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by no means implies that there is torsion in the Grothendieck group G(f).
For, in all our examples, X,+ P~X,+ P for a suitable polyhedron P
(indeed, a sphere). Thus the question of the existence of torsion in the
Grothendieck group remains open.
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A minimal hyperdegree
by
R. O. Gandy and G. E. Sacks* (Cambridge Mass.)

Two sets of natural numbers have the same hyperdegree if each is
hyperarithmetic in the other. A non-hyperarithmetic set is said to have
minimal hyperdegree if all sets of lower hyperdegree are hyperarithmetic.
In this paper we construct a set that has minimal hyperdegree, and we
study a certain class of models of the hyperarithmetic comprehension
axiom. We draw upon ideas oceurring in Spector’s eonstruction of a mini-
mal degree of unsolvability [9] and in Feferman’s application of forcing
to analysis [2]. Our argument mixes Cohen’s forcing method [1] with
classical truth considerations; however, the use of foreing is not essential
to the construction of a set of minimal hyperdegree. Instead of foreing
with finite conditions in the style of Feferman [2], we force with infinite,
hyperarithmetic conditions. As one might expect, foreing with infinite
conditions is much closer to truth than foreing with finite conditions.
A et generic with respect to our notion of forcing must necessarily have
minimal hyperdegree.

ATl of our foreing is with respect to a second order language L(S),
which is virtually isomorphic to Feferman’s language LXS) ([2], p- 335).
L(S) is the language of first order number theory augmented by the
constant symbol S, some second order variables, and the membership
symbol . Let O; be a 7+ subset of O [4], the set of all notations for re-
cursive ordinals, such that each recursive ordinal has precisely one nofa-
tion in O, [3]; if b is the unique notation in 0, for the recursive ordinal f,
we write |b| = g. In addition, the relation 1] < lo| is the restriction of
some Tecursively enumerable relation to 0,. For each be Oy, L(S) has
set variables X°, ¥, 2", ...; L(S) also has set variables X, Y, Z, ...,
number variables &, v, 2, ..., & numeral 7 for each natural number #,
and symbols for equality (=), suceessor (), addition (+) and multi-
plication (-)-

For each b e O, the variable X* is said to be ranked; the variable X
is said to be unramked. A formula § of L(S) is called ranked if every set

* The second-named anthor was partially supported by the Guggenheim Founda-
tion and by U. 8. A. Contract ARO-D-373.
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variable oceurring in §¥ is ranked. A formula of L(S) is called ewistential
if it is ranked or if it is of the form (BX)¥ with X the only unranked
variable occurring in . The ordinal rank of a ranked formula § is the
least ordinal a such that o > |b] for every free variable X” of ¥ and such
that a> |b| for every bound variable X’ of §. A formula T is called
arithmetical if no bound set variables occur in §.

Let X be an arbitrary set of natural numbers. Following Fefer-
man [2], for each b e 0,, we inductively define a structure My(X)= A,
and truth in |J {Jt,] |a| < |b]}: :

(i) A sentence § of ordinal rank < [b] is true in |J {A,] |a| < 1B}
if it is true when S is interpreted as X, the number variables of § are re-
stricted to o, and each second order variable X* of § is restricted to .
) (ii) For each formula §(2) (with only = free) of ordinal rank < |b],
let #8(z) = {n] S(m) is true in (J {My] |a| < lb]}}; then 6, consists of
all such sets #SG(z).

We define J6(X) = | {#s(X)] b O,}. A sentence F of L(S) is true
in f6(X) (j=gx &) if it is true when each unranked variable of § is re-
stricted to . (X) and the remaining symbols of § are interpreted according
to (i) above.

Let U be a ranked or unranked set variable of L(S), and let ¢ denote
@& number-theoretic term. We write (4G (2)) for the result of replacing
each occurrence of e U in F(U) by §(2).

I @, ay, ..., Gpy is a finite sequence of natural numbers, then it
is effectively represented by the sequence number a{pyt™| i< m},
where p; is the ith largest prime. Sequence numbers provide a means
of referring to finite, initial segments of characteristic functions of sets
of natural numbers as if they were natural numbers. We use Dy Ty
to denote finite, initial segments of characteristic functions. We write
p>rifp # r and p is extended by . Let P be a non-empty set of finite,
initial segments; we say that P defines (or 18) a perfect, closed set if

(P)}?EP(Eq)qGP(ET)NP[Q # "'&Q > r &r b q &}? >q &p > 'r] .

We write X ¢ P if infinitely many initial segments of the characteristic
funetion of X belong to P. (If P defines a perfect, closed set, then {X| X ¢ P}
is & perfect, closed set in the standard sense.) Let P, Q, R, ... denote
hyperarithmetic, perfect, cloged (h.p.c.) sets; ie., the set of sequence
numbers of the initial segments in P is hyperarithmetic. We write P > @
¥ (X)(XeQ—>XeP). It is routine to assign indices to h.p.c. sets so
that the following relation in # and Y ig @ @ i3 the index of a h.p.c.
set P and Y ¢ P. For this reason it makes sense to 8ay that the relation

“Pis a b.p.c. set and ¥ e P” is 7. Similarly, it makes sense to say that
the set of all formulas of L(S) is xl.

icm°®
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" The foreing relation Pj-;%, where P is a h.p.c. set and § is a sentence
of L(S), is defined by means of five closure conditions:

(@) Pl-2§ if § is ranked and (X)X € P> g n §)-

(i) Pl-»(B2)F(2) if §F(z) is unranked and Pl § (@) for some n,.

(iil) Pl—» (BX")F(X®) if §(X°) is unranked and Pl §(36(2)) for
some S§(z) of ordinal rank < [b|.

(v) Pl (BX)F(X) i (Bb)seo, [P-(BX")F(X")].

(V) Pin B & i §: &, is unranked, Pl-»F,, and Pl -

(vi) Pl-a~§ if § is unranked and (Q)rsel ~@Q -2 Fl.

We defined |—; in terms of closure properties rather than transfinite
induction in order to simplify the statements of our proofs (cf. Fefer-
man [2], p. 336). A set S is said to be generic if for each sentence § there
is a P such that § e P and [P|-4§ or Pl-,~ . It is not immediate that
generic sets exist, because the definition of -5 contains some peculiarities,
particularly the contrast between conditions (i) and (vi). It is precisely
these peculiarities which make possible a quick proof of the all-important
Lemma 1.

LeMMA 1. The relation P4, restricted to ramked §, is m%.

Proof. It is readily verified that the relation § is true in J6(X),
restricted to ranked §, is #i in § and X; one need only note that this
relation can be defined by X} closure conditions (cf. Feferman [2], p. 337),
The relation X ¢ P is arithmetical on the z; set of all hyperarithmetic.
perfect, closed P’s. (This last point is elaborated in the comments immedia-
tely preceding Lemma 6.)

Kreisel’s Lemma, ([7], p. 307) states: if P (=, y) is 73 and (z) (By) P(», ¥),
then there exists a hyperarithmetic function f such that (z)P(z, f(@)):
Kreisel’s argument also establishes a slightly stronger fact needed below:
it P(w,y) is a1, then there exists a partial =} function f such that
(#)[(By) P(z, y) >f(«) is defined & P(z,f(x))]. (A partial function is =}
it its graph is =}). "

The purpose of Lemma 2 (the “sequential” lemma) is to standardize
a construction which we use repeatedly, and which is characteristic of
forcing with closed, perfect sets.

LEMMA 2. Let {&n} be a hyperarithmetic sequence of existential sentences
If (m)(Q)r>o(BR)=r[E |1 Tn), then (EQ)rmo(m)[Q|-2Tm] .

Proof, Suppose (m)(Q)r>o(ER)e=r[B|F2Fn). By Lemma 1 and con-
dition (iv) of the definition of |-, the following relation is =i in m, @,
and R: P>Q >R &R %n. The argument of Kreisel’s Lemma ([7],
p. 307) shows that R can be regarded as a partial zj function f of m and @:
R=jf(m,Q)~>P > Q> R & R|—1 Fm. Let us say that ¢, and @, are basic,

Fundamenta Mathematicae, T. LXI 15


GUEST


213 R. 0. Gandy and G. E. Sacks

disjoint h.p.c. subsets of @ if there exist ¢i,¢.€@ such that ¢, # g,
GGy 630, =1 PcQ&q>p} and @ = {p| p<Q &g >p} By
iterating the partial z; funetion f, we can define a hyperarithmetie, partial
function QT with the following properties: @5 = P; for each m > 0 and
i< 2™ QT and Q7% are basie, disjoint, h.p.c. subsets of @7, QT 3§,
and QTth |3 Fm- We define Q by

P € Q= (mm) (By8)s<am(p € QF)
Then @ is a h.p.c. set, P > @, and

X e Qo (m) (B 8)icon(X € QF)

Fix m and X €. There exists an ¢ such that X ¢ Q7" and Q7P —4 Fm.
Sinee Fn is existential, =4z &Fm. Bub then Q|—Fm-

Lemma 3. (§)(P)(EQ)r>el@ -1 &V~ T1

Proof. Condition (vi) of the definition of |~ makes it safe to assume
that §§ is ranked. Conditions (i) and (ii) of the definition of |-z make it
safe to assume that ¥ is in prenex normal form. By the full ordinal rank
of §, we mean a function f defined on O, such that for each b e Oy, f(b)
equals the number of occurrences of b in . We say

f<g #  (Ebbeolf(B) < g(b) & ()>m(fle) = gle))] .

By the arithmetical rank of §, we mean the number m of occurrences
of number-theoretic quantifiers in §. The rank of § is (f, m). We say
(fym) <(g,n) if f<g orif f=g and m < n. We prove the lemuma for
ranked § by induction on the rank of . Suppose that § is
(EX”)%(X”) Let {Si(x)} be a hyperarithmetic enumeration of all
formulas (with just = free) of ordinal rank < |b|. For each 4, F(#S«(2))
has lower full ordinal ramk than (EX")J(X"). Our inductive hy-
pothesis is: (3)(P)(BEQ)r>o|Q -4 F(#Si(z)) or Q|-»~F(#S:(x))]. Fix P. If
(i) (BQ)p>e|Q |-+ F(28:(2)) ], then all is well; suppose not. Then it follows
from the indumctive hypothesis that (2)(Q)psq(ER) Jozr[ B Fn~ F@8i( ))].
By Lemma 2, there is a @ such that P> @ and (3)[Q n~ §(#8:(x))];
but then Qi}—h~(EX" (xh.

If § is of the form (Ez)J (#), we note that (%) has lower arithmetical
rank than (Ez){(2) and then proceed as above. If § has no quantifiers,
then there is a ¢« P such that the desired Q= {p| pe P & q>=7p}

T'h(? t:xnstznef: of gﬁnerie se;s follows from Lemma 3. A standard
transfinite induction shows: i i neri 3 =
(P8 B & Phamy 8 is generie, then (F)[ ‘A(,(x)g"*

Lmuma 4. If 8 is genetric, §(X) is arithmetical, and B X
then (BX)[F(X) & X s hyper;v?ﬂ(mim &X e .M,(S)] '=‘M)(S)( X)i?( )'
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Proof. Since § iz generie, there must be a P such that 8¢ P and
P —; (EX*)F(X) for some b e O,. Sinee P is a hyperarithmetic, perfect,
closed set, there must exist a hyperarithmetic H ¢ P. It follows from
the definition of i—; for ranked sentences that (BX)[X e Mp(H) & F(X)].
A transfinite induction on 0, in the style of Kleene ([4], p. 35) shows
that every member of y(X) is hyperarithmetic in X for every X; con-
sequently, §(K) holds for some hyperarithmetic K. Following Kleene
([4], p- 35), we can find a ranked formula §(2) such that K = {n| |= 4z 8(%)}
holds for every X.

LeMMA 5. For each my set A, there ewists an existential formula P{(z)
such that for all generic 8, (n)[n € A=y, P (7))

Proof. By Gandy [3] there exists an arithmetical predicate B(z, X)
such that for all n,

ned->(BY)[B(n, Y)& ¥ is hyperarithmetical] .

At the end of the proof of Lemms 4, it was noted that every hyper-
arithmetic set belongs to A6(X) for every X. It follows from Lemma 4
that for all =,

ned o= uBY)B(®, Y).

For the sake of Lemma 6, it is necessary to sharpen our previous
observations concerning the assignment of indices to hyperarithmetic,
closed sets. Kreisel {{7], p. 307) mentions an arithmetical formula 4 (z, Y)
with the following property: if # € O, then (B, Y) A (»,Y)and (Y)[4 (2, ¥) >
- Y is a hyperarithmetic set of the same Turing degree as H]. Since
each hyperarithmetic set is recursive in H, for some =, it is possible to
assign indices to hyperarithmetic sets and to obtain an arithmetical
formula Bz, Y) such that the set of indices I is 7 and such that: if z ¢ I,
then (B, Y)B(z,Y) and (Y)[B(zx, ¥)->(¥), = the hyperarithmetic set
whose index is z], where (¥),= {m| 2™ ¢ Y}.

I and B can be modified to obtain a =i set I, of indices for hyper-
arithmetie, perfect, closed sets and an arithmetical formula B(z, Y)
with the following properties: if ®el;, then (E,Y)B,(z,Y) and
(Y)[Bz, Y)—>(Y), = the h.p.c. set whose index is #]. Let D(Y, 2)
be an arithmetical formula which says: (¥), contains infinitely many
sequence numbers which represent initial segments of the characteristic
function of Z. Then x ¢ I, & (Y)[ Bz, ¥)>D(Y, Z)] says: x is the index
of a h.p.c. P and ZeP.

Lemuma 6. Let A be a xy set (of indices) of hyperarithmetic, perfect,
closed sets, and let 8 be generic. If (P)(EQ)p>o(Q € 4), then (BEQ)(Q e 4 &
& B e).

Proof. By Lemma 5 there is a formula P(2) such that for all ge-

5%
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neric 8, (n)[ne A =g qP (@] Let § denote the following formula
of L(S):

(Ba)[P(2) & (T) (B, ¥)>D(Y, S))] -

Then for all generic S, (BQ)[Q ¢ A & § ¢ @l ==y T Now fix the generic
set. §. To prove the lemma, it is enough to find a P such that Pl-» ¥ and
8 e P. Suppose (for the sake of a contradiction) that no such P exists.
Then there must be a P such that P—p~F and S e P. There must also
be a @, such that P > @, and @, ¢ A. By Lemma 3, there exists a generic
set §' € Q,. Since Py~ Fand P = Q,, it follows @, j—» ~F. Thus = sy ~8
and consequently, ~(EQ)[Q ¢ A &8 ¢Q]. But Q1A and § 0.

TEya 7. Let §(x, X) be a formula of L(S) whose only free variables
are 3 and Y and whose only unranked variable is Y. If Pi-n(2)EXY)F(z, X),
then (BQ)rso(Eb)sen @~ () (BT)F (@, T*)].

Proof. Let Pl4(x)(BY)F(w, ¥). Then Lemma 3 and the definition
of | imply

(7)(Q)p>e(BR)o> A E|-1(EY) F (7, Y)] .

Tt follows from Lemma 2 that there is a @ such that P >@ and
(0)[Q -1 (BY)F(%, T)]. This means that (n)(Eb)seo[Q -2 (BY)F (@, T")).
By Lemma 1 and Kreisel’s Lemma ([7], p. 307), there is a hyperarithmetic
function f such that (n)[@|-x(BY"™)F (%, ¥’™)]. By Spector [8], there
is a beO, such that (n)(|f(n)] < [b]). But then Q[—4(z)(BY*)F(=z, T7).

LemmA 8. Let G() be a ranked formula with only x free. For each P,
there ewists a @ such that P > Q and either (i) or (ii) holds:

(i) (X)(X eQ->X is hyperarithmetic in {n|l=4x,S(@)});
(i) (X)(X €Q>{n| = pxS(R)} is hyperarithmetic}).
Proof. We proceed in the spirit of the proof of Lemma 2.

Case 1. (Q)r>0(EQ1)0>0.(EQ)a50y(En)[Q: -1 8 (%) & Qs -1 ~S(n)].

It follows from Lemmsa 1 and the argument of Kreisel’s Lemma
(I71, p. 307) that we can regard @,, Q,, and n as partial #; functions of Q.
By iterating these partial #} functions, we can define a hyperarithmetic,
partial funetion Q7 with the following properties: @) = P; for each m > 0
and i < 2™, Q7 and Q7w are basic, disjoint h.p.c. subsets of @7, and
(Bn)[QT 7 -18(7) & QTum|—n~ 8(7)]. We define @ by:

P € Q> (m) (Byi)icam(p € Q7).
Then @ is a h.p.c. set, P> @, and
X Qs (m)(Byi)icom(X € QF) .

We say that ¢ puts X in @ if (m)(X € Qkm). Each X eQ is put in @ by
a unique #, and is hyperarithmetic in that.t. We claim that @ satisfies

e _ ®
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condition (i) of the lemma. Fix X ¢Q. Let 8 = {n] |= y,x,3(%)}. To see
that X is hyperarithmetic in G, it is enough to see that the unique { which
puts X in @ is hyperarithmetic in . Consider the following definition of i:

£(0) = 0 & (t{m~+1) = t(m)vi(m+1) = t(m)+2");
1(m 1) = t(m) > (En)[Qitn -1 8(7) & Qltmprem —r~8(n) &n G].

The above equations define ?, because $(%) is a ranked formula, and
consequently, [X eQ7"" &Q7™ ,8(%)]—+neS. But then ¢ is hyper-

‘arithmetic in 8, sinee the relation P[—x§ is hyperarithemtic when P is

restricted to be a member of {Q7] ¢ < 2™ & m > 0} and § is restricted
to be a member of {§(%), ~S(%)| n > 0}.

Case 2. (ER)pzr(@:)r>0.(@:)r50:(1) ~[@1 -1 8 (%) & Qs ~S(%)].

By Lemma 3, (1)(EQ)r»elQi—2S@)VQ|-r~S(7)]. For each n, let

_{g(m it (BQ)msdQ-r 9],
"Tlesm b (BQ)msd@la~ S -

The defining property of R guarantees that F, is well-defined; in ad-
dition {F,} is a hyperarithmetic sequence of ranked formulas. The nature
of R also guarantees that

(2)(Q)r=>0.(EQ2)0i>0:[@s -2 Fa] - .
It follows from Lemma 2 that (EQ)rsq(n)[@!—1Fxl If X @, then
3=‘,1(,(x)‘9(n—e)+——>qﬁ—;.§(ﬁ). Thus @ satisfies condition (ii) of the lemma, since
the relation Qj—; §(%) is hyperarithmetic in #.

Lemwa 9. If 8 is generic, then the hyperarithmetic comprehension
aziom holds in M(8).

Proof. The argument of Feferman ([2], p. 339) makes clear that it
is sufficient to show the following: let 8 be generie, and let §(x, Y) be
a formula of L(S) whose only free variables are # and ¥ and whose only
unranked variable is Y; if Ess (@) (BY)F (2, ¥), then for some be 0,,

=@z BY)F ez, T).
Let P be such that S e P and P {@)(BEY)F(zx, ¥). Let

4, ={@ (X)X e@~>XeP)},
and let

Ay =1{Q] P> Q& (Bb)oco, @ — () (BX")F (@, T)} .

Let A be the set of indices of all members of 4, u‘AB. It follows from
Lemms 1 that A is #j. It is our intention to apply Lemma 6 to 4. We
must first show (@)(ER)g>r(R € 4). Fix Q. The last sentence of the proof
of Lemma 4 implies there exists aranked sentence § such that (X)[X ¢ P«
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= pxn ] By Lemma 3, there exists a @, such that @ > @y, and @, |-» F
or @, u~F. If @11, then P > Q,, and by Lemma 7, (BR)g,=r(E € 4,).
I Q) -»~T, then Qred,.

By Lemma 6, there is a @, ¢ A such that 8 ¢ @,. Since 8 € P, it must
be that Qe A,. But then Qy—n(#)(BY")F (2, Y°) for some b ¢ 0y, and
consequently, |= (%) (BY)F(w, T°).

Tevya 10. If 8 is generic, then S has minimal hyperdegree.

Proof. Let 8 be generic. First we show that § is not hyperarithmetic.
Suppose that § equals the hyperarithmetic set H. Following Kleene
([4], p- 35), We can find a ranked formula &8 («) such that H = {n| EaxS (7))}
for all X. Since § is generic, there exists a P with the property that P nS
= 3G(w). But then (X)(X e P-X = H). This last is absurd, since P is
uncountable.

Now suppose that X is hyperarithmetic in §. It follows from Lemma 9
and the argument of Kreisel ([6], p. 114) that K e 46(8). Let S(x) be
a ranked formula such that n e Ko l=y,8(R). Let

4, = {Q§ (X)X €@ ->X is hyperarithmetic in {n] =4,xS @n},
and let
A, = @) (X)X e Q—>{n] FpxS(R)} is hyperarithmetic)} .

Let A = A, u A,. Then the following observations imply that 4 is 7
the relation “X is hyperarithmetic in ¥’ is z;; the relation “|= xS (%)”
is hyperarithmetic (in X and ). By Lemma 8, (P)(EQ)rzq(¢ € 4). By
Lemma 6, (BQ)(Q <« A & S Q). If Q € A,, then 8 is hyperarithmetic in K.
If Qe A,, then K is hyperarithmetic.

THEOREM. There exists a sel of minimal hyperdegree less than the
hyperdegree of O. :

Proof. The relation Pj—; &, where P is a h.p.c. set and § is an arbi-
trary sentence of L(S), is hyperarthmetic in O (cf. [2], p. 337). Let
{%n] Mm >0} be an enumeration hyperarithmetic in O of all sentences
of L(8). By Lemma 3, we have (m)(P)(EQ)p=olPi~1FnVP |1~ Fml-
The argument of Kreisel’'s Lemma ([7], p. 307), relativized to O, makes
it possible to regard @ as a partial function of m and P whose graph is m}
in 0: (m)(P)[P >f(m, P) & (f(m, P) 4 §uVf(m, P)j—n~ Gn)]. By iterat-
ing f, we can define a function P, hyperarithmetic in O with the following
properties: P > Prmyi & [Pul—1FnV Pull-s~ Fn). We define § by the
formula:

n eS8 (Em)[Pni-17 eS] .

Then § is generic and hyperarithmetic in 0. (S is, in fact, the unique X
such that (m)(X e P,).) By Lemma 10, S8 has minimal hyperdegree.
In [2], p. 340, it was observed that O is not of minimal hyperdegree.
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We conclude with a word on the elimination of forcing from the
construction of a set of minimal hyperdegree. The key lemmas underlying
the proof of the theorem are Lemmas 7 and 8. Lemma 7 provides the
means of insuring that o, the least ordinal not recursive in 8, equals w,,
the least non-recursive ordinal. Lemma 8 provides the means of insuring
that § has minimal hyperdegree, given that of = o,. Both of the key
lemmas are consequences of the nature of the forcing relation restricted to
ranked sentences, where it coincides with the classical truth relation.
These considerations, if pressed hard, lead to a construction of a set of
minimal hyperdegree recursive in O without any recourse to the idea of
forcing.
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