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space oY where ¥ = {m} v {m] teN}v {wy) ©,j € N} i easily seen to
be homeomorphic to M.

Note that ¥* of example 7.1 contains no subspace homeomorphic
to M.

Example 1.11, [6], shows that the product of Fréchet spaces need
nob be Fréchet. This is also an immediate consequence of 6.2 (see [3],
page 7 or [7], footnote (3)). In each of these cases, the produect is not
even sequential. The next example shows that this need not always be
the case.

7.4, ExaMprE. The product of two Hausdorff Tréchet spaces can be
sequential without being Fréchet.

Proof. Let X = RJZ, the real line with the integers identitied,
and I=1[0,1] the closed unit interval. I ig firgt countable and hence
Fréchet. The quotient map ¢: R—X i3 pseudo-open and hence by 2.3, [6],
X is Fréchet. Since I is compact, by Boehme’s Theorem 1, [3], X xIis
sequential. For each nelN let An= {(n—1k, 1/n)| ke N} and let
4=\ {4s] neN}. Then (0,0)ccld but no sequence in A converges.
to (0,0). Hence X x I is not Fréchet. )

7.5. Examperm. The product of two hereditarily quotient (pseudo-openy)
maps may be a quotient map without being hereditarily quotient (pseudo-
open).

Proof. The natural identifications ¢x: X*—+X and o@r: I*-I
(see 5.2) are pseudo-open by 2.3, [6] but gx x ¢z is not, since X*x I* i
a Fréchet space. However by 5.8 gx X¢r is a quotient map.

References

[1] R. Arens, Note on convergence in topology, Math. Mag. 23 (1950), pp. 229-234.

[2] A. Arhangel’skil , Some types of factor mappings and the relations between
classes of topological spaces, Soviet Math. Dokl. 4 (1963), pp. 1726-1720.

3 T. K. Boehme, Linear s-spaces, Symposium on Convergence Structures,

Univergity of Oklahoma, 1965.

[4] H. F. Cullen, Unique sequential limits, Bull, Unione. Mat. Ital., TI1-20 (1965),
pp. 123-124,
. [5] R. M. Dudley, On sequential convergence, Tragn. Amer, Math. Soe. 112 (1964),
pp. 483-507.

{6] 8. P. Franklin, Spaces in which sequences suffice, Tund. Math. 57 (1965),
pp. 107-115.

1[;]1; On wnique sequential Uimils, Nieuw Archief voor Wiskunde 14 (1900),
pp. 12-14.

8] M. F.réchet, Les espaces abstracts, Paris, 1928. pp, 212-3.

{9] L. Gillman and M. Jerison, Rings of continuous functions, Princeton, 1960..

Eegw par la Rédaction le 14. 7. 1966

icm

On bundles over a sphere with fibre Euclidean space

by
C. T. C. Wall (Liverpool)

The origin for this work is a paper of 8. P. Novikov [17] on the
topological invariance of rational Pontrjagin classes. His paper gives
the first method (beyond mere homotopy theory) for proving topological
invariance of eertain properties. The object of this paper ig to consider
the special case of (topological) bundles over a sphere with fibre Euclidean
space, and to compare the piecewise-linear (hereafter written as PL)
and topological classifications. Perhaps the most interesting of the results
obtained is that topological equivalence of two such bundles implies
(stable) piecewise linear equivalence; however, we go on to extract all
the information we can from the method.

T am indebted to Steve Gersten and Larry Siebenmann for pointing
out that results from the latter’s thesis can be used to fill an apparent
gap in the argument of [17]: Novikov's recently published detailed
proof [28] appears to use the same reasoning.

Our main result is the following

TrnorEM. The natural homomorphism

j: m(@, PL)—mi(@G, Top)

has a left inverse, for all © > 0, exoept possibly for i =2 or 4. BEven in these
cases, j 18 injective,

In the first paragraph we establish our notation. The next is devoted
to the lemmas which are needed at the key place in the argument. We
then prove the main theorems. A final section is devoted to discussion
of special features of low dimensional cases, to which the proofs do not
apply without modification.

§ 1. Structure groups and classifying spaces. First it will
be convenient to establish our notation and recall some known re.sults.

By O, we denote the usual orthogonal group acting o R". PL{. is the
group of piecewise linear homeomorphisms of R™ onto iiself, leaving the
origin fized. It is necessary to define PLy a8 a semi-simplicial group [14].

Top, will denote the group of all homeomorphisms of (R",0) onto
itself, with the compact-open topology.
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@, is the monoid of homotopy self-equivalences of 8", again with the
compact-open topology.

We affix a + if we wish to consider only orientation-preserving maps,

The above are selected from several possible definitions which differ
only up to homotopy type [12]. In each case we clearly have an associative
multiplieation with unit, so there exist clagsifying spaces, defined up to
homotopy: cf. [3], [14]. We also have maps, representing natural trans-
formations of bundle functors,

B 0y->B PLy—BTop,—+B6h, .

For the firgt transformation, see [13]; the second is defined by ignoring
the PL structure, and the third by deleting the zero ecross-section and
proceeding to fibre homotopy equivalence. The product strueture
R™'= R"xR induces inclusion homomorphisms On->On.1 and maps
BOy—>B0y11, and similarly for PL,, Tops, and Gn. We write BO, BPL,
BTop and BG for the limit spaces as n—oco (which can be defined as
‘telescopes’ using a sequence of mapping cylinders). We thus obtain
spaces and maps, defined up to homotopy,

BO-—+BPL->BTop->B @;

BO, BPL and BG may be taken to be CW complexes.

We next show that these spaces may all be regarded as weakly
homotopy associative and weakly homotopy-commutative H -spaces
with unit, and the maps as maps of H-spaces. For example, the natural
products PLy, X PLy Py, are homomorphisms and are associative,
with PLy a8 unit. Up to permutation of coordinates, they are also com-
patible with the inclusion maps PLy,—>PLy,4,, and commutative. We
have induced maps BPL,, X BPL,—+BPLy., with the corresponding
properties. Now make the conventions on order of coordinates which
are necessary also in the orthogonal case; then our maps are compatible
with inclusions, and so induce a product BPL x BPL->BPL. If K is
a finite OW complex, it is easy to check that the induced product on
[K : PL] i§ associative, commutative, and with unit. Precisely tho same
arguments work — as well as for BO -—for BTop and essentially the
same for B @, where we replace the formula R™ x R™ = R™™ by §™*» g
= 8™, Since these products are all induced by the same construetion,
our maps are maps of H-spaces. Note that all this is equally valid in
the oriented case.

The space BO ig fairly well known; its homotopy groups were det-
grmined by Bott [2], and for its cohomology see e.g. [1]. B & is less familiar:
its homotopy groups coincide with stable homotopy of spheres: m (1 @)
2 Appn—1(8™) if % > i, and the cohomology of B& has only recently begun
to be studied (Milnor [15] and Gitler and Stasheff [56]). Less familiar
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sulll, but now aceessible, is 13.PL, Some information on its cohomology
i available (Williamson. [267). Wo also have o fairly complete knowledge
of its homotopy, which we will discuss in & moment. The main object
of this paper is to study BTop.

The first statement concerning homotopy of BPL is that
I’ngnn(PL,O)gnnﬂ(ﬁﬁl’]),]&()) [10], however, this will be of mo
use to us sinee the caloulation of Iy involves the simpler isomorphism
pelow. The simplest interpretation of ma(BPL) a2 my-o(PL) is by stable
framings of the trivial bundle over the combinatorial spheve 8" By
the stable tubular neighbourhood theorem of [131, this can be identified
with stable framings of the standard imbedding 8" C §"*¥=% Now apply
the Coirng-Hirsch theorem o smooth these framed imbeddings: we obtain
stably framed manifolds, combinatorially equivalent to 8" A slightly
more complicated argument, using the Thom-Ponlrjagin construction [22],
Shows thab meea(B 6, BPL) a2 (G, PL) can be identified with the cobor-
dism group Pn of framed smooth n-manifolds M, with boundary com-
binatorially equivalent to §"*, Now this group has been computed by
Kervaire and Milnor, and was to have appeared in the sequel to [11]:
it was published by Levine [29], also an exposition has been given by
Haefliger [7]. The result is as follows:

‘ LEMMA 1. (B G, BPL) == Py 18 zero if n 1s odd, is cyclic of order 2
if n =2 (mod4), and s infinile eyelic if w = 0 (mod4). If n = 2 (mod4),
the isomorphism on Z[2Z is given by the Korvaire-Arf 'mvar.mfnt of M;
if m == 0 (mod4), we use the signature divided by 8 (or by 16 if n=4) to
give an isomorphism Pp->Z.

§ 2. Technical preparation. The main prepamtion. necessary
is to quote the relevant results from the thesis of L. O. Siebenmann
(Princeton, 1965). We will do this in our own terminology.

Let W* be an open manifold — or indeed any logally compact,
locally path-connected space, and let ¢ be an end of W (in the sense of
Treudenthal [4]). We can regard s ag determined by & sequence PO Pg;)
of connected open noncompact subsets of W, with con'up.act frontiers,
and such that any compact subset of W meets only & finite number of
the P;. A subset of W is a neighbourhood of ¢ if it contains some P,. Since
the Py are connected, hence path-connected, we can c?loose p‘omts 0y E‘Pi
and paths o; in Py joining @ 10 @i, and thus inducing an isomorphism

(P, w1) 2 m( Pty @)
note that we have an inclusion map of m(Pisrs Bira) to tge latter.
We say that ¢ is tame if
(a) The sequence

oy (Pyy @) (P, 3y) <76 ( Py Bg) <= o
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has a subsequence, say
hopy oyl
Gy Gy ..

such that if I = fi(G1), f1 induces an isomorphism ILiq~Ii, for each 1.
We write ,(¢) for the common value. When (a) holds, this is in-
dependent of all the choices made. ‘
(b) Any neighbourhood U of & contains a neighbourhood V such that
there exists a finite CW complex K and a homotopy commulative diagram

vcou
N

Our form of condition (b) ig slightly more general than Siebenmann’s:
it is so framed as to permit us to observe that, almost trivially,

Tameness is a property which is invariant under proper homotopy
equivalence,
‘ We recall that a map is proper if the preimage of each compact set
18 (lzompacft: the same notion applies to homotopies, so our terms are
defined. Siebenmann’s arguments are equally valid using our definition (b).
We now give his main theorem, (5.7). '

TeEOREM A. Let WY be an open PL-manifold, with a tame end e.
Then there exists an obstruction o(e) in the projective class group I?o(nl(s)).
If w> 6, o(s) vanishes if and only if ¢ has a netghbourhood M which is
& PL-manifold with boundary, closed in W, with compact frontier dM,
l:m,d such that the inclusion 0M C M is a homotopy equivalence, and inclusion
induces an isomorphism of m(e) on 7 (M).

COROLLARY. M ig PL-homeomorphic to M x R.

'This was shown by Siebenmann (loc. cit., (5.2)), using a theorem of
Stallings [20], We now give the special case of this result which we need.

TueorREM 1. Let V* be a closed manifold, W*** o PL-manifold, v = 5,
and j:. V‘xR»W a proper komotopy equivalence. Then there is an obstruction
o(e) in the projective class group Ki(m(V)); o(c) vanishes if and only if
there ewisi a closed PLi-manifold V' and a PLi - homeomorphism h: V' x R—~W.

’ Proof. Clearly both ends of ¥ x R are tame; by the remark above,
the same applies to W. The fundamental group of an end of W is that
of the corresponding end of V x R, which coincides with m(V). We can
now apply Theorem A to define o(s) and, if it vanishes, to construct M
and oM = V'. A gtanda,rd argument using the van Kampen theorem and
the Mayer-Vietoris sequence on universal covers now shows that M’ = W—
.—-(M‘—aM) has V' =0M' as deformation retract. Stallings’ result then
implies that M’, too, is PL-homeomorphic to V' x R,.
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In the application below we will need an extra conclusion te the
theorem. This is provided by

TLemma 1. Suppose V and V' closed manifolds (or more gemerally,
compact Hausdorff spaces), G: VX R—>V'xR a proper map which does
not interchange the ends of R. Then there ewist & map g: V-V’ and a proper
homotopy of @ to g xX1g.

Proof. Denote by G: VX R—V’ and G,: ¥V X R—R the component
maps of G Note that since V' is compact, ¢ is proper if and only if @, is.
We define g by g(v) = Gy(v, 0) for v ¢V, and the first component of the
homotopy by -

Hyv, u) = Gy(v, ut) .

The second component is provided by

TEwmvA 2. Let 'V be o compact Hausdorff space. Then the space X of
proper maps V x R—>R, which do not inierchange the ends of R i8 con~
tractible.

Proof. We define a contraction H: X xI—+X by

H(f, t){v, w) = (1—1)f (v, u) -ut .
Continuity of H follows by standard argaments; that H(f,?) is proper
since if f[—n,n]CV x[—m,m], with m>n then H(f, ) —mn, n]
CV x[—m,m].

We shall also need the following, which is due to A. Grothendieck
(see [27]). ‘

ProOPOSITION. If m is a free abelian group, K(m) vanishes.

This will enable us to get:the homeomorphisms we want.

.. . Finally we shall need the relative versions of all these theorems.
From (10.1) of Siebenmann’s thesis we find :

THEOREM A rel. Let W be a PL-manifold with a tame end e. Assume
that ¢ defines an end 8¢ of 9W which has a neighbourhood N such that 3N C N
is @ homotopy equivalence and m,(0e) = (). Then o(z) is defined as before.
If w6, it vanishes if and only if & has a neighbourhood M, wilh
N = M ~ oW and the relative boundary V' of M compact, so that V'CM
is a homotopy equivalence, and m(e) = (M),

We now deduce

TmoREM 1 Tel. Let V* be a compact manifold, W' a PL-manifold,
v > B, and f: V x R—W a proper homotopy equivalence with [(8V x R) CoW.

Suppose we are given @ closed PL-manifold P, a PL-homeomorphism
h: P x R—0W, a map g: VP, and a proper homotopy of h* o ]V x R
to g X 1p. Then, if an obstruction in Eo(nl(V)‘) vamishes, there exist a compact
PL-manifold V' with boundary P,-an extension of h to .a PLi-home hism
h: V' x R—>W, an extension of g to g: V>V, and:am; eatenss

proper homotopy to one of 2t of to gx1g- oand s
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Proof. Assuming the obstruction to vanigh, Theorem A rel provides
a PL-submanifold V' of W x R with boundary k(P x0), and Stallings’
theorem an extension of h to a PL-homeomorphism. We are given
& homotopy of ¢ to the map ¢’ defined by ™" o f on oV x 0, which extends
over V: the homotopy extension theorem gives us an extension of ¢, and
a homotopy of it to g’. Since ¥ x 0 is a deformation retract of V x R,
We now obtain (as in Lemma 1) the first component of our proper homo-
topy. The second is found by using Lemma 2.

§ 3. Novikov’s lemma. We now give our extengion of Novikov’s
lemma,

TeROREM 2. Let M™ be a closed manifold with free abelian fundamen-
tal group, m >5. Let N™? be o PL-manifold, h: M xR'->N q homeo-
morphism. Then we can construct 4 PL-manifold M. 'y aPL- homeomorphism
9: MoX RN, a map fy: M-~>M,, and a Dproper homotopy % of g5t o
10 fo X Lo

Suppose also that M bounds the compact mawifold V with free abelian
fundamental group, that N bounds the PL-manifold W, and that h extends
to & homeomorphism H: V x R'>W. Then M, bounds a PL-manifold,V,,
go extends to a'PL-homeomorphism Gy Vox R'W, §, to Fo: VV,,
and y to a proper homotopy K, of G5%e H to Fo X L.

Procf. We will write down the details of the first part only, since
the second follows essentially the same argument, using Theorem 1 rel
in place of Theorem 1. The proof proceeds by induction, essentially on q.

First let 7' be the boundary of the standard 2 -gimplex, T" the product
of i copies of T. Choose a PL-embedding % x R C R% Now the universal
covering T of T is PL-homeomorphic to R. We fix such a PL-homeo-
morphism and choose the embedding so that the composite

B R'(T*"* X R)~ > T" ' % R-sR?
is the identity in a neighbourhood of the origin.
Let ¥ = (M x T x R), and let 1 denote the induced homeo-

morphism of M X T%* x R on ¥, Let N be the covering space of N
induced by the projection.

N p P2t X R—> D%, it

(where T i3 the product of the lagt (i—1) factors of T%%) from the
universal cover of T*;-and denote the homeomorphism lifting 1 by
W% M) Tt RO

Induection hypothesis: We have o dosed PL-manifold M,_,,
@ PL-homeomorphism g, My i xRN 0 map f: M XTI M,y
and a proper homotopy of gi* o K fo Fox Lo
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Induction basis 4=1. We apply Theorem 1, taking i for f.
By the Proposition the projective class group, hence also the obstruction
vanishes. The Theorem then provides M, , and g;; Lemma 1 gives us f;
and the required proper homotopy. .

Induction step i—%-1. The covering space N(“:) of N(') ind};cef)&
a covering M,_; of My, & PL-homeomorphism Fy: M, ;x R'—¥N “" ,
and a map iz M x T% "1 x R—1l,_;, which is a proper homotopy equiv-
alence sinece f; is a homotopy equivalence. Also, the proper homotopy
lifts to one of §i ' o A*™ to Fix 1.

We now apply Theorem 1 and Lemma 1 to

fir M T R, .

We obtain a closed PL-manifold M,_;_;,a PL-homeomorphism eg: M,_; 1x
X R—>M, ¢, & map fra: Mx T M, ;_,, and a proper homotopy of
et o fi 0 fiya X 1g.

Define gi41= gi o (es X 1.). Multiplying the proper homotopy above
by 1, gives a proper homotopy of (e;* ° 1) X:'I.R.; to fiﬂg.lxm. Taking
the lift of the proper homotopy of the induction hypothesis, and com-
posing with e;* X1, gives a proper homotopy of

(7t x 1.0 Tl o RS = gk SRS g0 (g 7 x 1.
The desired proper homotopy is obtained by performjng first this, then
the proper homotopy above. This completes the induction step. ‘

Conclusion of proof. When ¢ = ¢, the induction gives a closed
PL-manifold M,, a PL-homeomorphism g;: M,xR'>N9, a map
fo: M—M,, and a proper homotopy of gz° M? to f; x 1. We set f, = fq:
note that if we had N, & in place of N9, 12 we could also set g, = g,
and the theorem would be established.

Consider the commutative diagram

M x R*™ N@
lluxk l‘-
MxREN.

We will construet a PL-homeomorphism u: N9-> ¥ which agrees mth(?)
on a neighbourhood of h'2(M x 0), and a proper homotopy of & to u o
which is constant near A(M x 0). Then t:}ke 90 = ft © Gg- (gompggfs ;;:ge
proper homotopy with g5 * to obtain one of g5 o .to Go ot h R
and follow by the proper homotopy given 13y the induction. This defines kgz
and establishes the conclusion of the Theorem. : - :

By hypothesis, % agrees with- the identity near !
an open disc F on which it does. ¥ has one end (bwo if ¢
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tame and has fundamental group trivial (free cyelic if ¢ = 2). Correspond-
ing statements are valid for M x B and for KM x E) (which we can
identify with h(M x E)). By Theorem A and the Proposition, we can
find a closed PL-submanifold W of h(M X E), a neighbourhood of the
end (or disjoint union of neighbourhoods of both, if ¢ = 1) with compact
frontier W, and the inclusion 8W C W a homotopy equivalence with
the usual condition on the fundamental group. Now M x CLF is a defor-
mation retract of M x R% and oF has a product neighbourhood so we
can deform glightly inside B too. Combining this with the above we
deduce that if V= h(M x B)—Int W, then N-—IntV has oV = oW as
deformation retract. It follows, as usual, by Stallings’ theorem that
there is a PL-homeomorphism e: oV x Ry - N—IntV. Similarly we have

m: O xRy ~»NQ—IntV. Now define x4 equal to the identity on V and

to ¢ o m~! outside it.

Finally, to construct a proper homotopy of h to u o K it suffices
to construct one of the identity to ™" o u o h® = v, say. In fact we will
construct an isotopy. For 0 <t <1, Pe M, z ¢ R? we set

w(P,2)=(Q,y) where »(P,iz)=(Q,1y).
For any @ we have tx ¢ F for ¢ small enough, and then »(P, o) = (P, w),

so the homotopy remains continuous at ¢ = 0 if we define », as the identity.
This completes the proof of the theorem.

§ 4. The main theorems. The following is (except in low di-
mensions, which will be discussed later) the most precise result we have
been able to deduce from the methods of § 3.

THEOREM 3. For i3> 6, the natural homomorphism

j: m(@, PL) »mi(@, Top)
has a left inverse.

Remark. If ¢ is odd, =(@, PL) vanishes and the result is trivial.
The cases ¢ =2, 4 will be dealt with below.

Proof. The first step is the observation that a PL (resp. topological)
automorphism of the trivial bundle §°~* x R? > 8", together with a proper
homotopy of it to the identity, represents an element of (G, PL) (resp
m(6, Top)); and that conversely, any such element can be so represented,
for suitable ¢. Rather than prove this in detail we prove a result which
gives the same argument in somewhat simpler form, viz. the assertion

that elements of wi(G;) are represented by proper homotopy equivalences

& xR -8 x R4,

In one direction this is clear: G is a space of maps §* 8%, and
by taking open cones with vertek the origin, and extending maps conewise,
these can be identified with proper maps R'>R%. Thus a map §—~@,
has as adjoint a proper (fibrewise) map 8 x R?-»8 x R’, which is a proper
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homotopy equivalence as &, has a homotopy inverse. Conversely, let
F: 8 x R*~>8' x R*be proper. Then if D?is the unit disc in R?, F~(§* x DY)
is compact, hence contained in §°x 4 for a large enough disc 4 in R%
Now the adjoint of

8 x 24 5 8% x (R Tnt DY) 2 R*— Tnt D> 8%

(the last map is radial projection) defines a map 8°—@,, whose homotopy
class is clearly not altered by taking A larger. It is easy to check that
these two constructions induce inverse maps of equivalence classes.

Now suppose given an element of =&, Top): represent it by a topolo-
gical automorphism k of §°* xR1E g (for g large enough) with a proper
homotopy to the identity. By Theorem 2 with M = 8%, there exist
a PL-manifold M,, a PL-homeomorphism gy M, xR*->8 xR,
a map fo: S‘“1~>Mo, and a proper homotopy k; of gy'eh to foX Lgq-
Now f, is a homotopy equivalence; by Smale’s solution of the Poincaré
conjecture [18], f, is homotopic to a PL-homeomorphism. (Note. This
is the only point where the argument breaks down in the (™-case.) We
may thus replace M, by S and f, by the identity. So we have
a PL-homeomorphism g,: 8 xR?—>8"*x R? and a proper homotopy of
g5 ' o h to the identity. Unfortunately, g, is not fibre-preserving. However,
it follows from [9] that if ¢ > 4, g, is PL-isotopic to a fibre-preserving
map: the precise deduction goes as follows. The map g, determines an
element of s 1(PLgyi—1,4-1). By[9],injection gives anisomorphism of z;_; (PL,)
on this group. By the Haefliger—Poenaru theorem [8] it follows that g,
is PL-regularly homotopic to a bundle automorphism g, with 8*x0
fixed. Hence we have an isotopy of a neighbourhood of 8§ x0; this
extends to an isotopy of g, to a PL-homeomorphism which agrees with g
(hence is fibre preserving) near §71x0. A further PL-isotopy (cf. end
of proof of Theorem 2) now takes this map to g. The map g and sequence
of proper homotopies determine an element of m¢(G, PL).

A slightly more complicated argument which, however, introduces
no new idea, applying the second clause of Theorem 2 to the case where
V=8""xI and M= §"*xol, shows that we obtain a well-defined
map .

r: @, Top) (@, PL) .

(For this argument, Smale’s theorem is replaced by the result of Gugen-
heim [6], that homotopic PL-homeomorphisms of 8! are PL-isotopic.)
In order to prove that r o j = 1, it will suffice to show that if h: §7 x
x R7->8""" x R above is a PL-map, then the constructed proper homotopy
of go*e b to the identity is properly homotopic.to a PL-isotop i
the application of Theorem 2 we can now choose each fi-equal
identity, g;= k®, and the proper_homotopies constant. T
Fundamenta Mathematicae, T. LXI b
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go= 4 o B, and the proper homotopy of this to % which was constructed
was in fact a PL-isotopy.

Finally, we must argue that » is a homomorphism. In order to add
two elements of (G, Top), we first normalise them: the first element
§0 that the map §°'->Top is trivial on one hemisphere and the proper
homotopy constant there, the second similarly with the complementary
hemisphere. The sum is then defined by using one map on each hemisphere.
We now claim that if in the application of Theorem 2 % ig trivial on a hemi-
gphere, we can choose g,, f, and the proper homotopy to be likewise.
This follows by using the relative form of Theorem 2. Additivity of »
is now immediate. This completes the proof of the Theorem.

OoroLLARY 3.1. Buwcept (perhaps) in low dimensions, we have split
short exact sequences

0—>my(@, PL) -G, Top) —»m_s(Top, PL)->0 ,
0 —7;_1(PL) -7y (Top) +m—y(Top,, PL) 0.

Theorem 3 implies that in the homotopy sequence of the triple
(G, Top, PL) the maps my(Top, PL)->m(@, PL) are zero. It follows
that the sequence breaks up into short exact sequences as above; moreover,
the theorem provides a splitting of these. Similarly, the composite of
the map m;_+(Top, PL)—m(&, Top) which splits the first sequence with
the boundary map (@, Top)—>m:o(Top) gives a homomorphism which
splits the homotopy sequence of the pair (Top, PL).

We note in particular that the maps my(PL)->m(Top) are injective,
s0 that topological equivalence of two bundles over 8! with euclidean
fibres implies (stable) PL-equivalence. This result could indeed have
been obtained more simply: it needs no reference to proper homotopy.
It seems likely that current work on the lines of this paper will soon
prove the same result with the base space replaced by an arbitrary finite
OW-complex: the stronger result is more useful in striving for such
extensions.

It has now (Aug. 1967) been shown independently by D. Sullivan
[31] and A. Casson that, for any finite OW-complex X with Hy (X Z)
free of 2-torsion, the mapping of mets of homotopy classes

[X: G/PL->[X: @/Top]
Is injective. Both proofs use Novikov’s lemma.

"~ -§8 Low dimensions. Siebenmann’s Theorem A i3 not known
if w<5. In the case w= 5, the place where the proof breaks down is
the absence of an embedding theorem for D® in W?, since weé cannot even
easily embed §% in a 4-manifold. We now show how this difficulty can be
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circumvented in some cases. Observe that the cases in which we are
interested are those in which W is properly homotopy equivalent to the
product of R, a sphere §* (or, in the relative case, a disc D%} and a number
of circles.

Before giving the proof in the general case, we first consider the
simplest special case.

PropPOSITION. Let W be a PL-manifold, properly homotopy equivalent
to 8*xX R. Then W is PL-homeomorphic to S*x R. )

Proof. Siebenmann’s argument is strong enough to show in this
case that W* has a 1-connected closed PL-submanifold M* which separates
the ends: let ¥ be the closure of one of the parts into which W is divided.
The cohomology of V “at infinity” is that of 8% and by treating V as
a cobordism of M* to 8* we show (see Lemma 3 below) that M has zero
signature. In fact,

K = Ker(Hy (M) ~HyV))

is isotropic for the quadratic form of intersection numbers on H,(M),
and if K is its integral dual, we can write HyM)=EK@K. Now by
a result of [23], M bounds a manifold V' which is simply-connected, and
has Ker (Ho(M)—>Hy(V")) = K. Attaching V' to V along M gives a con-
tractible manifold which is simply-connected at infinity and hence, by
a theorem of Stallings [19], PL-homeomorphic to R5. Now V' is a compact
subspace of this, henee contained in a dise, with boundary 2% say. Then
Z4CV CW, and separates the ends of W; one closed complementary
region is PL-homeomorphic to X' xR, and [20] shows that the other
is also.

We point out that the Poincaré conjecture in dimension 4 is still
unresolved. The above argument has the merit of by-passing this potential
difficulty.

For the case i=4 of Theorem 3, the best result we can achieve,
using the above ideas, is

THEOREM 3,. There is a subgroup A of index 1 or 2 in my@, Top),
such that § factorises as

(@, PL) 5 A C (@, Top),

and §' has o left inverse.
The only gap in the proof of Theorem 3 when ¢ =4 was the appeal
to Theorem 2 for, in the absolute case 8% in the relative case; 8*x.J
and D3. The only gap in the proof of Theorem 2 for these cases was in
applying Siebenmann’s theorem A. We first consider the cases where the
manifold M to be constructed has dimension 4 — thus we would like to
be able to construct 8% x 84 82 x I, and D3 x S'. In each case we will
5%
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seek a manifold PL-homeomorphic (not merely homotopy equivalent)
to the desired manifold. The subsequent construction of S* and D? will
then be trivial, and no reference will need to be made to unsolved cageg
of the Poincaré conjecture. Note in each case that the boundary is given
in advance, so we have a problem of relative surgery; also that the only
two fundamental groups which we need to congider are {1} and Z.

‘We now consider the case v = 4 of Theorem 1. Firgt suppose that 7+
is a Poincare complex (see [25]: a topological manifold would do, but
we will anyway need a stronger hypothesis below), W® a PL-manifold,
and f: ¥V x R—+W a proper homotopy equivalence. If g is a homotopy
inverse to f, we may suppose p, o g: W->R regular at 0 ¢ R, with preimage
Mt CW. Also, surgery on M as for Theorem A gshows that we may suppose
the inclusion map 4: M —W 2-connected. Thus ¢ = p, o g o 4: M-V ig
2-connected and of degree 1. Note also that if v ig the stable mormal
bundle of W, then i*» gives that of M. As p, o g is a homotopy equivalence,
this shows that there exists a bundle a (in fact (/*)[V x 0) over V, which
induces by ¢ the stable normal bundle of M, We observe that the induced
map of Thom gpaces
, M = M7
shows that V*is reducible, and hence the spherical fibration corresponding to
a is the ‘Spivak normal bundle’ [25][30] of the Poincaré complex V. Observe
finally that if § is another spherical fibration over ¥, with reducible Thom
spacey and the same (large) fibre dimension » as «, then [25], Theorem 3.5,
shows that for some map of fibrations a—>f, which is unique up to fibre
homotopy equivalence, the given element of s,.s(V*) goes into the given
element of :rz,+5(V‘9).

TEROREM 4. Let V4 be a compact PL-manifold, W a PL-manifold,
and g: WV xR a proper homotopy equivalence inducing a PL-homeo-
mo(phwm of oW on 8V X R. Suppose g t-regular on Vx 0, with M = g—(Vx0);
define a as above. Assume that there is an isomorphism of o on the siable
normal PL-bundle of V which is the identity over 8V and carries the element
of mn4s(V°®, 8V°) 10 the mormal invariant of V as in [16].

Then if m(V) 221 or Z,, g is properly homotopic rel 8V to a PL-home-

omorphism. If m(V) = Z, and V is orientable, there is an obstruction in Zy
to the validity fo this conclusion.

We are not yet in a position to give a result for general m,(V) since
the progf, depends on non simply-connected surgery. This part of the
proof will appear in [24]; the remainder is given below.

Px:oof of Theorem 3, We follow the proof of Theorem 3 up to
thfs pomt' where . we wish to construct 8xI, 88x 8, or D¥*x S!; denote
this x.nam.fold by Vi We will check below that Theorem 4 applies to
the situation; it follows that there iz no obstruction to obtaining 88x I
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(which shows that r, when defined, is well-defined), but we have an
obstruction in Z, in the other cases. Our uniqueness results show that
this depends only on the original element of =, (@, Top). Further, using
D? instead of §® we see as before that we have defined a homomorphism
(@, Top)—>2Z,: clearly it vanishes on the image of (@, PL). The result
thus follows by defining A to be the kernel of this homomorphism.

It remains to check the hypothesis of Theorem 4 in the desired cases:
All is clear except for the normal bundle and normal invariant of V.
The remarks above show that the obstructions to these being as desired
lie in groups H(V,dV; m(&, PL)), ie. HXV,oV; Z,) and HYV,dV; Z).

In our case, the first of these groups vanishes; the second is infinite
cyclic. There iy thus one obstruction e Z; it can (ef. [16]) be related to
the signature of the manifold M’ obtained by glueing M to ¥ by the
given PL-homeomorphism of the boundaries. We will now show that ..
under the hypotheses of Theorem 4, o(M’) necessarily vanishes. As this .
was used above also, we give it as a separate lemma. . -

LeMMA 3. Let M be a connecled finite simplicial complex which is an
oriented Poincaré 4-complex, N a PL 5-manifold properly homotopy equiv-
alent to M X R, and V a PL submanifold of N which is a neighbourhood of
one of the ends and has 8V compact, Then oV and M have the. same signature.

Proof. Consider the diagram

/H"(V, Wg HYV HyV)
HYV, V) HY(V) HYV,aV) YY)
N ~ / N /
V) H@V) BV, V)

Here, the suffix ¢ denotes compact cohomology, and two of the sequences
are cohomology exact sequences of (V,8V) with closed resp. compact
supports. The term HV) can be defined most conveniently using an
(infinite) triangulation of ¥V, and taking the homelogy groups of the
complex of chochains modulo finite cochains: it is then easy-to check:
exactness of the other two sequences. But now He(V) is invariant under
proper homotopy equivalence, and is unaltered by changing a. eompact
subset, 80
HYV) o HYM x Ry) = H(M) .

We now consider ¥ as playing the role of a cobordism of ¥ to oMy
and use the argument of [21] which proves invariance of the gignature
under ordinary cobordism. Briefly summarised, we consider the Mayer—
Vietoris sequence

BBV QBT BV, ) - .
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observe that the two homomorphisms are dual to each other, and s
have the same rank; and then note that cup products vanish on the image
of H%V). The details offer no difficulty, so the lemma is proved.

Proof of Theorem 4. It follows (ef. [16]) from our hypothesis
about the normal invariants that there exist maps f, f: (D", 20"
—(V*, 8V°), homotopic rel 8D"*® t-regular on V, with fe (V)= 7V and
(V) = M. Make the homotopy ¢-regular on V: then we obtain a co-
bordism X of V to M which retracts on V, and has 0, X = oV x I. Now M
separates W into two parts, say W_ and W.. Form Y by glueing
X to Wy along M. Then Y =7V, and Y retracts on V (the retrac-
tion on X was given above; on W, it is induced by py o f™'; these
agree on M).

Now perform surgery on Y to malke the retraction on V a homotopy
equivalence, leaving 2Y fixed. It will be shown in [24] that under the
assumptions of the theorem, there is an integer obstruction to performing
surgery, a finite number of times, to obtain a manifold Z with 02 =7V
and VCZ a homotopy equivalence. However, we will also see in [24]
that we can alter the obstruction by any even integer by choosing
a different cobordism X. The conclusion of the proof is now essentially
the same as for the proposition above.

Pirst, we will show

Lemwa 4. Let V' be a PL-manifold with one tame end & and a compact
I';oundq,ry fruoh that the inclusion 8V CV 4s a homotopy equivalence and
inclusion induces an isomorphism of my(e) on my(V). Then V is PL-homeo-
morphic fo 8V x R... ’

Proof. We follow the argument of [19], which iy in two steps. In
step (A), we show that any compact subset ¢ of ¥ is contained in (can be
engulfed jby) a cqllar neighbourhood of the boundary. The proof in [19]
Fhowsvthls, provided that C lies in a compact D such that (V,V—D)
is f%_-eox?nected. But Siebenmann (loe. cit., (3.10)) shows that s has an
Eb;tzﬁn:z’ 1\;‘11(1:&3 (e.1g7. not meeting ) “l1-neighbourhood’” N: using the

et tha -9V hag degree 1, we see easily that
dosare ot 71 tor B ’ y we can choose the
N [2’.(1‘); conclude the proof (step (B)), we can now use the results of Stallings

The rest of t1.1e proof of Theorem 4 is immediate.

We last consider the case ¢=2 of Theorem 3. Iere there iy an
argument due to Sullivan [31] which shows that

j: (@, PL)->m,(&, Top)

is injective; indeed, the same argument can also b v i
3 e used for ¢==4 to give
a much shorter proof: of injectivity than the above. ¢
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The hypothesis 2* <s, and ambiguous points
of planar functions

by
F. Bagemihl (Milwaukee, Wis.)

Let P be the set of all points in the Euclidean plane provided with
a Cartesian coordinate system having a horizontal z-axis and a vertical
y-axis. By a line with direction 6 we shall mean a straight line in the
plane P whose angle of inclination is §, where 0 < 6 < #. Suppose that n
is a natural number and that 0 < 6 < < ... < Os <z (1). We define
the relation

P = By(0:; K1) © By by Ks) © .. v Bn(n; Kn)

to mean that P is the union of n sets, H, E, vy Bn, where Iy
(j=1,2,..,n) intersects every line with direction 6; in a subset of that
line satisfying the condition K;. In this paper, K; will take one of the

* following forms: (i) << 84, (ii) < 84, (iii) n.d., where B;(0;; K;) then means,

 (Hn)

respectively, that E; intersects every line with direction 0; in a set of
power less than ®,, in a set of power less than or equal to 8., in a linear
nowhere: .dense set of points.

We shall be coneerned with the following specific propositions:

2% < ¥
(Qn) P = B85 < 8) w By 0 < %) v Ha 035 < 8) ¥ oo U By Opia3 < %) 5
(Ba) P = Ey(0;n.d.) By by; < %) v Ey( 05 <81) © oee U B yoOpga5 <n) -

It is evident that (Qn)=(Bx). I showed [1] that (B,)=(H,), and
Davies showed [4] that (H;)=(Q,). Subsequently Davies proved [5]
that (Ha)=>(Qa) and (Qn)=>(Hs) for every «.

I shall prove that (Ba)=-(Hx) for every n, and I shall then apply
this result to show that the existence of a function with a ecertain kind
of ambiguous behavior (this term will be defined in the hext paragraph)
implies (H,) (whereas the result (Qn)=(Hj) is insufficient to show this).

Let £ e P. By a segment A at { we mean a rectilinear segment ex-
tending from a point ¢’ e P, with ¢’ # ¢, to the point {; A is regarded

(*) What is essential here is not that the thetas be in this particular or&er, but

that they be distinct.
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