is called locally finite outside closed sets if the following condition holds for each closed subset \(F \) of \(X \):

For each \(x \in X \setminus F \) there exists a neighbourhood \(V \) of \(x \) intersecting at most finitely many members of \(A_B \).

Clearly, if a cover \(A \) of \(X \) is locally finite outside closed sets, then it is also point-finite outside closed sets. Furthermore, we observe that a base for a topological space is uniform if and only if it is point-finite outside closed sets.

Our first result is a generalization of theorem II in [1]:

Lemma 1. Let \(A \) be an open cover of a topological space \(X \). If \(A \) is point-finite outside closed sets, then \(A \) has a point-finite subcover.

Proof. Let \(A \) be an open cover of \(X \) which is point-finite outside closed sets. Let \(A \) be well-ordered by \(\subseteq \), let \(A_1 \) be the first member of \(A \) w.r.t. \(\subseteq \) and put \(B(A_1) = A_1 \). By transfinite induction we construct a family \(\{ B(A) : A \in A \} \) such that for each \(A \in A \):

\[
\begin{align*}
(1) & \quad B(A) = A \cup \{ \emptyset \}, \\
(2) & \quad \bigcup_{A' \subseteq A} B(A') \supset \bigcup_{A' \subseteq A} A', \\
(3) & \quad B(A) \neq \emptyset \quad \text{if} \quad \bigcup_{A' \subseteq A} B(A') = \emptyset, \\
& \quad B(A) = \emptyset \quad \text{if} \quad \bigcup_{A' \subseteq A} B(A') = X.
\end{align*}
\]

(1), (2) and (3) are evidently satisfied for \(A = A_1 \). Now, suppose that \(B(A) \) has been chosen for each \(A < A_1 \). If
\[
\bigcup_{A < A_1} B(A) = X,
\]
we put \(B(A_1) = \emptyset \), and (1), (2) and (3) are trivially satisfied. If
\[
\bigcup_{A < A_1} B(A) \neq X,
\]
let \(B(A_1) \) be the first member of \(A \) w.r.t. \(\subseteq \) such that
\[
B(A_1) \setminus \bigcup_{A < A_1} B(A) \neq \emptyset.
\]

We must verify that (2) is satisfied. ((1) and (3) are trivial.) If \(A_1 \subseteq \bigcup_{A < A_1} B(A) \), there is nothing to prove. On the other hand, if
\[
A_1 \setminus \bigcup_{A < A_1} B(A) \neq \emptyset,
\]
we necessarily have \(B(A_1) = A_1 \), and (2) follows. (The assumptions \(B(A_1) > A_1 \) and \(B(A_1) < A_1 \) both contradict the choice of \(B(A_1) \).) We now put \(A_2 = (B(A_1)) \setminus \bigcup_{A \in A} (B(A)) \). From (1) and (3) it follows that \(B \) is a subcover of \(A \). Let \(x \in X \) be arbitrary, and let \(A_2 \) be the first member of \(A \) w.r.t. \(\subseteq \) such that \(x \in B(A_2) \). If \(x \in B(A_1) \), let \(x \in A_2 \), then we have \(A_2 < A_1 \), and from (3) it follows that \(B(A_1) \cap B(A_2) = \emptyset \), i.e.
\[
B(A_1) \setminus B(A_2) \subseteq A_2 \setminus B(A_2).
\]

Since \(A \) is point-finite outside closed sets, it follows that there are at most finitely many \(B(A) \) such that \(x \in B(A) \), and the proof is complete.

Though it will not be needed in the sequel, we include the following

Proposition. A topological space \(X \) is metacompact if and only if each open cover has an open refinement which is point-finite outside closed sets.

Proof. To prove necessity it is sufficient to observe that a point-finite cover of \(X \) is trivially point-finite outside closed sets. Sufficiency follows from lemma 1.

Lemma 2. Let \(A \) be an open cover of a topological space \(X \). If \(A \) is locally finite outside closed sets, then \(A \) has a locally finite subcover.

Proof. Let \(A \) be an open cover of \(X \) which is locally finite outside closed sets. Then \(A \) is also point-finite outside closed sets, so, by lemma 1, \(A \) has a point-finite subcover \(B \). Then \(B \) is an irreducible subcover \(C \), i.e. no proper subfamily of \(C \) covers \(X \). Let \(x \in X \) be arbitrary and select \(C_x \in C \) such that \(x \in C_x \). \(C \) is a subcover of \(A \) and is therefore locally finite outside closed sets, i.e. there exists a neighbourhood \(V \) of \(x \) intersecting at most finitely many members of \(C \setminus C_x \). Since \(C \) is irreducible, no \(C \in C \) can be properly contained in \(C_x \), hence \(C = C_x \), and we conclude that \(V \) intersects only finitely many members of \(C \). This completes the proof.

Theorem 1. A regular space \(X \) is paracompact if and only if each open cover has an open refinement which is locally finite outside closed sets.

Proof. Since a locally finite cover is locally finite outside closed sets, necessity is obvious. Sufficiency follows from lemma 2.

3. Metrization. Now we prove

Theorem 2. A \(T_1 \)-space \(X \) is metrisable if and only if it has a base which is locally finite outside closed sets.
Proof. Let X be metrizable with metric d. Let 3_0 be a locally finite open refinement of the cover consisting of all open spheres with d-radius $1/n$. $\{3_n\}$ is a base for X; we claim that it is also locally finite outside closed sets. Let F be a closed subset of X ($\emptyset \neq F \neq X$), and let x be a point in $X \setminus F$. For some n_x we have $St(x, 3_{n_x}) \cap St(F, 3_{n_x}) = \emptyset$ for all $n > n_x$. On the other hand, there exists for each n a neighbourhood V_n of x intersecting only finitely many members of 3_{n}. Then

$$V = \bigcup_{n=1}^{\infty} V_n,$$

intersects only finitely many members of $3_1 \cup 3_2 \cup \ldots \cup 3_{n_x}$, hence $V = V_x \cap St(x, 3_{n_x})$ intersects at most finitely many members of 3_{n}. To prove sufficiency, let 3 be a base for X which is locally finite outside closed sets. We first prove that X is regular. Let $x \in X$ be arbitrary and let U be an open neighbourhood of x. There exists a neighbourhood V of x, $V \subseteq U$, intersecting at most finitely many $B \in 3 \cap U$. If $y \in V \setminus V$, then y cannot be an isolated point in X, hence, since X is T_1, there are infinitely many $B \in 3$ containing y. Thus the assumption $y \in V \setminus U$ immediately leads to a contradiction. Therefore $V \subseteq U$, and X is regular. If U is an open cover of X, we can refine U by members of 3, hence U has an open refinement which is locally finite outside closed sets. From theorem 1 it follows that X is paracompact. 3, being locally finite outside closed sets, is evidently a uniform base. The metrizability of X now follows from the theorem of Alexandroff quoted in the introduction. (A simplified proof of Alexandroff's theorem can be found in [3].)

Remark. We shall give another proof of the sufficiency part in the preceding theorem; this proof is based on a technique used by Alexandroff in [1]. Let 3 be a base for X which is locally finite outside closed sets. We put

$$3 = \{x \in X \mid x \text{ is an isolated point in } X\}$$

and $3_1 \cup 3_2 \cup \ldots \cup 3_{n_x}$. Then $3_1 \cup 3_2 \cup \ldots \cup 3_{n_x}$ is also locally finite outside closed sets. Using lemma 2 of section 2 we can find a locally finite subcover 3_{n_x} of $3_1 \cup 3_2 \cup \ldots \cup 3_{n_x}$. Proceeding by induction we obtain sequences (3_{n_x}) and (3_{n_x}) such that 3_{n_x} is a locally finite subcover of $3_1 \cup 3_2 \cup \ldots \cup 3_{n_x}$ for each n. Let $x \in X$ be arbitrary and select, for each n, $B_n \in 3_{n_x}$ such that $x \in B_n$. If, for some n_x, $B_n \in 3_{n_x}$ then B_n is a sequence of distinct members of 3_{n_x}, and, since 3 is a uniform base, B_n must still be a neigh-
bourhood base at x. Thus, $\bigcup_{n=1}^{\infty} 3_{n_x}$ is a σ-locally finite base. We have already seen that X is regular, and metrizability follows from the Nagata-Smirnov theorem.

\Box

One of the merits of the Nagata-Smirnov theorem is that the following metrization theorems of Urysohn are easily deducible as corollaries:

1. A regular T_1-space with a countable base is metrizable ([5], p. 126, and [7]).

2. A compact Hausdorff space is metrizable if and only if it has a countable base ([6]).

It is also easy to deduce these theorems from theorem 2 of the present paper. Let X be a metrizable compact Hausdorff space and let 3 be a base for X which is locally finite outside closed sets. Instead of using lemma 2 of section 2 we now use compactness to select a finite subcover 3_{n_x} of 3_{n_x} for each x. In the remark following theorem 2, $\bigcup_{n=1}^{\infty} 3_{n_x}$ is then a countable base for X.

It remains to prove that if X is regular and has a countable base, then X also has a base which is locally finite outside closed sets. We first note that the family of covers

$$A(U, F) = \{V, X \setminus \overline{U}\}, U, V \in A, U \subseteq V,$$

is countable. Let $n(U, V)$ be the number of $A(U, F)$ in an enumeration of $(A(U, F))_n$ and put

$$\bigcup_{n=1}^{\infty} 3_{n_x}$$

Then $\bigcup_{n=1}^{\infty} 3_{n_x}$ is a base for X which is locally finite outside closed sets. To see this, let F be a closed subset of X and let x be an arbitrary point in $X \setminus F$. Using regularity we can choose $U, V, W \in A$ such that $x \in U \subseteq V \subseteq F \subseteq W \subseteq X \setminus F$. For $n > \max(n(U, V), n(V, W))$ we then have $St(U, 3_{n_x}) \cap St(F, 3_{n_x}) = \emptyset$, and therefore (since 3_{n_x} refines 3_{n_x}) 3_{n_x} is a finite cover for each n) at most finitely many $B \in 3$ can intersect both U and F.

References

Fundamenta Mathematicae LXII
On distributive n-lattices and n-quasilattices

by

J. Plonka
(Wrocław)

0. In this paper we give a representation theorem for a class of abstract algebras (which we shall call distributive n-quasilattices), having n binary fundamental operations o_1, \ldots, o_n, which are idempotent, commutative, associative and distributive with respect to each other. A distributive n-quasilattice will be called a distributive n-lattice, if it satisfies moreover formula (5) below, which generalizes the familiar absorption law for lattices.

We shall show that every distributive n-lattice can be treated as a subalgebra of an algebra defined in a natural way in a product of distributive lattices, and every distributive n-quasilattice can be represented as a sum of a direct system (see [2]) of distributive n-lattices.

1. We shall call a distributive n-quasilattice every abstract algebra $Q = (X; o_1, \ldots, o_n)$ where $n \geq 2$ and o_1, \ldots, o_n are binary operations which satisfy the following four conditions:

\begin{align*}
(1) & \quad x o_1 x = x, \\
(2) & \quad x o_i y = y o_i x, \\
(3) & \quad (x o_i y) o_i z = x o_i (y o_i z), \\
(4) & \quad (x o_i y) o_j z = (x o_j z) o_i (y o_j z) \\
& \quad (i, j = 1, 2, \ldots, n).
\end{align*}

A distributive n-quasilattice we shall call a distributive n-lattice if it satisfies moreover the following equality:

\begin{equation}
(5) \quad x_{o_1 \ldots o_{n-1} x_{o_n y}} = x.
\end{equation}

It is easy to see that in the case $n = 2$ a distributive n-lattice is a distributive lattice, and equation (5) coincides with the law of absorption. Similarly, a distributive n-quasilattice in the case $n = 2$ is a distributive quasilattice, as defined in [1].

Examples. Let $X = (a_1, a_2, \ldots, a_n, 0)$ and let us define for $i = 1, 2, \ldots, n$ the operations o_i as follows: $x o_i x = x$, $x o_i a_i = a_i o_i x = a_i$, $x o_i a_j = a_j o_i x = a_i$, $x o_i 0 = 0 = 0 o_i x$. Then X is an n-quasilattice.