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Concerning homotopy properties of compacta

by
Karol Borsuk (Warszawa)

The aim of this note is to introduce some notions which allow us
to compare the global homotopy properties of two compacta X and ¥
lying in the Hilbert space H. The basic notion in this study is the notion
of the fundamental class from X to ¥, which is in fact a generalization
of the classical notion of the homotopy class of a map of X into ¥. If ¥
is a polyhedron or, more generally, an ANR-space, then this notion differs
only formally from the classical notion of the homotopy class. However,
in the case of arbitrary compacta, the situation is different and the
notion of fundamental class has a more intimate connection with the
global topological structure of spaces than the classical notion of homo-
topy class. The category consisting of fundamental classes as mappings
and of compacta (in H) as objects allows us to study the global homotopy
properties of compacta from a new point of view.

The author acknowledges his gratitude to Dr. H. Patkowska, who
read the manuscript and made several valuable suggestions.

§ 1. Homotopy classes. Let X, be a subset of a space X and ¥,
2 subset of a space Y. By a map of the pair (X, X,) into the pair (¥, ¥,)
we understand a continuous function f: (X, Xo)—(Y, Y,). If (4, 4,)
C(X, X),i.e. 4 CX and 4,C 4 n X, then the map f': (4, Ag)—>(¥, ¥,)
defined by the formula f'(z) = f(x) for every = <« A is called the restriction
of f and denoted by f/(4., 4,).

If X is a subset of a space M, then a pair (Z, Z,) is said to be a neigh-
borhood of the pair (X, X,) in M if Z is a neighborhood of X, and Z,
a neighborhood of X, (in M). If Z is an open (closed) neighborhood of X,
and Z, is an open (closed) neighborhood of X,, then the pair (Z, Z,) is
said to be an open (closed) neighborhood of (X, X,) in M. In the case of
X,= 0, the pair (X, 0) is considered as identical with X.

Two maps f,g: (X, Xo)~>(M, M,) are said to be homotopic in the
pair (Z,2Z,) C(M, M,) it there exists a map

@ (XX 0, 15; Xyx<0,1)) (M, M)
such that (X x<0,13)CZ, ¢(X,%x<0,1>)CZ, and ¢(z,0)=7F(z),
¢(2,1) = g(z) for every point © ¢ X. Then we write f ~ ¢ in (Z, Z,) and
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we call the map @ a homotopy joining the map f with the map g in (Z, Z,).
I f, g: (X, X,)—~(M, M) are homotopic in (M, M,), then we say shortly
that f and ¢ are homotopic and we write f ~ g. It is evident that both
the relation of homotopy and the relation of homotopy in (Z, Z;) are
reflexive, symmetric and transitive. Let us observe that f ~ g in (Z, Z,)
implies f(X) v ¢(X)C Z and f(X,) v g(X,) C Z,.

§ 2. Weak homotopy classes. If f: (X, X,)— (M, M,) is a map,
then we denote by [f] the homotopy,class with the representative f, i.e. the
collection of all maps g: (X, Xy) (M, M) satistying the condition f ~ g.

In the sequel X, X,, ¥, ¥, Z, Z, will always denote compact subsets
of the Hilbert space H such that X,C X, ¥, CY, Z,CZ. By a neigh-
borhood of a subset of H we always mean & neighborhood in the space H.

It two maps f,¢: (X, X)>(¥, ¥Y,) are homotopic in each neigh-
borhood (V, Vy) of the pair (Y, ¥,), then they will be said to be weakly
homotopic. It is clear that the relation of weak homotopy is reflexive,
symmetric and transitive. Thus the collection of all maps

£ (X, X)~(Y, Ty
decomposes uniquely into disjoint classes of maps called weak homotopy
classes. The weak homotopy class with the representative f will be de-
noted by [flw.
(2.1) THEOREM. If Y, X, ¢ ANR, then for every map f: (X, X,)—(¥, Ty)
the weak homotopy class [flw coincides with the homotopy class [f].

First let us prove the following
(2.2) Lemma. If Y, Y, e ANR, then there ewist a closed mneighborhood
(W, W) of the pair (Y, Y,) and a map B: (W, Wo)~>(X, X,) such that

(1) Y is a retract of W;

(2) the restriction B|(Y, X,) is homotopic to identity.

Proof. Since Y ¢ ANR, there exist an open neighborhood ¥ of ¥
and a retraction r: V—¥. Since ¥, ¢ ANR, there exist an open neigh-
borhood Iﬁ,(_ V of ¥, and a retraction 7, ¥,— ¥, such that for every
point y e V, the segment yry(y) lies in V. Let us set W=V and let us

consider a closed neighborhood W, CV, of ¥, and a map a: H—<0,1)>
such that

o ):{O for every point y ¢ W, ,
1 for every point y e H—7V,.
Moreover, tllere exist a map s: H—H such that s(y) = r(y) for
every point y e V,.
Sinee the point a(y)-y+(1—a(y))-rn(y) belongs for y ¢ ¥, to the

segment yry(y) C ¥V C W, we infer that
o(y)-y+[1—a(®)) s(y) eV  for every point y e T,.

e ©
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Moreover,
a(y)-y+(1—a@)-s(y) =r(y) e T, for every point y e W,,
and we infer that the formula
B(y)=rla(®) y+(1—a() s(y)] for every point y ¢ W
defines a map f: (W, Wo)—(¥, X,).

Now let us observe that for every y eV, and 0 < u < 1, the point
(1—u-+u- a(y))-y—k(u—% a(y))v s(y) lies on the segment yro(y) CV, and
for y e V—V, we have (1—u-+u-a(y) y+(u—u-a(y) s@y)=yeV. It
follows that the formula

(g, w) = r[[1—u+u-a@®)) y+(u—u a@) )]
for y ¢ ¥ and u e {0,1)
defines a homotopy y: (¥ x<0,1>, Y x <0,1>)—~(¥, ¥,) such that
y¥,00=y and y(y,1)=p(y) for every point ye¢¥.

Thus we have shown that the restriction /(¥ , X,): (¥, ¥o) (Y, ¥y)

" is homotopic to identity. The proof of Lemma (2.2) is finished.

Proof of Theorem (2.1). Consider two weakly homotopic maps
Frg (X, X)—=(Y, ¥,). Let (W, W,) and B: (W, Wy)—>(¥, ¥,) be as in
Lemma (2.2). Then there exists a homotopy

@: (Xx<0,15, Xyx<0,15)~(W, W)
such that ¢(z, 0) = f(z) and ¢(x, 1) = g(z) for every point z ¢ X. Setting
= fp, we get a homotopy w: (X x<0,1), Xyx<0,1))>(Y, ¥,) such
that y(z, 0) = Bf(x) and v(z,1)= Bg (). Since the values of f and g
belong to ¥ and since B/(¥, ¥y): (¥, ¥)>(Y, X,) is homotopic to the
identity map, we infer that f ~ g. Thus the proof of Theorem (2.1) is
finighed.

§ 3. Fundamental sequences and fundamental classes.
By a fundamental sequence from (X,X,) to (¥, ¥,) we understand an
ordered triple consisting of the pairs (X, X,), (Y, Y,) and of a sequence
of maps fy: H—-H, k= 1,2, ..., such that for every neighborhood (V, V)
of (¥, Y,) there exists a neighborhood (U, U,) of (X, X,) such that

(3.1) Ful(U, Ug) = fupa(U, Ty) in (V, V) for almost all k.

‘We shall denote this fundamental sequence by {fx, (X, X,), (¥, ¥,)}
or, shortly, by f. Manifestly condition (3.1) is equivalent to the following
one: N
(8.2)  There exists an index ky such that fuf(U, Uy) =~ fil(T, Uy) in (V, Vo)

for every k,1= k.
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Let us observe that if f= {fx, (X, X, (¥, ¥Yy)} is a fundamental
sequence and the maps ¢;: H—H satisfy, for k=1,2, .., the condition

(3.3)  For every neighborhood (V,V,) of (¥, X,) there exists a neighborhood
(U, Uy) of (X,Xy) such that ful(U, Ua) = gul(U, o) n (V, V)
for almost all %,

then ¢= {gx, (X, Xo), (¥, ¥y)} is also a fundamental sequence. We
shall say that the fundamental sequence g satisfying condition (3.3) is
homotopic to the fundamental sequence f “(notation f ~ g). Clearly this
relation is reflexive, symmetric and transitive and so it decomposes the
collection. of all fundamental sequences into mutually exclusive classes
called fundamental classes (from (X, X,) to (¥, ¥,)). The fundamental
class with a representative f will be denoted by [f1.
One can easily see that

(34)  If fu, g: H~H are maps and if there ewists a sequence of indices
ig—>oo such that gr = fi, for almost all indices k and, moreover,
if f= {fr, (X, Xo), (¥, X))} 4s a fundamental sequence, then
g = {gx, (X, X)), (¥, ¥y} is a fundamental sequence homotopic to f.

‘We say that a sequence of maps {f#}is obtained from the sequence {f;}
by an infinitesimal translation, if there exists a sequence {e;} of positive
numbers converging to zero and such that

o(fil@), filx)) < e for every point ¢ H and k= 1,2

Ly &y .

One can easily see that

(88) If f= {fx, (X, Xo), (¥, Yo)} 15 @ fundamental sequence, then every
sequence of maps fr: H—H obtained from {fy} by an infinitesimal
translation is a fundamental sequence homotopic to the fundamental
sequence f = {fy, (X, X,), (¥, T}

§ 4. Fundamental classes generated by maps. If f: (X, X)»
—(¥, Y,) is a map, then there exists a ma,pf: H —H guch that f(a;) = f(x)
for every point z « X. It is evident that setting f, = f for every k=1, 2, ...,
we get a sequence of maps fi: H—H such that {fx, (X, Xy, (¥, ¥}
is a fundamental sequence. Let us show that its fundamental class does
not depend on the choice of the map f satisfying the condition f(z) = f(z)
for every point # ¢ X. Let us prove more:

(£1)  If f, g: (X, X)) (Y, Y,) are weakly homotopic maps and if the
maps f,g: H—H satisfy the condition F(z) = f(»), §(z) = g(x) for
every point © € X, then setting fr =71, gr= g for k= 1,2, ... we get
two homotopic fundamental sequences:

oy (X, X0), (X, Yo}y {9, (X, X), (X, X))

* ©
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First let us prove the following

(4.2) LemMA. Let f, g: (X, X)—>(Y, Yy bf o maps Lomotopic in an
open neighborhood (V, Vo) of (Y, Y,) and let f, g: H—~H be two maps such
that f"(a:) = f(x), g}(:v) = g(x) for e'verykmsX. Then there exists a neigh-
borhood (U, Uy) of (X, X,) such that f|(U, U,) = gl(u, Uy in (V,V,).
Proof. Let ¢: (Xx 0,1y, X% <0,1,)>(H,H) be a homotopy
joining f and ¢ in (V, V). Then there exists a closed neighborhood (W, W)

of the pair (X, X;) such that f(W) v g(W)CV and f(Wo) v g(Wa) C V.
Setting

~

p(z, 0)=Ffl®), wz,1)= é(ab-’) for every point v ¢ W,
p(z, 1) = g(x,t) for every (,?) eXx<0,1;,
we get a map y of the closed subset
T=(Wx(0) v (Xx0,1)wv (Wx (1)

of the space H X {0, 1), having values in V and satisfying the condition
p(z,t) eV, for every point (,%) e T n (WX <V,17) But the sets V
and V, are both open in H, whence the map y has a continuous extension v’
onto & set @D T open in the space H x<0,1> such that y(G) CV. 1t
we recall that X and X, are compacta and ¥V, is open in H, we infer that
there exists a neighborhood (U7, Us) C (W, W) of the pair (X, X,) such
that Ux<0,1> CG and that v(Uyx<0,1>)C¥,. It follows that the
restriction o'[(T X {0, 1>, Tyx <0, 1)) is a homotopy which jpins in
(V,V,) the map fitu, 17,) with the map g/(U, Uy). Thus the proof of
Lemma (4.2) is finished.

Tn order to prove (4.1), it suffices to show that for every open neigh-
borhood (V, V) of the pair (¥, ¥,) there exists a neighborhood (U, Uy)
of the pair (X, X,) such that fi/(T, Uy) = gul(U, Ug) in (V, V,) for almost
all %. This follows by Lemma (4.2), because f ~ ¢ in (V, V,) implies that
there is a neighborhood (U, U,) of (X, X,) such that j{(T, Uy = g/(U, Up)
in (V,V,), ie fil(U, To) = gil(T, Ty) in (V, V) for every k=1,2, ..
Thus (4.1) is proved.

We infer by (4.1) that for every map f: (X, Xp)—~(Y,Y,) and for
every map f H-+H satistying the condition f(w) = f(z) for z ¢ X, the
fundamental class f with the representative {fi, (X, X,), (Y, Y,)}, where
fo= f for every k=1, 2, ..., does not depend on the choice of the map f.
Thus we can say that the fundamental class [f] is generated by the map f.
Moreover, (4.1) implies that [f] remains fixed if one replaces f by another
representative of the wealk homotopy class [flw. Let us observe that
Theorem (2.1) implies that for ¥, ¥, ¢ ANR the adjective “yweak” is
superfluous in the last proposition.

Fundamenta Mathematicae LXII 16
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Now let us prove that maps belonging to different weak homotopy
classes generate different fundamental classes, i.e., that

(4.3)  If two maps f, g: (X, Xo) (Y, X,) generaie the same Sfundamental
class, then [flv = [glw- .
Proof. Let f, §: H-+H Dbe two maps such that f(m):f(m), ﬁ(m)
= g(z) for every point x ¢ X. Setting fk=f: 0 = j for k=1,2,.., we
get two homotopic fundamental sequences {fx, (X, Xo), (¥, ¥o)} and
{5 (X, X,), (Y, ¥,)}. Thus for every mneighborhood (V,V,) of (¥, ¥,)
there is a neighborhood (U, U,) of (X, X,) such that

Ful(T, Uy) = guf(U, Ty) in (V, V) for almost all % .

Sinee (X, X,) C(U, Uy) and since f(z) = fr(®), g(2) = gi(2) for every
point z € X, it follows that f ~ g in (V, V,). Thus we have shown that the
maps f and g are weakly homotopic and the proof is finished.

In particular, the fundamental class generated by the identity map
i (X, X)) —~(X, X,) is said to be the fundamental identity class for ihe
pair (X, X,).

If U is a subset of X, open (in X) and such that T C X,— X— X,,
then the fundamental class generated by the inclusion j: (X— U, Xy— U)—~
(X, X,) is said to be a fundamental excision class.

§5. A special case. We ghall see in the sequel (in § 9) that in
general there exist fundamental classes which are not generated by any
map. We have a different situation if the sets ¥ and ¥, are both ANR’s.
Then we have the following
(.1) TemorEM. If Y, Y, e ANR, then every fundamental class f from
an arbitrary pair (X, Xy)to (¥, X,) is generated by a map f: (X, Xo)—
—~+(¥, ¥).

First let us prove two lemmas.

(5.2) Lmmaea. If there exists a retraction r of a meighborhood 14 of ¥
to Y, then for every neighborhood (V, V) of (¥, Y,) there are a neighborhood
(V', Vo) of (¥, ¥,) and a homotopy ]

g (V"% <0, 15, Vix <0, 13)=(V, V)

such that ¢(y,0) =y and o(y,1)=r(y) for every point y V'

3 Plroof. We can assume that V CV. Consider a neighborhood
Q , Vo) C (1.7, V,) such that for every point y ¢ V' the segment yr(y) lies
in V, and if y e V;, then yr(y) C V,. It suffices to set

¢y, ) =1-r(y)+(1—1)-y for every (y,f) eV’ x<0,1>,

in order to obtain a homotopy ¢ satisfying all the required conditions.

icm®
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(5.3) Lemma. If Y, Y, c ANR, then there exists & compactum Y, Y
such that Y— ¥, ~ Y, = 0 and there exisis a homotopy

B (¥ x (0,15, ¥ex <0, 13) (Y, Yo

satisfying the following conditions:

1) d(y,t) =y for every point y e Xy and 0 <t < 1;

(2) Dy, 0) =y for every point y e X;

(8) #(¥1,1) = Y.

Proof. Let r be a retraction of a neighborhood V of ¥ to ¥ and 7,
2 retraction of a neighborhood V,of ¥, to ¥,. Moreover, let e be a positive
number so small that
(5.4) oly, H—V)>¢ for every point y e Y.

Tt is evident that there exists a compactum ¥, C ¥ ~V, such that
Y—Y,~n ¥Yo= 0 and that
oly, rely)) < & for every, point ye T, .
Setting
a(y) = y—r(y) for every point y e ¥y,
we get a map o Y;—>H such that |a(y)i <e for every y ¢ ¥;. Mani-
festly, there exists a map a: H—H which is an extension of o, and satisfies
the condition

(5.5) la(y)| <e for every point y ¢ H .
It follows by (5.4) and (5.5) that
(5.6) y—t-a(y) eV  for every point y e ¥ and 0 <t <.

Condition (5.6) allows us to define on the set ¥ x<0,1> a map 4
by the formula
By, ) =rly—t-a(y)].
Iy e ¥, then d(y, t) = 7(y) = y e ¥y, because a(y) = ax(y) = y—1(y)
= 0. Hence
$: (¥ x<0,1), ¥%x<0, 1;")")‘(1ra Y,
and condition (1) is satisfied. Moreover, #(y, 0) = 7(y), whence Hy,0) =y
for every point y ¢ ¥, i.e., condition (2) is satisfied. Finally, if y ¢ X,
then a(y) = a(y) = y—7o(y), Whence #(y, 1) = r7q(y) = ro(y) € T, and we
infer that ©(¥,,1) C ¥,. If we observe that ¥,C ¥, and (by (1)) that
#(¥,,1) = ¥,, we conclude that condition (3) is also satisfied. N
Proof of Theorem (5.1). Let » be a retraction of a neighborhood V
of Y to ¥ and let ¥, and 9 be as in Lemma (5.3). Let ¥, be a neighborhood
of ¥, such that I}o CVand ¥~ 170 C Y,. Let us consider a representative
‘f= {fes (X, Xo), (¥, Yo)} of the fundamental class [f].
16%
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Let 7,C 7 be a neighborhood of ¥, such that #(V) C V,, Since f
iy a fundamental sequence, there exist a closed neighborhood (I, Fy) of
(X, X,) and an index k, such that

(8.7) Fel(Fy Fo) = fro [(F, Fo) in (V,V3) for every k= k, .

It we recall that »(V)C ¥, r(Vh) C f’., and Y ~ VQC Y,, we infer
by (5.7) that

(5.8) 1fil(Fy Fo) = 1fi/(F, Fo) in (¥, ¥y) for k=K.

Then #{rfu(x), ) is defined for every (z,t) e Fx<0,1; and k> k,
and the condition 0(rfk(:n),t) e Y is satisfied. Moreover, »fi(Fy) C T,
implies that #(rfi(z), 1) € ¥, for every point z ¢ Fy. It follows that

(8.9)  Setting x(w, t) = Hrfu(®), 1) for every (x,1) e F x <0, 1) and k> K,
one gets a homotopy y jozmng in (Y, Y) the map 9(rfr, 0)/(F, F,)
with the map 9(rfe, L)/(F, Fy).

If we recall that #(Y,,1)C ¥,, we infer by (5.8) that
(5.10)  H(rfx, D[(F, Fo) ~ D (1fro, V/(F, Fy) in (¥, ¥y) for k=K, .

Sinee F is closed in H, there exists a map fi: H—H (for every k = k)
such that

fi@) = B (rfalx), 1) for every point z < F .

Let us prove that for every neighborhood (V,V,) of (¥, ¥,) there
exist a neighborhood (U, U,) C(F, F,) of (X, X,) and an index % >k,
such that

(5.11) fel(T, Uy) = fil(U, Uy) in (V,V,) for every k= k; .

We may assume that (V,Ve)C(V,Vi). The inclusion (U, U,)
C (¥, F,) implies that fi(z) = #{rfu(»), 1) for every point © ¢ U and & = &,.
Since #(y, t) = y for every point ¥ ¢ ¥, and for 0 < t< 1, there exists
a neighborhood W, of ¥, such that #(W, n ¥,t) C V, for every 0 <t < 1.
‘We can assume that the neighborhood U, i so small, and the index
ky = kq is so great that »fx(U,) C W, for every k> k,. Then (5.9) implies
that the restriction fi/(TU, U,) is homotopic in (V, V) to the map fi’
given by the formula

i (@) = 9rfulw)

But 7fu(#) ¢ ¥ and #(y, 0) = y for every point y ¢ ¥, whence fi'(x)
= 7fy() for every point z ¢ U. Thus we have shown that

(5.12) Fel(T, Ty) = 1fef(U, Us) in (V, V) for k=%, .

0) for every point z e U .

icm
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By Lemma (5.2) there exist a neighborhood (V',V5) C(V,Vy) of
(Y, Y,) and a homotopy
@ (V'x<0,15, Vox<K0,13)—=(V,V,)
such that ¢(y, 0) = y and ¢(y,1) = r(y) for every point y ¢ V’'. Now we

can assume that the neighbhorhood (U, U,) of (X, X,) is so small and
the index %, = k, so great that

FU)C V' and fi(Uy) C Vs tor every k> %, .

Then setting yi(w, t) = ¢(fi(x), t) for every « ¢ U and 0 < ¢ <1, we
get a homotopy wi: (U X <0, 1>, Uy x 0, 1>)~>(V, ¥,) such that we{®, 0)
= p(ful®), 0) = fu(®) and yi(z,1)= @{ful@), 1) = #fi(w) for every point
ze U and %k = k,. Hence

(5.13) rfifl(U, Uy) =~ fi/(U, Uy) in (V,V,) for &=k .

Thus relation (5.11) is a consequence of relations (5.12) and (5.13).
Now let us show that

(5.14) Fil(T, Uo) = fil(T, Uy) in (V, Vo) for every k= kq

Sinee U C F, the maps fi/(U, Uy) and fi,/(U, Uy) are the same as
the maps & (rfx, 1) and &(#fy,1). Thus relation (5.14) follows by re-
lation (5.10), if we recall that (U, Uy) C(F,Fy) and (¥, ¥,) C(V,V,).

Relations (53.11) and (5.14) both imply that

(8.15) fuf(U, Uy) = fi)(U, Ug) in (V, Vo) for k>,

We infer by (5.15) that the fundamental class [f] is generated by
the map f: (X, X,) (¥, ¥,) given by the formula

F(@) = fio(@) = 9 {rfro(@),
Thus the proof of Theorem (5.1) is completed.

1) for every point e X .

§ 6. Composition of fundamental classes. The definition
of the composition of fundamental classes is based on the following
(6.1) LiEmwma. Iff {fk: X -XO) (Y YQ)} a”"’dg— {gk, (Yy Yﬂ)7 (Zy Zu)}
are two fundamental sequences, then {gifi, (X, Xy),(Z,Zy)} is a fun-
damental sequence.

Proof. Let (W, W,) be a neighborhood of the pair (Z, Z,). Then
there exist a neighborhood (V, V(,) of (Y, Y, and an index %, such that

(6.2) gV, Vo) = graf(V, Vo) in (W, W,) for every k=& .

Moreover, there exist a neighborhood (U, U,) of (X, X,) and an
index %k, such that

(6.3) Fil(T, Uy = furd(T, Up) in (V,V,) for every b=k, .
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Setting &, = Max(k;, k,), we infer by (6.2) and (6.3) that}
gifdl( U, Ug) = gewafira/(U, Uo) in (W, W) for every k >k .

Hence {gxfr, (X, Xy, (%, Z,)} is a fundamental sequence. It wil
be denoted by ¢f and called the composition of the fundamental sequences f
and g. -
Now let us prove that

(6.4) If f and f' are two homotopic fundamental sequences from (X, X,)

10 (¥, ¥,) and g and g' are two homotopic fundamental sequences
from (Y, X,) to (Z, Z,), then the compositions gf and g'f* are homo-
topte. o o
Proof. Let
_._f= {fiy (X, Xo), (¥, Xo)}, _fI = {fie; (X, X}, (¥, Xo)},
g= {95, (Y, Yo}, (Z,.Z0)} _q, = {¢%, (¥, Yo), (Z, Z,)} .
If (W, W,) is a neighborhood of (Z, Z,), then there exist a neigh-
borhood (V,V,) of (¥, Y,) and an index k, such that

gV, Vo) = gil(V, V) in (W, W) for every k> k,.

Moreover, there are a neighborhood (U, U,) of (X, X,) and an index
k, such that

Fl(U, Up) = fil(U, Uy) in (V, V,) for every k=1Fk,.
Setting %, = Max(k,, k,), we see at once that
af (U, Uo) = gifel(U, Uy) in (W, Wy) for every k> ki,

and thus the proof of (6.4) is finished.

It follows by (6.1) and (6.4) that if [f] is a fundamental class from
(X, X,) to (¥, Y,) and [g] is a fundamental class from (¥, ¥,) to (Z, Z,),
then all compositions of a representative of [f] and of a representative
of [g] belong to the fundamental class [gf] from (X, X,) to (Z, Z,). This
fundamental class [gf] will be denoted by [g][f] and called the composition
of the fundamental classes [f] and [g). It is clear that if [f] and [g] are
funfia,mental classes generated by the maps f and ¢ resp_ectivelvj then
their composition [g]{f] is generated by the map gf. -

N § 7. The fundgmental category. It is evident that the defi-
nition of the composition of fundamental classes implies that
(7.1) (RI(Lg1LfD) ds defined if and only if ([R1IgDLS] s defined, and then
(RCALF) = [RIDIfL . |
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Instead of [A] (LgllfD (when it is defined) we write [ZL][Q][_f]. Mani-
festly,
(1.2)  [Rlgllf] s defined if and only if both [h][g] and [g](f] are defined.
(1.3)  If [f]is a fundamental class from (X, X,) to (¥, ¥y) and [4] is the
fundamental identity class for (X, Xq) and [j] the fundamental
identity class for (¥, Xy), then [f1= [f1[{]1= LjIf

Propositions (7.1), (7.2) and (7.3) mean that one obtains a category
it one considers the fundamental classes as morphisms and the pairs
(X, X,) of compacta in H as objects. The product is defined as the com-
position of fundamental classes and the identities as fundamental identity
classes. Let us call this category the fundamental category, and denote

it by .

§ 8. Fundamental domination and fundamental equiv-
alence. A fundamental class [f] from (X, X,) to (¥, X, iz right-in-
vertible if there exists a fundamental class [g] from (¥, Y, to (X, Xy
such that [f1[g] is the fundamental identity class. One sees at once that
the composition of two right-invertible fundamental classes (if defined)
ig-also a right-invertible fundamental class. If there exists a right-in-
vertible fundamental class [f] from (X, X,) to (¥, ¥,), then we say
that (X, X,) fundamentally dominates (¥, ¥,) (notation: (X, X,) > (¥, X))

Tt is evident that

(8.1) (X, X) z (X, Xo)
and
(8.2) (X, X,) = (¥, ¥,) and (¥, ¥y) Z (Z, Z,) imply (X, X,) = (Z, Zy)-

If the relations (X, X,) >F (Y, Y, and (¥, X,) % (X, X,) both hold,
then we write (X, X,) = (Y, Y,) and say that (X, X,) and (Y, Y,) are
fundamentally equal.

A fundamental class [f] from (X, X) to (¥, ¥y) is said to be a funda-
mental equivalence if there exists a fundamental class [¢] from (¥, X,)
to (X, X,) such that the compositions [f1lg] and [41[f] “are both funda-
mental identity classes. If there exists a fundamental equivalence from
(X, X,) to (Y, ¥,), then we say that the pair (X, X,) is fundamentally
equivalent to the pair (¥, ¥,), and we write (X, Xy = (Y, Y. It is
evident that the relation of the fundamental equivalence is reflexive,
symmetric and transitive. Thus the collection of all pairs (X, X,) of
compacta in H decomposes into disjoint sets of fundamentally equivalent
pairs, called fundamental types (of pairs). Manifestly, two pairs of compacta
of the same fundamental type are fundamentally equal.
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Let us remark that in the case X,= Y,= 0, instead of relations
Detween pairs (X, X,) and (¥, ¥,) we obtain the corresponding relations
between the compacta X and Y.

One says (following Whitehead [3], p. 1133) that (X, X,) homotopically
dominates (Y, ¥,) if there exist two maps f: (X, Xy) (¥, ¥, and
g: (¥, ¥o) (X, X,) such that their composition fg: (¥, ¥o)—(Y, ¥,) is
homotopic to the identity. Then it is evident that the fundamental class [¢]
generated by the map g is a right inverse of the fundamental class (71
generated by the map f. Consequently: N

(8.3) Homotopical domination implies fundamental domination.

Two pairs (X, X,) and (¥, ¥,) are said (folowing W. Hurewicz)
to0 be homotopically equivalent provided there exist two maps f: (X, Xg)—
(¥, ¥,) and ¢:(¥,¥,)~(X,X,) such that the compositions fg:(¥, ¥Yy)
—(X, Xy and gf: (X, Xy)>(X,X,) are both homotopic to identities.
In this case the compositions [_f] [g1and [g][f] of the fundamental classes [f]
and [g], generated by f and g respectively, are both fundamental identity
classes. Consequently:

(8.4) Homotopy equivalence implies fundamental equivalence.

In particular, two homeomorphic pairs are always fundamentally
equivalent. It follows that
(8.8) If (X, X,) is homeomorphic to (X', X}) and (¥

Y,) 48 homeo-
morphic to (¥', Yy), then:

(X, X) (Y, X,) implies (X', Xy) > (XY, Yo);
(X, X) (¥, Xo) tmplies (X', .Xo)-— (X', Yo);
(X, Xy) ~ < (Y, Y,) implies (X', X3) ~ z (¥, Xg),

ie., all relations %, = =~ are topological.
F

) It X, Y are two fundamentally equivalent ANR’s, then Theorem (5.1)
implies that there exist two maps f: XY and g: ¥ —>X generating the
tundamental classes [f] from X to ¥ and [¢] from Y to X respectively,
such that [f1g] and [g][f] are fundamental identity classes. It follows
by (2.1) and (4.3) that the maps fg: ¥ —7Y and gf: XX are homotopic
to identities, whence X and ¥ are homotopically equivalent. Consequently:

(8.6) If X,Y e« ANR, then the relation X = Y coincides with homotopy

equivalence.

§ 9. Fundamental equivalence for plane continua. The
following example illustrates to some extent the gense of the relation
of fundamental equivalence. Let E?.denote the Euclidean plane which

e ©
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we consider as identical with the subset of the Hilbert space H consisting
of all points of the form (@, #,,0, 0, ...), and let p denote the projection
of H onto E® given by the formula
D1y Bay g, ) = (@, %, 0, 0, )
Let us prove the following

(9.1) TEEOREM. Two continua X, Y C E* decomposing E* into the same
number of regions are fundamentally equivalent.

Proof. Let us limit ourselves to the case where B*—X and E*—
have an infinite number of components. If the number of components
is finite, then the proof is similar but simpler.

Let us arrange the components of F*—X in a sequence Ay, 4y, ...
and the components of B*— Y in a sequence B, Bj,.. such that 4,
and B, are unbounded. Then there exist, for every k=1, 2,..., two
open subsets Uy and Vj of E? satistying the following conditions:

(9.2)  The sets U, Vi are both connected and X C Uy, ¥ CVy. The bound-
ary of Uy (in F2) is the union of k-+1 disjoint simple closed curves
Cy, C1, .y O such that C;C A; for i=0,1, ...,k The boundary
of Vi (in B?) is the union of k-1 disjoint simple closed curves
Dy, Dy, ..., Dy such that D;C B; for i = 0,1, .., k.

Ifse A~ Upwithi=0,1,...,k then o(x, X) <1/k. If y e BinVy
with 1= 0,1, ..., &, then o(y, ¥) <1/k.
ﬁ}c+1c Uk, Vk+1CVk fOT 70=1,2,...

Condition (9.2) implies that there exists a sequence of homeomorphisms

hy: B2>E2, k=1,2,..,

preserving the orientation of E?* and satisfying the conditions

ha(Cs) = Dy for i=0,1, ...,k T |(B2— U) = hal(BP— Uy .

It follows hence, by an elementary argument, that

h(Ug) = Vi,
b/ Ur = hignf/Ur in Vi for k=1,2,.. and n= 0,1,2,..

Let j denote the inclusion of F? into H. Setting

Jelz) = jhep (@)
one gets a sequence of maps fy: H—H. Now let us consider an arbitrary
neighborhood V of ¥. It follows by (9.3) that there exists an index %

such that Vi C V. For this index % there exists a neighborhood U of X
such that p(U) C Ug. Then

FlU = jtap|U,  franlU = jhienplU

(9.3)

(9.4)

and

(9.5)
(9.6)

for every point x ¢ H,

for every k=1,2,..

and n=0,1,2,..
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and we infer by p(U)C U and (9.6) that
FolU = fo4nfU in Vi, CV  for J= 1,2, and n=0,1,2,..

Thus we have shown that f= {fy, X » Y} is a fundamental sequence,

By an analogous argument, one shows that setting gu(y) = jhg'p(y)
for every point y ¢ H, ,one obtains a fundamental sequence g = {gz, ¥, X},
Then gf = {gifu, X, X}. But gifu®) = jhi *pjhip (z) for every point z ¢ H,
where hep(z) e B?, whence pihsp(z)— hip(z) and consequently gyfy(z)
= ihi hap () =p(#) for every point w<H. If we recall that (@)=
for every point # ¢ X, we infer that {gxf%, X, X} is a representative of the
identity class. Hence the fundamental class [f]1 is a right inverse of the
fundamental class [g]. By an analogous argument one shows that the
tundamental class gis a right inverse of the fundamental class [f]. Hence
the continua X and Y are fundamentally equivalent. -

By a similar argument one shows that

(9.7)  If X, Y are continua in. E* and the number of components of B2— X
is not less than the number of components of H2— Y, then X
fundamentally dominates Y.

Let T, denote the segment (in B?) with endpoints (0,0) and (0, 1)
andlet Ty (fork=1, 2, ...) denote the boundary of the triangle with ver-

n
tices (0,1), (1/4k, 0), (1/(4k+1), 0). Manifestly, the set P, — U Ty is
k=0
a polyhedron decomposing E? into n+1 regions, and the set P, — Cj T
k=0

is a continuum and E*— P, hasan infinite number of components. Finally,
let us set Py = 0. Since, for m # n, the polyhedrons P, P, are homo-
topically not equivalent, we infer by (8.6) that P, P, are fundamentally
not equivalent. Moreover, (8.3) implies that Po fundamentally domina-
tes Py for every n =0, 1,2,.. Hwehad P, ~ P, for some n, then P,

F
would fundamentally dominate Pry1, and consequently also P, would

homotopically dominate Pyy1, which is not true. Hence all continua
Po, Py, Py, Py, ... ‘are of different fundamental types, and it follows

from (9.1) that every Plane continuum is fundamentally equivalent to
one of them. Hence

(9.8)  The collection of all fundamental types of plane continua s countable.

Remark. Let X be the union of the closure F' of the diagram of

the function y = sin(1/z), where 0 < z < 1=, and of an arc I C E* with
the ends (0, 0) and (1fx,0) and the interior lying in B*—F, and let ¥
denote a simple closed curve lying in E2. By Theorem (9.1) there exist a
fundamental sequence f from X to ¥ and a, fundamental sequence g from ¥
to X such that g is homotopic to a fundamental sequence generated

©
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i i i 5.1), the fundamental se-
the identity map i: ¥ —Y. By Theorem (5.1),
zzence f is generated by a map f: X — Y. If the fundamental sequenetlal g
were generated also by a map g: ¥ X, then the map fg: Y=Y W(?{;l
be homotopic to the identity 4: ¥—¥, which is evidently impossible.
Thus the fundamental sequence g is not generated by any map.

amental equivalence for plane compacta.' As

we hiw}g .sfe];:lfﬁlhe collection of all fundamental f:ypes. of Pla(ini«fef conixr;};i
is only countable. Now let us show that the. situation is eren:
plane compacta. First let us prove the following
(10.1) Lmmma. If X, ¥ are two compacta of the same fmzdfbmmtal typ:s,
then there exists a one-to-one correspondence A between their comi)otne'r:s
such that the corresponding components have the same fundamental types.

Proof. Let f= {fx, X, ¥} and g = {gx, ¥, X} be two fungamenzzi
Séqﬁences such that the compositions fg and gf belong 1t(1); fun, jm;r}ll ol
identity classes. Consider a com.ponent A of X a.nd_ te Zemc.reasmg
limp(fx(a), ¥) = 0 and since Y is compact, there exists a
k=00

sequence {x} of indices and @ point b ¢ ¥ such that lim fi,(a) = b. Let B

= .
denote the component of Y containing the point b. Then for every neigh-
borhood V of B there exists a neighborhood V, of Y such that the com-

onent of the set ¥, containing B lies in V. Since f is a fundamental se-
puence there exists a neighborhood U, of X such that fx/U, = f_"‘“/ U,
5(311 14 f:)r almost all k. If U denotes the component of U, containing 4,
we i::fer easily that fu/U = fraa/U in V for almost all k. Thus we have
shown that B of 7 s

i t B o 8

. For every component A of X there exisis a component.

(o) that for zgvery neighborhood V of B there exists a neighborhood U

of A with the property fi|U = fr|U in ¥V for almost all k.

It is clear that for every component A of X there is only one conz
onent B of Y satisfying (10.2). Setting A(4) = B, we get a function
zssigning to every component 4 of X a component A(4) of ‘_Y. Moreover,
we infer by (10.2) that fa= {f¢, 4, B} is a fundamel.lta.l sequence. ,

By an analogous arg_umenf we infer that there exists a function A
assigning to every component B of ¥ a component A’'= A'(B) of X
such that . . ,
(10.8) For every neighborhood U’ of A’ there emisis a neighborhood V
o of B such that gu/V' = grea/V' in U’ for almost all k.

We infer by (10.3) that gz = {gx, B, 4’} is a fundamentalll sequence.

Consider now a neighbor_hood U’ of A’. By (10.3), there is a neigh-
borhood V' of B such that

gx(V')C U’  for almost all k.
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Moreover, (10.2) implies that fi(4)C V' for almost all k. Consequently

(10.4) grfu(4)C U’ for almost all %.

On the other hand, for every nelghborhood U of A there is a neigh-
borhood U, of X such that the component U of U‘J containing A lies in U.
Since g)_‘ ~ 7LX’ we infer that
crcUu for almost all k.

(10.5) gefu(4)

Tt follows by (10.4) and (10.5) that every neighborhood U’ of the com-
ponent A’ intersects every neighborhood U of the component 4. Hence
A = A’, thatis A4’ 4(A) = A forevery component 4 of X. By an analogous
argument one shows that AA'(B)= B for every component B of Y.
Hence A is one-to-one.

Moreover, keeping the notations U and U,, we infer by the relation
gf = ix that there exists a neighborhood U, of X such that

guf/ Uy ~ /U, in T, for almost all & .

Tt follows that gxfi(A) C U for almost all %, and we infer that the com-
ponent W of U containing the set 4 is a neighborhood of 4 satisfying
the condition

gefe/W ~ 4/W in U for almost all % .

Thus we have shown that gsfa = {gufr, 4, A} = 4.
By an analogous argument one shows that fags = {fugx, B, B} ~ iB.
Thus 4 = = B= A(4) and the proof of Lemma (10.1) is ﬁmshed

Now let us prove the following
(10.7) TeeoREM. The family of all fundamental types of plane compacta
is of the power 2%.

Proof. Since the power of the class of all compacta is 2%, it suffices
to prove that there exists a function assigning to every real number ¢
a plane compactum X; so that for ¢ < ¢’ the compacta X,;, Xy are not
fundamentally equivalent.

Let {w,} be & sequence of all rational numbers such that n # m
implies wn 7 wm. To every real number ¢, let us assign the increasing
sequence {k;({)} of all indices % for which wy < t. Bvidently for ¢ < ¢ the
sequence {k;(¢')} contains an infinity of natural numbers not appearing
in the sequence {k;(t)}.

Now let ; denote, for j=1,2, ..
set of all points (»,y) with

SR A R 1
(” ,-) TS g

, the disk in E? defined as the
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Tt is evident that the disks Q; arve disjoint and that they converge
to the seb Q,, consisting only of the point (0, 0). Now let us assign to
every real number ¢ a set X, defined as follows:

n
Let P, denote the polyhedron U Ty, where T is the boundary of

the triangle with vertices (0, 1), (1/4 1;7\/, (1/ (4% 1), 0), and let h; denote
a homeomorphism mapping P;,,(t) onto a subset Pk(t, C @;. It is evident
that the set

.
=G _L,i Pl
=

is a one-dimensional compactum in E? with components ¢, and Piy.
If t < ¢, then Xy is not fundamentally equivalent to X;, because other-
wise every component Py would be—Dby Lemma (10. 1)—fundamentally
equivalent to a component P . Then P, would be fundamentally
equivalent to P, which implies ky(t ") = k;{(t). But this is impossible,
because not every number k;(t') belongs to the sequence {k;(t)}. Thus
for t <t the compacta X; and X; are not fundamentally equivalent
and Theorem (10.7) is proved.

§ 11. Homomorphisms of homology groups induced by
fundamental classes. Let us recall the basic notions of the Vietoris
homology theory in a slightly modified form, appropriate to our aims.
By an n-dimensional chain over an Abelian group % we understand a linear
form

. %= @ 0+ 00yt ..+ QK Ok

where the coefficients a;, a, ..., ox are elements of U and oy, oy, ...
are n-dimensional simplexes in H, i.e., systems of n--1 points (vertices)
Ly, &y, oy &y of H given in a definite order modulo an even permutation.
If the diameter of the set of vertices of a simplex o is less than e, then o
is said to be an e-simplex. If every simplex of x is an ¢-simplex and if,
moreover, all its vertices lie at the distance < & from a compactum X CH,
then x is said to be an e-chain in X over A. The n-dimensional e-chaing
in X over 9 constitute a group which we denote by Cu(X% %), If X,
is a closed subset of X, then C,(X"; ) contains the subgroup Z,(X*, X;; %)
consisting of all n-dimensional -cyeles in X modulo X, over %, ie., of
chains x e Cp(X°; ) with the boundary &x e Cr—i(Xo; A). Two n- dimensio-
nal e-cycles y;, y, in X modulo X, over U are said to be - homologous
in X modulo X, (notation: Ny ve in X modX,) if there exists a chain
%€ Unyr(X7; A) such that dx = y;—yy+ A, where A e Cu(X3; U).

By a true n-dimensional eycle in X modulo X, over A we understand
a sequence y = {y:} such that there exists a sequence {e;} of positive
numbers converging to zero such that y;e Zn(X*, X¢; %) and yiyvin

s Ok
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in X mod X, for every i =1, 2, ... The sequence {¢;} is called a majorant
of the true cycle y. The n-dimensional true cycles in X modulo X, over %
constitute a group Zn(X, X,; %) with the group operation defined by
the formula

{wH—{yu = {yi+vi} .

Two true cycles y = {y;}, ¥ = {yi} € Zn(X, Xo; A) are said to be
homologous in X modulo X, (IlOtZLthIl yeoy'in X mod X,) if there exists
a sequence {z;} of positive numbers converging to zero and such that
ytnm;y. in X mod X, for ¢ =1, 2, ... In particular, the set of all % - dimensio-

nal true cycles in X modulo X.J homologous in X modulo X, to zero (i.e., to
the true cycle {y;} with y;= 0 for ¢ =1, 2, ...) constitutes a subgroup
B (X, X; M) of the group Z,(X, Xy A). The factor group

HalX, Xo; A) = Za(X, Xo; WBa(X, Xo; A)

is called the -dimensional homology group of the pair (X, X,) over .
Its elements are homology classes of n-dimensional true cyecles in X
modulo X, over ¥, i.e., the classes of all such true cycles homologous
to one another in X modulo X,.

One can easily see that if 7= {yi} 15 a true cycle in X modulo X,
over U and {¢z} is a sequence of indices with lim iy = oo, then the sequence

k=00
7' = {ri} i8 a triue cycle homologous to 7 in X modulo X,.
Now let f= {f, (X, X,), (¥, ¥,)} be a fundamental sequence and
let y = {y:} be a true eycle in X modulo X, over A with a majorant {e;}.
Then:

(11.1)  There ewists an increasing sequence {ix} of indices such that for

every sequence of indices {jr} satisfying the imequality jg > ik
Sfor k=1,2, ... the sequence {fi(y;,)} is atrue cycle in ¥ modulo ¥,
over A.

Proof. Let (V,V,) be a neighborhood of (¥, ¥,) and « a positive
number. Since f is a fundamental sequence flom (X, X,) to (X, Xy),
there exists a neighborhood (U, U,) of (X, X,) such that for almost all
indices k& the conditions

Tl(T, To) = fra(T, Uy) in (V, V)

and

Max([Supo(fula), Y) , Supo(fix),

_Yo)] <a
are both satistied. It follows that there exist two sequences {ag}, {fx} of
positive numbers convergent to zero and such that:

B yeZ(X™ X ), then Fily), fesly ) e Z( X,

- o)
Jiy) fesaly) In ¥ modY‘,.

and

icm°

Homolopy properties of compacta 241

If y, 9 € Zo(X™, X0 W) and yoy’ in X mod Xy, then fily) 2fily")
in ¥ mod ¥,.
Now let us fix an increasing sequence {iz} of indices such that
< Br  for every j = ix

Then, if a sequence of indices {jz} satisfies the inequality ji > ix
for k=1,2, ..., then y; and ys,, are fz-cycles in X modulo X, such
that ys o Vin in X modX, and consequently

23

Tl Vine) ;’f’ﬁ-l(yﬂ‘kﬂ) in ¥ mod¥,

and .
Fulyn) ofulysen) i ¥ mod ¥y,
whence
flya) fen(nn) i ¥ mod ¥y

Thus we have shown that the sequence {fx(ys)} is a true cycle in ¥
modulo ¥, over A and (11.1) is proved.

Tt is evident that the homology class of the eyecle {fi(y;)} does not
depend on the choice of the sequence {jx} satisfying the condition ji > ix
for k=1, 2, ... Moreover, if 9’ = {y}} is another true cycle homologous
t0 y in X modulo X,, then the sequence of indices {ji} can be selected
50 that the sequences {fx(ys)} and {fr(y7)} are both true cycles homo-
logous in ¥ modulo ¥,. It follows that if we assign to the homology class
with the representative y = {yi} € Z,(X 5X,; %) the holomogy class of
the true oycle {fu(ys)} € Zn(¥, ¥q; A), We get a function with the range
Ha(X, Xy; A) and values in Ha(Y, ¥,; ). It is evident that this function
is additive, whenee it is a homomorphism of the group Ha(X, X; A)
into the group Hn(Y, Yo; A). We say that this homomeorphism is induced
by the fundamental sequence f= {fx, (X, Xy, (X, Yyl

It f' = {fi, (X, Xo), (¥, Y} is another fundamental sequence homo-
topic to the fundamental sequence J={fe, (X, X}, (¥, Y,)}, then to
every neighborhood (V, V,) of (Y, ¥,) ‘there ex1sts a nelghborhood (U, Uy)
of (X, X,) such that

(U, Uy) = fif(T, U} in (V, V)

Then one shows, as before, that for every true cyele y = {y:} in X
modulo X, there exists a sequence of indices {éx} with iiznik= oo such

for almost all %.

that the sequences {fi(ys)} and {fi(y:)} are both true eycles homologous
in ¥ modulo Y, Consequently, the homomorphisms of the group
Hn(X, X,; ) into the group Ha(¥, Y,; A) induced by both fundamental
sequences are the same. Thus the homomorphism of Ha(X, Xo; A) into

WHH(Y, Y,; A) induced by a fundamental sequence f from (X , Xo) to


GUEST


242 K. Borsuk

(¥, X,) depends only on the fundamental class [f]. We shall denote it by
(11.2)

and we shall say that this homomorphism is induced by the fundamental
class [j].
Let us observe that in particular:

(11.8)  If the fundamental class [f] from (X, X,) to (Y, X,) is generated
by a map ¢: (X, X)~(Y, X,), then the homomorphism [fls:
Hy(X, Xo; W —Hn( Y, Xy; W) induced by [f] is the same as the

homomorphism @,: Ha(X, Xy; W) +Hu(Y, Yo3 W) induced by .

Proof. We can select as a representative of the fundamental clags [ 11
a fundamental sequence f= {fz, (X, X,), (¥, ¥,)} such that fu(z) = plx)
for every point z ¢ X. Moreover, it is clear that for every element of the
group Hn(X, Xy; UA) there exists a representative y = {y;} ¢ Z,(X y Xo; A)
such that all the vertices of yx belong to X for every k= 1,2, .. Then
feyn) = @(yse), and since the true cycle {p(y#)} is homologous in ¥
modulo Y, to the true cycle ¢(y) = {p(ys)}, we infer that the homo-
morphisms f, and ¢, both assign to every element of the group Hu(X, Xo; A)
the same element of the group H,u(Y, Yy; %U).

In particular:

(11.4)

[f]*: Hﬂ(Xy -Xo; m)"’Hﬂ(Yy Y05 Q]:) )

Homomorphisms induced by fundamental identity classes are
identities.

Moreover, it is clear that if [f]is a fundamental clagss from (X, X,)
to (¥, Y,) and [g]is a fundamental class from (Y, X,) to (Z, Z,), then
the homomorphism induced by the composition [¢1[f] is the same as the
composition of the homomorphisms induced by Tf7 and [g]. Hence

(11.3) ([_g}[j])::: = [_g]*[j]* .

By (11.2), (11.4) and (11.5) we obtain the following
(11.6) TEEOREM. If one assigns o each fundamental class [f] from
(X, X,) to (Y,¥,) the induced homomorphism [f]: Hn(X, Xy %)—
—Ha(Y, Yy; ), then one gets a covariant functor H, from the Sfundamental
category ¥ to the category ®4 of Abelian groups.
(11.7) CorOLLARY. If the fundamental class [g] from (X, X,) to (X, X,)
8 & right inverse of the fundamental class [f] from (X y Xo) to (¥, X,), then
Jor each homology group Hy(X ' X W) Tof (X, Xy the homomorphism
g0 Ho(Y, Yo; W —~Hu(X, Xo3 M) snduced by [g] is a right inverse of the
homomorphism [fle: Ho(X, Xy; A) —Hy(Y, Ya;_QI) induced by [f].

It we recall ([1], p. 34) that the existence of a right invertible homo-
morphism of an Abelian group ® into another Abelian group $ implies
that § is a divisor of ®, we get the following
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(11.8) CoroLLARY. If (X, X,) fundamentally dominates over (¥, ¥,),
then Hn(Y, Yo A) 35 a divisor of the group Hyu(X, Xo; A).

(11.9) CorOLLARY. A fundamental equivalence [f] from (X,X,) to
(Y, X,) induces an isomorphism [fl,: Hn(X, Xo; W)>Ha( ¥, To; A).

§ 12. Pointed sequences. Let 2, be a point of a comﬁa,ctum
X CH and y, & point of a compactum ¥ C H. A sequence of maps

Ju: (H, @) —~(H, 9o)

will be said to be a pointed sequence from the set X (pointed by x,) to the
set Y (pointed by y,) if for every neighborhood 7" of Y there is a neigh-
borhood U of X such that

fk/(U7mn) o= fk+1/(U7wu) in (V,:‘/u)

This pointed sequence will be denoted by f = {fx, (X, 2,),(Y, yo)}. If
g={gs, (X, %),(Y, %)} is another pointed sequence, then f and g will
be said to be homotopic (in symbols: f ~ g) if for every neighborhood V
of Y there is a neighborhood U of X such that

Fe/(U, 3e) =~ gef(U, @) in (V,y,) for almost all % .

It is clear that the homotopy of pointed sequences is a reflexive,
symmetric and transitive relation. Consequently, the collection of all
pointed sequences from X (pointed by w,) to ¥ (pointed by ¥,) decomposes
into mutually exclusive sets of homotopic pointed sequences, called
pointed fundamental classes. The pointed fundamental class with a re-
presentative f will be denoted by [f].

I ¢: (X, m) (X, 4,) is a map, then there exists a map §: (H, ) —
—(H,y,) such that ¢(z)= ¢(z) for every point 2 ¢X. Setting fr =¢
for every k=1, 2, ..., we get a pointed sequence {fx, (X, x,),(¥, ,)} which
is said to be generated by the map ¢.

By a slight modification of the argument given in § 4, one shows
that:

(12.1)

for almost all % .

If @,v: (X,m)>(Y,y,) are maps such that for every neigh-
borhood V of Y therelation ¢ = v in (V, y,) holds, and if the maps
P, (Hy2)—~(H,y,) satisfy the condilion 3(w)= p(z), v(z)
= yw(x) for every point zeX, then setting fx=19, gr=79v for
k=1,2,.., one gels two homotopic pointed sequences
{fi, (X, ), (Y, 40)}, {9k, (X, @), (¥, 90)}.

We infer that for every map ¢: (X, z) -(Y, ) and for every map
7: (H, zy)—~(H, y,) satisfying the condition ¢(x) = ¢(x) for every point
2z ¢X, the pointed fundamental class [f] with the representative
{fx, X, Y, @y, Yy}, where fr=9 for k=1,2 .. does Dot depend on the
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choice of the map ¢. Thus we can say that the pointed fundamental
class [f]1is generated by the map ¢. In particular, the pointed fundamental
class generated by the identity map 4: (X, z) (X, 2) is said to De
the pointed fundamental identity class for (X, m,).

Moreover, (12.1) implies that the pointed fundamental class [Nl
generated by a map ¢: (X, z,) (Y, y,) remains fixed if one repla.ces-(p
by another map y: (X, 2,) (Y, yo) such that ¢ ~ v in (V, 4,) for every
neighborhood ¥ of Y. By an argument given in § 2, one can see that in
the case of ¥ ¢ ANR the condition ¢ ~ o in (V,y,) for every mneigh-
borhood V of T can be replaced by the equivalent condition o~y
in (¥, y,).

Repeating the proof of (4.3), we get the following proposition:

(12.2)  If two maps @, y: (X, 3)—~(Y,y,) generate the same pointed

Tundamental class, then ¢ ~ v in (V, 4, for every neighborhood V

of Y.
Let us observe that:
(12.3) If f= {fo, (X, 2}, (X, 4,)} is a pointed sequence and {ix} is a sequence
of indices with ];fizk = oo, then selting fi= fy for k=1,2, ...,
one gets a pointed sequence I = {fi, (X, @), (¥, 9,)} homotopic to f.
(12.4)  If f= {fi; (X, 20), (Y, 90)} and g= {gs, (¥, ), (ZJ20)} are two

pownted sequences, then their composition 9f = {gnfe, (X, 2),(Z, 2,)}
is @ pointed sequence. -

Let {fz} a,nd_{f;;} be two sequences of maps of (H, x,) into (H, y,).
We say that {fi} is obtained from {f;} by a translation which is infinitesi-
mal on the set X if for every &> 0 there exists a neighborhood U of X
such that the inequality

(12.5) e(fule), film) <

holds for almost all k.
Let us show that:

{12.6)

for every point w e U

Zf_f = {fe, (X, 25), (¥, yo)} s a pointed sequence and if the sequence
t_zf maps {fiy of (H,w,) into (H s Yo) 18 obtaimed from {fi} by am
infinitesimal tramslation on X, then {ff, (X, ), (Y, y)} is
& pointed sequence homotopic to I

Let V be a neighborhood of Y. Then there exists a positive number &
such that .g(y, Y) < 2¢ implies 4 e V. Let V. denote the neighborhood
of Y consisting of all points y ¢ H with 0y, ¥) < e Then there exist
a neighborhood U, of X and an index kq such that

(U CV, for every k> k,.
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Since {fz} is obtained from {fx} by an infinitesimal translation
on X, there exist a neighborhood U C U, of X and an index %, = %, such
that (12.5) holds for every % = k;. Setting

gu(®, 1) = (1—1)-fulw)+2-fifx)  for

we get a homotopy joining fr with fi. If 2 € U and %k > %,, then (12.5)
implies that Q((Plc(;lz', t),fk(m)) < ¢ for every 0 <t<1. Since fx(2)eV,,
we infer that

elprz, 1), 1)) < olprlz, 1), ful@)) + oful2), ¥) < 2¢,
and consequently gx(z, t) € V. Moreover, gi(aq, t) = ¥, for every 0 < ¢ < 1.
This implies

SullU, 20) = fif(U, ) in (7, )
and the proof of (12.6) is finished.

Moreover:
Q2.7 If f={fi, (X, @), (X, 5}, [ ={ft, (X, %)}, (¥,9)}, and
)y

9= {05, (Y5 90)s (Z, 2}y _g/ = {g;c_’ (Y,90),(Z, %)} are pointed se-
quences such that f = f" and g ~ g', then gf ~ ¢’f".

(z,1) e Hx <0, 1},

for every b=k,

In fact, since g ~ g', there exists for every neighborhood W of Z
a neighborhood V of ¥ such that

gell(V,y0) = gi/(V,y,) in (W,2) for almost all k.

Moreover, f ~ f’ implies that there is a neighborhood U of X such
that
Ful(U, 2) = fif(U, o) in (V,y,) for almost all .
We infer that
9efal(U, m0) = gifiel(U, o) in (W, 2)

i.e., the pointed sequences gf and ¢'f’ are homotopic.

It follows that if [f] is a point_ea fundamental class from X pointed
by =, to ¥ pointed by ¥,, and if [¢] is a pointed fundamental class from ¥
pointed by y, to Z pointed by 2, then all compositions gf, where f is
a representative of [f] and g is a representative of [¢], belong to one pointed
fundamental class (from X pointed by &, to Z pointed by 2y). This pointed
fundamental class will be called the composition of the pointed fundamental
classes [f] and [g]. It will be denoted by [¢1[f]-

Tt is clear that ome gets a category if one considers the pointed
compacta lying in H as objects and the pointed fundamental classes as
morphisms. The product of morphisms is defined as the composition of
pointed fundamental classes and the identities—as pointed fundamental
identity classes. Let us call this category the pointed fundamental category.

17*

for almost all %,
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Moreover, the notion of fundamental domination and the notion
of fundamental equivalence introduced in § 8 may be extended to the
case of pointed compacta as follows:

The pointed compactum (X, z,) fundamentally dominates the pointed
compactum (Y, y,) provided there exists a pointed sequence f from
(X, ) to (X, y,) for which there exists a right inverse, i.e., a pointed
sequence g from (Y, y,) to (X, x4} such that [f[g] is the pointed funda-
mental identity class for (¥, y,). -

In the case where also [¢g][f]is a pointed fundamental identity class
(for (X, x,)), then the pointed compacta (X y %) and (Y, y,) are said to
be fundamentally equivalent.

Now let us prove the following
(12.8) TueorEM. If ¥ ¢ ANR, then every pointed fundamental class from
X (pointed by x,) to Y (pointed by y,) is generated by a map.

Proof. Since Y ¢ ANR, there exist a neighborhood W of ¥ and a re-
traction r: W—Y. Manifestly, there is a map s: H—H such that s(y)
=r(y) for every point yeW. Consider now a pointed sequence
J={fu; (X, ), (XY, 4,)}. Setting fi(z) = sfi(@) for every point #  H, one
gets a sequence of maps fi: (H,w)—~(H,y,) obtained from the se-
quence {fz} by an infinitesimal translation on X. It follows by (12.6)
that f'= {fi, (X, 2,,) (¥, %,)} is a pointed sequence homotopic to f. Thus
there exist a neighborhood U of X and an index ky such that

Fil(U, ) = fi (T, @) in (W, y,)
Since (W)= Y and (y,) = y,, we infer that
(12.9)  #fil(U, @) = 7fi(U, @) in (¥, yy)
But the map s coincides in W with the retraction 7. Hence 7f1/(U, x,)

= fil(U, x,) for every & > ky and we infer by (12.9) that
(12.10)  fif(U, 20) = fi/(U, @) in (T, )
Setting ¢(z) = fi(z) for every point z ¢ X, we get a map o: (X, @) >
-(X, 9, and the homotopy (12.10) implies that the pointed sequence

generated by the map ¢ is homotopic to f’, whenece also to f. Thus the
proof of (12.8) is completed. - -

for every k> k,.

for every k> k,.

for every k> k,.

§ 13. Approximative maps. Let %eX, yoe ¥. A sequence of
maps &k (X, 2)=(H, yo) will be said to be an approximative map of
(X, o) towards (Y, y,) i

(13.1)  For every neighborhood V of Y the homotopy &, = &4y in V%)
holds for almost all ¥.

Let- us denote this approximative map by {&, (X, z) (7T, y,)} or,
more briefly, by £ It is evident that if f: (X y %) —>(X¥, 9,) is & map, then
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setting &x(z) = f(z) for every point x ¢ X and k=1, 2, ..., one gets a ge-
quence &x: (X, @) —(H, y,) being an approximative map {&, (X, )~
~(Y,%y)}. We shall say that this approximative map is generated by
the map f.

The notion of an approximative map is strictly related to the notion
of a “mapping towards a space” introduced by D. E. Christie ([2], p. 289).
The author supposes that the notion of the #-dimensional fundamental
group, introduced in § 14 of this paper and based on the notion of approxi-
mative maps, differs (for compacta) only formally from the notion of
the ‘“n-th weak homotopy group” introduced by D. B. Christie ([2],
p. 297).

Let {&x, (X, m) (X, y,)} be an approximative map and let {&;}
be a sequence of maps &: (X, ay) —(H, y,) such that for every neigh-
borhood ¥ of ¥

(13.2)

We infer by (138.1) that then & ~ &y in (V » Yo) for almost all %,
Le., the maps £ constitute an approximative map & = {&, (X ) @) —
(Y, ¥o)}. We say that the approximative map & s_atisfying (13.2) is
homotopic to &. -

It is clear that the homotopy of approximative maps i a reflexive,
symmetric and transitive relation. Consequently, the collection of all
approximative maps of (X, z,) towards (¥, y,) decomposes into mutually
exclusive sets of homotopic approximative maps, called approzimative
classes from (X, x,) towards (¥,v,). The approximative class with a re-
presentative £ will be denoted by [£]. If an approximative class has a re-
presentative generated by a map f, then we say that this approximative
class is generated by the map f. The approximative class generated by
the identity ¢: (X, @) (X, x,) is said to be the approvimative identity
class for (X, x,). :

Let us observe that

(13.3)

Ep >~ & in (V, y,) for almost all indices % .

If &= {& (X, a) (T, yo)} is an approzvimative map and {ig}
is a sequence of indices with limiy = oo, then selting & — Ei
k=00

Jor every Ek=1,2,.. one gets an approximative map & =
{&fy (X, ) ~(T, y)} homotopic to £

Let {&:} and {£},} be two sequences of maps (X, z) into (H, ,). We
say that {£;} is obtained from {£) by an infinitesimal translation it
there exists a sequence {sy} of positive numbers converging to zero and
such that

0(6x(®), El)) < &, for every point # ¢ X and & — 1,2,..
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It is clear that

(18.4) If &= {&, (X, m)>(Y,¥a)} i an approzimative map, then
every sequence {£} obtained from {£x} by an infinitesimal transia-
tion 4s an approwimative map homotopic to &.

(18.5) If &= {&, (X, m) (Y, yo)} is an approximative map and

F=T1fs, (T, 90, (Z,2)} is & pointed sequence, then the maps
Teber (X, m) ~(H, y,) constitute an approzimative map of (X 5 %)
towards (Z, 2,).

The approximative map {fréx, (X, %)->(Z, %)} will be denoted by f&
and called the composition of the approximative map & and of the pointed
sequence f.

Let us prove the following proposition:

(13.6) If &= {&, (X, m) (Y, 40)} and 5= {m, (X, @)= (T, y,)} are
two homotopic approximative maps and if f= {fx, (¥, yq),(Z, 2)}
and ¢ = {gr, (¥, 40), (Z, 2,)} are two homotopic pointed sequences,
then the approvimative maps f&€ and gm are homotopic.

In fact, for every neighborhood W of Z there exists a neighborhood V
of ¥ such that

Fel(V,ya) = gu/(V,9e) in (W, 2) for almost all % .

Moreover, the homology & =~ 75 in (V,y,) holds for almost all k.

Weinfer that
Teée = geme in (W, 2,)
ie., the approximative maps J€ and gy are homotopic.

It follows by (13.5) and (13.6) that for every approximative class
from (X, «,) towards (¥, y,) and for every pointed fundamental class (1
from (Y, y,) to (Z,2) all compositions J&, where ¢ is a representative
of [£], and f is a representative of [f]; belong to one approximative class
called the composition of the approximative class [£] and of the pointed
fundamental class [f]l. We shall denote it by [f][£].

Now let us prove the following -7
(13.7) TerorEM. If ¥ ¢ ANR, then every approsimative class from (X, x,)
towards (X, y,) is generated by a map.

Proof. Since ¥ ¢ ANR, there exists a closed neighborhood W of ¥
and a retraction r: W—Y. Manifestly, there is a map s: (H, o) —~{(H, %)
sueh that s(y) = r(y) for every point yeW.

_Consider now an approximative map £ = {&, (X, z)— (T, y)l
S'ettmg §u(@) = s&(w) for every point z ¢ X , one gets a sequence of maps
& (X 1 @) = (H, yo) obtained from the sequence {£} by an infinitesi-
mal translation. It follows by (13.4) that & = {&, (X, m) (T, u,)}

for almost all %,
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is an approximative map homotopic to &. Thus there exists an index %,
such that
&k = & In (W, 9y)
Since »(W)= Y and »(y,) = ¥,, we infer that
(18.8) rép = 1éh, in (X, y,)
But the map s coincides in W with retraction r. Hence »&, = & for
every k> k, and we infer by (13.8) that
13.9) &k 2 &y I (T, 9)
Setting ¢ (w) = &k,(®) for every point # e X, we get a map ¢: (X, %,) —
—+(¥, 9, and the homotopy (13.9) implies that the approximative map

generated by the map ¢ is homotopic to £’y whence also to . Thus the
proof of (13.7) is completed.

for every k= k.

for every k= k.

for every k =k, .

§ 14. Approximative maps of spheres. Let § = §" denote the
- dimensional sphere in H consisting of all points (#;,%y,...,%41,0,0,...)
¢ H such that 27+ a5+ ...+ 254 = L. Let ¢ be a point of 8. By an n-di-
mensional ball on S with centre ¢ and radius ¢ we understand the set P
consisting of all points » e § such that ¢(x, ¢) < . By P we shall denote
the interior of P, i.e., the set consisting of all points z ¢ P with g(x, ¢) < &.

Let a be a point of § and y, a point of a compactum ¥ C H, and let
&= {&, (8,a)—~(Y,y,)} be an approximative map. Consider an #-di-
mengional ball P on 8 with radius ¢ < 1 such that a « §— P. Manifestly,
there exists a homotopy a: 8x <0, 1) 8 such that

a(z,0)=2 for every point z e S,
(14.1) ala,t)=a for every 0 <t<1,
a(8—P,1) = (a).
Setting
(14.2) ox(®, 1) = fxa(w,t) for every (z,1) e Sx 0,1,

we get a homotopy
Pt (SX 0,1, ax <0, 1)—>(§]¢(S), ?/m)
joining in (£x(8),y,) the map &x: (8,a)—(&(S),y,) with the map E (8,8)—
—>(&x(8), 7o) given by the formula
(14.3) &) = G, 1)
It follows by (14.1) and (14.3) that
(14.4) E(8—P) = (3.

Now let n= {n: (S, a)~(¥,y,)} be another approximaﬁzive map
and let @ be another »-dimensional ball on § having the interior @ C §— P

for every point xe 8.
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and such that ae S——Q By an analogous argument we infer that for

every k=1,2,.. there exists a map #x: (S,a)»(nk(S),yQ) homotopic
n (7x(8), ¥) to nx and such that
(14.3) 08— ) = (o) -

1t follows by (14.4) and (14.5) that the formula

lé for every point = S~(f} s
1‘7 for every point x e §—P
defines a map : (8, a)—(H, H) satisfying the condition (i(a)= ¥,.
This map is called the join of the maps & and Fix.

Now let ¥ be a neighborhood of ¥. Then there exists an index I,
such that

B2 G in (V,00), 76 mew in (V, ) for every k> F,.
It is known ([1], p. 46) that then
{r = lgpa In (V, ) for every k=

Thus the sequence of joins {; of maps £, and 7x 18 an approximative
map ¢ = {{x, (8, a)>(Y,y)} This approximative map iy said to be
a join of the approximative maps £ and 7.

It &= {&, (X, %) (Y, )} and ﬂTZ {nhy (X, @) >(Y, yo)} are
approximative maps homotopic to £ and % respectively, and if £ and 7
are maps obtained from &; and 7} in the way in which the maps & and 7
have been obmlned from & and 7z, then there exists an index %, such
that & ~ &, in (V, ) and #k~ % in (V,y,) for every k> k,. One can
easily see (comp. [1], p. 46) that the join ¢} of £, and 7% 18 homotopie to
the join {x of & and 7 in (V,y,) for every k> k. It follows that the
approximative map (' = {{f, (8, a)—(¥, )} is homotopic to . Hence
the approximative class [£] does not depend on the choice of the re-
presentatives £ and 7 of the approximative classes [£] and [7].

Moreover, it is known ( ([11, p. 47) that in the case of n > 1 if one
replaces the balls P, ¢ and the homotopy a by balls P*, @* and by a homo-
topy o satisfying ana,logous conditions, then one obtains instead of the
approximative { another approximative map &* = {¢}, (S, a)=>(¥, )}
satisfying for every neighborhood V of ¥ the condition

fy~CEin (V,y,) for almost all %.

Hence the approximative maps { and C* are both representatives
of the same approximative class. This class is said to be the join of the
approximative classes [£] and [7].

In the case of n = 1, the last relation requires the hypothesis (comp [11,
p.'47) that the onenta,tmn on § of the triple a,b, ¢, where b e P and
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¢ <@, is the same as the orientation on 8§ of the triple a, b*, ¢*, where
b* e P* and ¢* EQ*

Since for homotopy classes of maps of (S, ) into (V, y,) the operation
of the join is associative ([1], p. 48), and for n > 1, commutative, we
infer that the operation of the join, defined for approximative classes
from (8, a) towards (Y, y,), is also associative, and for #» > 1, commutative.
Manifestly, the approximative class generated by the constant map f,
assigning to every point « e S the point y, is the module for the operation
of the join. In order to define the inverse for a given approximative class
with a representative & = {&x, (8, a)—(Y, y,)} let P and @ be open half-
spheres of § with a common boundary R containing the point a. Let s(z)
denote, for every point # ¢ S, a point symmetric to # relative to the n-di-
mensmnal hyperplane containing E. Consider, for every k=1,2,.., the
map & given by formula (14.3). Then £= {sk , (8,a)~>(Y,yy} is an
approximative map homotopic to & anﬁ satisfying condition (14.4).
Setting B

Eu(w) = £s(z) for every point ze S,

one obtains a sequence of maps &: (8, a)—(H, H) and it is easy to see
that, for every neighborhood ¥V of Y, the homotopy

& = Epn in (V, 9)
holds for almost all k. Thus & = {&, (8, a)—~(¥, y,)} is an approximative
map. Moreover, it is known ([1], p. 49) that the join of & and & is homo-
topic in (V, ¥,) to the constant map f,. Hence the join of the approximative
classes with representatives £ and & is the approximative class generated
by fo.

Thus we infer that the approximative classes from (8, a) towards
(Y, yy) with the operation of the join, constitute a group which is abelian
for n > 1. Let us call this group the u-th fundamental group of the pair
(Y, y,) and let us denote it by z:n(Y, yq).

Remark. In order to avoid a misunderstanding, let us explicitly
notice that the fundamental group ma(Y,y,) differs in general from the
n-dimensional homotopy group z.(Y, ¥,). For instance, if ¥ denotes
the n-dimensional continuum which we obtain from the curve X, con-
sidered in the Remark in § 9, by iterating n—1 times the operation of
suspension, and if y, € X, then one can easily see that the n-th fundamental
group zma(Y, ¥,) is infinite and cyclic and that the n-th homotopy group
(X, yg) is trivial. Thus the classical term “fundamental group” as the syn-
onym for the term ““1 - dimensional homotopy group” will be excluded here.

If ¥ ¢« ANR, then we infer by Theorem (13.7) that each approximative
class from (8, a) towards (¥, y,) is generated by a map of (8§, a) into
(Y, yy). One can easily see that the join of two approximative classes
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generated Dby two maps f: (8, a,—~(X,y,) and g: (8, a) (X, y,), re-
spectively, is the approximative class generated by the homotopy join
of the maps f and g. Since the collection of all homotopy classes of maps
of (8, a) into (¥, y,) with the operation of the homotopic join may be
considered as the n-th homotopy group mn(Y, y,) in the classical sense
(comp. [1], p. 50), we infer that

(14.8) If Y « ANR, then the n-th fundamental group (Y
morphic to the n-th homotopy group 7mn(Y, ¥s).

sy Yo) 18 4S0-

§ 15. Homomorphisms of fundamental groups induced by
pointed fundamental classes. Let [f] be a pointed fundamental
class and let f= {fr, (X,2,), (¥,%.)} be a representative of it. Let a be
a point of the #-dimensional sphere 8 and let &= {&, (9, a) (X, z,)}
be a representative of an approximative class [_E} By (13.5) the maps
fréu: (8, a)—~(H, y,) constitute an approximative map f& = {fi£y, (8, a)—
—(¥, 4.} and we infer by (13.6) that its a,pproximat_i;re class does not
change if we replace the pointed sequence f by another representative
I'={Jr; (X, ®),(Y,5,)} of the pointed fundamental class [ f]and the appro-
Ximative map £ by another approximative map &' = {&, ( (X, )~ (Y, y)}
homotoplc to 11; Thus the approximative class with the representative
{fréx, (8, a)~(Y,y,)} depends only on the pointed fundamental class [f]
and on the a,pproxima,tive class [£]. -

Now let us assume that S= P u @, where P, Q are n- dlmensmnal
balls on § with disjoint interiors P and { and w113h aeR=8—P—¢.
Let

&= {x (8,0)~>(X,m)} and

be two approximative maps such that

= {nx, (8, a) (X, z)}

Ex(®) = &y for every ze S—P and
Then the join ¢ = {{z, (S
formula -

nk(®) = %, for every z e S—@Q .
o)~ (X, @)} of £ and 9 is defined by the
Eelo) = {&(m) for xe S-Qa R

. ne(w) for xeS—P.

Now, if f= {fi, (X, m), (Y,y,)} is a pointed sequence, then it is clear
that the map file: (8, a)>(H, y,) is the join of the maps fuér: (S, a)—
—(H, ) and fige: (S, a)—(H,y,). Consequently, the approximative
class of {filk, (8, a)—~(¥, y,)} is the join of the approximative clags of
{fxéx, (8,4)>(Y,5)} and of the approximative class of {feér, (8, a)—
(Y, 9}, ie., the operation of the composition of the approximative
classes from (S, ) towards (X, z,) and of the pointed fundamental classes
from (X, @) to (¥,y,) is commutative with the operation of the join of
approximative classes. It follows that if we assign to every approximative
class [£] from (8, a) towards (X, #,), which L may be considered as an element
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of the n-th fundamental group zm.(X, x,), the approximative class [f1[£]
from (8, @) towards (Y, y,), which is an element of the group (¥, y),
we get a homomorphism of the group wn(X, %) into the group ma(Y, ¥y)-
We say that this homomorphism is induced by the pointed fundamental
class [f] and we denote it by [fl«. Thus:

(18.1)  Bwery pointed fundamental class [f] from (X, my) to (¥, y,) induces
@ homomorphism [f]* an( X, ) > zal Y, Y)-

It is evident that:

(15.2)  The homomorphism of the fundamental growp mu(X, ) induced
by the pointed fundamental identity class of (X, x,) is the identity

homomorphism.
Moreover, it is clear that:

(15.3)  If [f] is a pointed fundamental class from (X, xy) to (X, ,) and [¢]
is o pointed fundamental class from (X, y,) to (Z, ,), then the
homomorphism of mu(X, %) nto zma(Z, 2) induced by the com-
position [¢1[f] of these pointed fundamental classes is the com-
position of the homomorphisms induced by these pointed fundamental
classes, i.e., ([gILf1s = [gl[f1+-

By (15.1), (15.2) and (15.3) we obtain the following
(15.4) TomorEM. If one assigns to each pointed fundamental class [f]
from (X, @) 10 (¥, yo) the induced homomorphism [fle: ma(X , @) >za( Y, 4o)s
then one gels a covariant functor II, from the fundamental category § to
the category A of groups (abelian for n > 1).

In the case where the pointed fundamental class [f] from (X, )
to (Y, y,) is generated by a map f: (X, z) =+ (¥, ¥,), then we denote the
induced homeomorphism [fl: mn(X, %) »7za(Y, 4p) also by fi and. we
say that it is induced by the map f.

(15.5) COROLLARY. If the pointed fundamenial class [g] from (Y, y,)

to (X, ,) is & right inverse of the pointed fundamental class [Z] from (X, x,)

to (Y,v,), then the homomorphism’ [gle: mn( Y, Yo) > 7l X, @) induced

by [g] is a right inverse of the homomorphism [flv: ma(X, %) ~mal ¥, ¥o)

induced by [f]. N

If we recall that the existence of a right-invertible homomorphism
of an abelian group ® into another abelian group § implies that the
group $ is a divisor of the group G ([1], p. 34), we infer that

(15.6)  If (X, ) fundamentolly dominates (X, y,), then the group nn( s Ya)
s a dvisor of the group ma(X, m) for every n=2,3,
(15.7) A fundamental equivalence f from (X, m) to (X, y,) induces an

isomorphism [f1: ma(X, %) —an( Y, yo) for every n=1,2,...
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The topology of a partially well ordered set*

by
E. S. Wolk (Storrs, Conn.)

1. Introduction. If (X, <) is a partially ordered set, there are
many known ways of using the order properties of X to define certain
natural or “intrinsic” topologies on X. In particular, we may define the
well-known interval topology 3 on X by taking all sets of the form
{teX: s <<a} or {weX: x>0} as a sub-base for the closed sets. We
also define another topology D on X, which we call its Dedekind iopology,
as follows. A subset 4 of X is said to be up-directed (down-directed) if and
only if for all # ¢ 4 and y e 4 there exists z e A with x <2, y <2 (z> 2,
y = 2). A subset containing a greatest element is trivially up-directed,
and dually. Following McShane [8], we call a subset K of X Dedekind-
dlosed if and only if whenever 4 is an up-directed subset of K and y = L.u.b. 4,
or A is a down-directed subset of K and y = glb.4, we also have
y e K. We then define D as the topology whose closed sets are precisely
the Dedekind-closed subsets of X. It is clear that 3 C D for all partially
ordered sets X. In [12], we called an arbitrarys.topology B on X order-
compatible if and only if ICECD.

Let us say that a subset A of X is fotally unordered if and only if »
and y are incomparable (with respect to the order <) for all z,y e A
with # £ y. Naito [9] showed that if every totally unordered subset of X
is finite, then X possesses a unigue order-compatible topology (i.e., the
topologies 3 and D coincide).

A partially ordered set X is called partially well ordered (pwo) if and
only if all totally unordered subsets of X are finite and all chaing in X
are well ordered. The purpose of this paper is to study some of the prop-
erties of the unique order-compatible topology of a pwo-set X. We call
this topology on X its intrinsic topology. Among our results, we characterize
the convergent nets and the closure operation in this topology in “order-
theoretic” terms. We show that the intrinsic topology is completely
regular for any pwo-set X, and may be obtained from a certain natural
proximity relation definable in terms of the ordering in X. The normal

* This research was supported by National Science Foundation Grant GP-5968.
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