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A connected topology for the unit interval

by
S. K. Hildebrand (Lubbock, Tex.)

1. Intrbductilon. This paper presents a solution to a problem
proposed by J. Stallings in his paper entitled Fived point theorems for
conmnectivity maps which appeared in Fundamenta Mathematicae 47
(1959), pages 249-263. A. knowledge of connected topological spaces and
the fundamental theorems pertaining to them is assumed. The following
notation and definitions are preliminary to proceeding to the statement
of Stallings’ problem.

For convenience the closed unit interval [0, 1] will be denoted by I
and 7, will denote the usual topology on I. Also in notation the term
‘interval’ shall indicate the usual open interval of (I, z,) of the form (a, )
where a < b.

1.1. DEFINTTION. A family of sets, 8, is a subbase for a topology t
if and only if each open set of v is the union of finite intersections of
members of §. Such a subbase shall be referred to as a =-subbase.

1.2. DEFINITION. Given a space (X, z) and an element & ¢ X, then &N
is a T-neighborhood of & if and only if NV is an open set of (X, 7) and z e V.

StarrINgs’ PrOBLEM. If 7 is a topology on I = [0, 1], let 7z be the
topology whose subbase consists of the open sets of v and of the left-
cloged intervals [a, b); let T be the topology whose subbase consists of
the open sets of 7 and of the right-closed intervals (a, b]. Suppose that =
is a connected topology for I and that ¢ is finer than the usual topology
for I. Let I and R be subsets of I, LuR= 1, 0 L, 1 ¢ R, L open in 7z,
and R open in 7g. Is it necessarily true that L ~ R # O?

2. Considering the usual topology on I. One theorem
pertaining to the usual topology on I is stated here due to its relationship
to Stallings’ problem. Its proof, being rather obvious, is omitted.

2.1. TuroreM. If the v of Stallings’ problem is resiricted o =y, then
Stallings’ question has an affirmative answer, that is, L~ R # @.

8. Characterization of the properties of the required
topology. The following four results serve to characterize the properties
which must be possessed by a topology on I in order that it satisfy the
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criteria imposed by Stallings in hig problem. Due to the simplicity of
their proofs, Theorem 3.1 and Corollary 3.2 are stated without proofs.

3.1. TaeorEM. If © € I and T is a connected topology for I finer than v,,
then for each & > 0 every 7-neighborhood of © must have elements in (v—e, a)
for © # 0 and in (z,w+e) for ¢ # 1.

3.2. COROLLARY. If z el and 7 is a connected topology for I finer
than 1,, then no v-neighborhood N of & cam contain a half closed interval J

where the end point J is not 0 or 1 and is o positive distance from N —J.

3.3. DeriniTIoN. Let § be a topological space. A subset X of § is
said to be a 7-component of S if and only if it satisfies the following con-
ditions:

(1) X is non-empty.

(2) X is a connected subset of (8, 7).

(3) If Y is any connected subset of (§,7) satisfying ¥ ~ X % 0,
then ¥ C X.

3.4. DEFINITION. A collection ¢ of v-neighborhoods .of a point p in
a space (8, 4) is said to form a local z-base at p if and only if, given
a A-neighborhood U of p in 8, there exists a Ve o such that VC U.

The'proof of the following theorem is apparent and hence the theorem
is stated without proof.

3.4. THEOREM. Let © be a connected topology defined on I which is
finer than =, and let & be an element of I. If the v -neighborhoods of x do
not form a local t-base at @, then @ must have a v-neighborhood, call it N,
such that (0, @] ~ O = {@} andjor [2, 1) ~ O, = {x} where Oy is the 7,-com-
ponent of N containing .

3.6. THROREM. Let v be any connected topology on I which s finer
than 7o, such that for every element @ of I, with the emception of a set of ele-
ments P, the v,~neighborhoods of » form a local =-base at . Let L, R, vx
and tg be chosen as in Stallings’ problem, and suppose L ~ R = @. Then P
contains a non-denumerable number of elements of I.

Proof. Let U be the z,-interior of L. It follows that U is the union
of at most , disjoint open intervals. Let U’ be the set of left end points
of the intervals of U. Let U" be the set of right end points of the intervals
of U and U*=T"' v U”. Let V be the 7,-interior of R. Define V*, V'
and V" similarly for’¥. Observe that U C L. Assume that ae U” and
aeR. Now aeU"” implies that there exists a W = (b, a) € U for some
b <a. Hence due to the connectedness of 7, Theorem 3.1 and the det-
Inition of vz, every vz-neighborhood of & must contain elements of W,
hence of U. Which leads to the contradiction that R is not open in 7g
as required in Stallings’ problem. Therefore a ¢ U’ implies @ ¢ L. Hence
(3.1) U'CL.

©
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Similarly, S :
(3.2) V'CR.
Clearly
(8.3) U'CP and V'CP.

Choose an element of I, call it y, such that y e I—(TU vV u U* L V*).
Assume y ¢ P. Now either y ¢ L or y ¢ R. It shall be assumed that y ¢ L.
The proof is similar if it is assumed that y ¢ RB. Therefore either there
exists an open interval contained in L containing ¥ or y must be the left
end point of an open interval contained in L. However this implies y ¢ U
or y € U*, a contradiction. Hence,

(3.4) Yyel—(UouVoU*uV*)=>yelP.

It follows from. statement (3.4) that if U=V = @, then PD I and P is
non-denumerable, ending the proof. Hence assume that U # @ and
observe that the proof follows similarly if it is assumed that V = @.

Define A = U v V. The number of 7,-components.in 4 is at most
denumerable. If 4 consists of a finite number of z,-components, there
exists an interval of U which is closer to 1 than any other interval of T.
Let d be the right end point. of this maximal open interval of U. From
statement (3.1), d e L, and hence d # 1. Now either there is no maximal
open interval of ¥ to the right of d, or there is a first one. If there is a first
one, call its left end point e. Then statement (3.2) implies ¢ ¢ B. Therefore
either [d, 1] or [d, ¢], applying statements (3.3) and (3.4), consists only
of elements of P since it contains no element of A. Hence either P is
non-denumerable and the proof is complete or A must contain a denu-
merable number of z,-components.

If A4 consists of a denumerable number of z,-components, form
a set B as follows. Let BD 4. Place 1 e Bif 1is in U* or V*. Place 0 in B
if 0 is in U* or V*. Let ¢ € B, for q < I, if q is the end point of two distinet
To-components of 4. Notice that B is an open set under z,. It follows
that I—B is a closed set under z,.

Now. assume that 2 is an isolated point of T —.B under 7,. The case
where 2 € (0, 1) shall be considered since the proof is similar if 2= 0 or 1.
Then there exists an open interval, say (k, 2) where k <2z <h, such
that (k, h)— {2} C B. Therefore each element of (%, h)—{z} is an element
of A or an end point of two distinet 7,-components of 4. Observe that z
is not in B, hence #z is not in 4 and is not an end point of two distinet
7o-components of A. It follows that for some m, where k <m <z or
2z < m < h, that either (m, 2) or (#, m) must contain a denumerable number
of non-overlapping 7,-components of 4, say K;, 1= 1, 2, ..., such that K,
is closer to #z than K; if ¢ > j, m is an end point of K; and such that exactly
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one point is between K; and Ky, =1, 2, ... Without loss of generality
it may be assumed that K; C {m, 2), 4=1,2, .. Notice that the z,-com-
ponents of A4 are elements of U or V and hence each. is an open interval.
Now for some ¢ suppose that Ky and K, are both elements of U. Then K;
can be written in the form (r, s) and K., in the form (s, ¢). Therefore
{$} C R since {s} CL implies that (v, 1) is in the 7,-interior of L, hence
in U, and therefore a 7,-component of 4. Then (r,?) being a 7-com-
ponent of A implies that K, is not a 7-component of 4, which is a con-
tradiction. However statement (3.1) says that {s} CL. Therefore K;
and K;y, are not both elements of U for any 4. Similarly it can be shown
that K, and Ky, ave not both elements of ¥V for any . Hence there exists
a j such that K; ¢ U and K;11 € V. Let ¢ be the common end point of K,
and Kjy,. Statement (3.1) requires that {¢} CL and statement (3.2)
requires that {¢} C R. Therefore contradicting the hypothesis that I ~
~ R = @. It follows that I—B containg no isolated points under 7,.

It now follows that I—B is a perfect set. Hence I— B is either the
null set or containg a non-denumerable number of elements. It follows
from statements (3.3) and (3.4) that every element of I—B, with the
exception of at most a denumerable number of elements of U’ v V",
i in P. ¥ I-—B is non-null this results in P being non-denumerable

Suppose that I—B is the null set. Since U # @, pick one maxim:
open interval of U. Call its right end point g. From statement (3.1), g # 1
¢is not in V' for if it were, by statement (3.2), g ¢ B and, by statement (3.1),
geL. Hence g¢ B which implies g e I—B and I—B is non-null.

Therefore it follows that P consists of a non-denumerable number
of elements and the proof is complete.

4. The tangled topology (v) for I. The following is a topology
for I which shall be referred to as the tangled topology or 7’. It will be
shown that the tangled topology satisties all of the conditions set forth
for 7 of Stallings’ problem and insures that his question has a negative
answer.

. The tangled topology for I. Remove the middle 1/3 intervals of I as
in the formation of the Cantor set and label them as follows:

(@, b) = (1/8, 2/3), (o1, ) = (1/9, 2/9),  (cas &) = (7/9, 8/9) ,
(@, by) = (1/27, 2/27), (4, bs) = (7/27, 8/27),
(ag; by) = (19/27, 20/27),  (ag, bs) = (25/27, 26/27) .

Continue the above process, taking out the middle 1/3 of intervals not

,;yet }abeled at the nth stage and calling them (a4, by) if n is odd or (es, &)
if » iy even. Observe that no two intervals for even values of n are assigned

icm°®
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the same subscript. Similarly, no two intervals for odd values of » are
assigned the same subscript. Define: ’ ’

M= \JI, vhere Iy= (as,bi).

=1

N=UJJ: where Ji= (o, ds).
1=1
E=1-{JL- OT-0—.

Tor a subbase B for the topology =’ in the following manner; §e B if
and only if one of the following holds:

(i) 8 is open in the usual topology of I.
(i) 8= M U {p} where p ¢ K u {0} v UJ {be}.
i=1

(i) 8= N u {p} where pe {1} v Q {es).

4.1. TuEorREM. I is connected under 7'.

Proof. Assume that 7’ does not leave I connected, that is, there
exists sets A4 and B such that A v B= I, 4 ~ B= @, A and B are both
open and closed proper subsets of I. Since 0 e 4 or 0 <.B, without loss
of generality, it may be assumed that 0 ¢ B. Therefore the set 4 must
have a greatest lower bound, call it a.

Case I. aeA. It is apparent, since 0 ¢ B, that a > 0. Hence by
the definition of z’ every z’-neighborhood of & must contain points of
{0, a) and, hence, points of B. Therefore o is a limit point of B and B
is not a closed subset of I, which contradicts the assumption.

Case II. ¢ ¢ B.
(A) Tt ae Mo N o) {a}ol)ied o) {d}, then each v'-neigh-
i=1 i=1 i=1

borhood of & contains an interval of the form [a, b) for some b > 4. B i
an open set of (I, '), therefore a would not be, as defined, the greatest
lower bound of A.

(B) Tt aeKu{0}u )b, then for some &> 0, (a,a+e) M
i=1

must be in B since a € B, and therefore the end points of M are in B.
Also, from the definition of the 7’-neighborhoods of any point b e K,
b must be in B if it is in (4, a+¢). Hence, since & is the greatest lower
bound of 4, A must contain a sequence of intervals of N approaching &
from the right. Choose one of the intervals in this sequence, call it (¢, 4),
such that (¢, d)C (a, a+¢/2). Bvery v’ -neighborhood of d contains an
interval of the form (e, f) where ¢ < d < f. Hence, from the construction
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of M and N, the interval (d, f) contains points of B for every f. Therefore ¢
is a limit point of B and, since B is closed, d ¢ B. This results in a con-
tradietion since ¢ is also a limit point of 4.

(C) E a=1, A= . However, A was restricted to be non-null.
A contradiction.

Therefore it follows that ' leaves I connected.

Tt is apparent that the connected subsets of I under 7, are the intervals
contained in I. It is also apparent that if v is a finer connected topology
for I than ,, then any connected subset of I under 7 is also a connected
subset of I under 7,. The following theorem. shows that the reverse is.
also true.

4.2, THEOREM. If 7 is a finer connected topology for I tham =, then
any conmected subset of I under v, will be o connected subset of I under .

Proof. Observe that from the statement of the theorem it follows
that I is connected under v, hence it is necessary only to consider proper
subsets of I. Let J be a proper subset of I which is connected under ,,
that is, J is an interval contained in I.

Case I. J is a closed interval. Let J = [a, b] where 0 < a <2 b = 1.
Assume that J is not a connected subset of I under 7. Therefore there
exists A and B such that AwB=J, A# 0, B# @, A~ B=@ and
A ~B=@. Now either a e A or a ¢ B and either b ¢ 4 or b ¢ B. Assume
aed and beB. The proof is similar i any of the other three possible
combinations. are considered.

Now define [0,a) v A = C and (b, 1] v B = D. Observe that ¢ v D
=1, 0#0,D+#0, CAD=0 and ¢ ~ D= @, which contradicts the
fact that I is connected under z. Hence, if J is a closed interval of I, J is
connected under. 7.

Case IL J is a half closed interval. Assume that J does not contain

its right end point. The proof is similar if it is assumed that J does not -

contain its left end point. Let J = [a, b) where 0 < a < b < 1. Observe
that J can be written as g[a, b—1/n]. By Case I of this theorem, for
each n, {a, b—1/n] is conne:med under 7. Since a is in each of the intervals,
it follows that J =£jl [a,b—1/n] is a connected subset of I under v.

Case IIL. J is an open interval, that is, J contains neither of its
end points. Let J = (a, b) where 0 < a <b < 1. Then J = (a, ¢] v [¢, b)
where ¢ < ¢ < b. It follows from case II of this theorem that both (a, ¢}
and [a? b) are connected subsets of I under 7. Hence, since they have
the point ¢ in common, this union is a connected subset of I under 7.

4.3. COROLLARY. Any connected - subset of I under 7, i8 a connected
subset of T under v'.

* ©
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Proof. Theorem 4.1 establishes that 7' is a -conmected topolofy
for I. Observe that in the definition of =’ all open sets of I under 7, are
also open sets of I under z'; hence 7’ is a finer topology for I than v,.
Therefore it follows from Theorem 4.2 that any connected subset of I
under 7, is a connected subset of I under z’.

With the information contained in the preceding theorems it it now
possible to show that the question asked by Stallings has a negative
answer. Observe that Theorem 4.1 insures that <’ is a connected topology
for I. From the definition of ¢’ it is apparent that ¢’ is finer than z,, hence 7’
satisfies the conditions of the r of Stallings’ problem. Now define the
following sets where the symbols M, N, K, by, ¢, ai, d; have the same
meaning as in the definition of " and where 77 and 7% have the same
meaning as in the statement of Stallings’ problem.

P—_—Mu{O}uKUlj{bi}:

i=1

Q=Nu{1}ug{a},
szpu_\;{a,},

R’=Qvg{df}-

It is apparent that P is an open set in I under 7’ and, hence, in I
under 74, and that Q is an open set in I under ¢’ and, hence, in I under .
It follows immediately that L' is open in 7, and that R’ is open in 7.
Obgerve that I' VR =1, 0 eL’ and 1eR’. Hence I’ and R’ satisfy,
respectively, the requirements of the I and R of Stallings’ problem. It
is quite apparent that L’ ~ R’ = @ which results in the negative answer
to Stallings’ problem.

Tt is of interest to observe that t" is an uncomplicated a topology
as any which answers Stallings’ problem. Theorems 3.1 and 3.5, along
with Corollary 3.2, tend to describe the additional open sets which were
added to 7, to form 7' while Theorem 3.6 assures that is necessary for I
under a topology satisfying Stallings’ conditions to have a non-denumer-
able number of points at which the 7,-neighborhood system does not
form a local base. i

5. Additional properties of the tangled topology (). Since
¢’ is finer than z,, it is apparent that I under ¢’ forms a Hausdorff space.
The following theorem gives additional information about z’.

5.1. THEOREM. I wnder v' has the following properties.

(a) I under <" 4s not countably compact, hence, not a compact space.

(b) I wnder ' is not regular.
10*
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(¢) I under «' is a separable space.

(@) I under <’ is a first countable space.

(e) I under 7' is not a second countable space.

Proof. In this proof the notation is that used in defining 7'.

(a) Select a sequence {si}, i=1, 2, ..., such that for each i, s;e N
and lim s; = 0 under 7. It is apparent that such a sequence exists. Since 7’

is finer than 7o, 0 is the only possible limit point of the sequence. However,
0 has a ' -neighborhood such that it containg no elernent of V. It follows
that 0 is not a limit point of the sequence, and, hence, I under +' iy not
countably compact. Applying the well-known theorem that every compact
subset of a space is countably compact, it follows immediately that (I, 7')
is not a compact space.

(b) Let U be a neighborhood of by of the form [byvw M]~ (a,Dd)
where 0 < a < by <b <1 Assume that there exists a mneighborhood
of by, call it V, such that ¥ C U. It is apparent that V would have a subset,
call it W, of the same form as U. Now since all open sets of =’ are unions
of finite intersections of subbase elements, there exists a positive integer j
such that (a;, b;) C W. Observe that a; is a limit point of W, hence of V,
and a; ¢ U, Therefore V ¢ U.

(¢) Observe that each open set of (I,7") contains an interval. There-
fore, each open set of (I,7’) contains a rational number. Hence, the set
of rational numbers contained in I is a countable dense subset of (I, 7'),
and I under 7’ is a separable space.

(d) Observe from. the definition of ¢’ that if P ¢I, then one of the
following forms a countable base, or local countable base, at p for =’

@ In~p—1n,p+in), n=1,2,..

@) (p—1n,p+Ln) " {M wp}, n=1,2,..

@3) (p—1n, p+1in) A {N v p}, n=1,2,..

It follows that (I,+’) is a first countable space. :

(¢) Observe that each element # e K has a neighborhood of the
form U~ {M v}, U an open set of (I,7,). Now if x, i3 a particular
element of K, observe that no union of finite intersections of sets which
are open in (I,7'), excluding those of the form U ~ {M u 2.} where U is
an open set of {I, %}, is equal to a set of the form U ~ {M v @}, where U
is an open set of (I,7,). Hence, since it is well known that K consists
of a non-denumerable number of elements, it follows that (I, ') is not
second countable.
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Deduction-preserving ‘‘Recursive Isomorphisms”
between theories * **

by

Marian Boykan Pour-El and Saul Kripke
(Minneapolis, Minn. and Princeton, N. JI.)

Introduction. In this paper we concern ourselves with recursive
mappings between theories which preserve deducibility, negation and
implication. Roughly we show that any two axiomatizable theories con-
taining a small fragment of arithmetic—this can be made precise—are
“jsomorphic” by a primitive recursive function which preserves de-
ducibility, negation and implication (and hence theoremhood, refutability
and undecidability). We also show that, between any two effectively
inseparable theories formulated in the predicate calculus, there exists
a recursive ““isomorphism’? preserving deducibility, negation and implica-
tion. We will see that we camnot replace ‘“recursive” by “primitive
recursive” in the last result. As a consequence we oObtain a partition
of all' effectively inseparable theories in standard formalization into ®,
equivalence classes, The unique maximal element is the equivalence class
of those theories containing the small fragment of arithmetic mentioned
above. A more precise summary of our results—which, incidentally answer
some questions left open by Pour-El [6]—appears below, following some
brief notational remarks.

In our opinion interest in the preservation of sentential connectives—
particularly implication—can be justified by the following consideration.
The preservation of implication implies the preservation of modus ponens
and modus ponens is intimately related to the deductive structure of
the theories. (Indeed, it is well known (Quine [5]) that the predicate
caleulus can formulated so that modus ponens is the sole rule of inference.)

All theories considered in this paper will contain the propesitional
caleulus. For definiteness we assume that implication and negation are
the sole primitive propositional connectives: AvB is an abhreviation

* The work of M. B. Pour-El was supported by NSF GP 1612. Sections 1, 2 and
parts of section 3 were obtained independently by both anthors. The remaining results
were obtained by the first-named, amthor. . .

** The authors would like to thank Professor Kurt Gbdel for his very great interest
in these results. ’
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