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Partially well ordered sets and partial ordinals

by
E. S. Wolk (Storrs, Conn.)

1. Introduction. If P is a set and R is a relation on P which is
reflexive, antisymmetric, and transitive, we shall eall the pair (P, E)
a partially ordered set. If » and y are distinet elements of P, we interpret
# Ry intuitively as “x precedes y”'. A partially ordered set (P, R) is partially
well ordered (pwo) if and only if for every infinite sequence {x,} in P, there
exist ¢ and j with 4 < j and z;Ra;. Pwo-sets have been studied by Hig-
man [6], Kruskal [8], [9], Michael [10], Nash-Williams [11], [12],
R. Rado [15], and Tarkowski [18]. Some of these authors have considered
quasi-orderings instead of partial orderings, and have of course adopted
different terminologies. Also, several other definitions have been. given
which are equivalent to the one above.

The notion of partial well ordering is obviously a natural extension
of the coneept of well ordering, since a well-ordered set is a pwo-set which
ig linearly ordered by the relation R. The purpose of this paper is, in
essence, to extend some of the well-known classical theory of well ordered
sets and order types to pwo-sets. Certain basic theorems on order ideals
and isomorphisms of pwo-sets are obtained. We define the order type
of a pwo-set, which we call a tpartial ordinal”, and we show that the
clags 9 of all partial ordinals is partially ordered in a natural way. Further-
more, this ordering of ¥ is an extension of the usual ordering of the eclass
of a1l ordinals, which we are then able to characterize abstractly as a certain
subclass of 7. The structure of the class & appears to be of some interest,
and we obtain several theorems describing some of its properties.

2. Preliminary results and a representation theorem.
We first give several more definitions. Let P be a set which is partially
ordered by a relation <. If z,y P, we say that # and y are incomparable
if and only if © < y and y < 2. A subset Q of P is totally unordered if and
only if any two distinet elements of Q@ are incomparable. By # <y Wwe
mean # < y and & s y. An infinite sequence {z,} in P is strictly inereasing
(strictly decreasing) if and only if &y < Bpp1 (@nts < @n) for all m. #¥QCP

* This research was supported by National Science Foundation Grant GP-3573.


Artur


176 E. 8. Wolk

we say that m is a minimal element of @ if and only if m ¢ @ and there is
no # ¢ ¢ with # < m. A subset M of Q is a minimal subset of @ if and only
if (i) each m e M is a minimal element of @, and (ii) for all €@, there
exists m e M with m < x. The obvious dual definitions of maximal element
and mawimal subset will also be used. A mapping f of a partially order(;d
set (P, <) into a partially ordered set (P, <') is order-preserving if and
only if #, y ¢ P and # <y imply f(x) <' f(y). It is clear that the image
of a pwo-set under an order-preserving mapping is pwo. A 1:1 mapping f
of (P, <) onto (P',<’) is an isomorphism if and only if both f and f*
are order-preserving. '

The cardinal number of a set P will be denoted by |P|. We denote
set inclusion by C, reserving C for proper inclusion. The empty set will
be denoted by @. (

The following theorem is well known ([9], [10]), and we therefore
omit its proof.

THEOREM 1. The following properties of a partially ordered set (P, <)
are equivalent. ’
(a) (P, <) is pwo.

] (b) Bwvery infinite sequence of distinct elements of P contains a strictly
increasing subsequence.

(¢) P contains no infinite strictly decreasing sequence and no infinite
totally unordered subset.

(d) Bvery subset of P contains a finite minimal subset.
If {X,: a eI} is any family of sets, we write [] {X,: i
. ‘ , We ar ael}={f:fis
a ﬁ?netlon on I and f(a) € X, for all a e I}. We call the elements of [[ X,
choice functions f9r the family {X,}. If R, is a partial order on X, for
.each a eI, a partial order S on []X, may be defined by fSg¢ if and only
if f(a)Rag(a) for all @ ¢ I. The partially ordered set (] ] X,, §) is called

the cardinal product of the sets (X,, Ry). The followi i
el Tmown, H101 C1a], ay Ba owing theorem is also

THEOREM 2. The cardinal product of finitely many pwo-sets is pwo.

We shall also make repeated use of a fundament i
: ntal theor
functions due to R. Rado ([4], [14]). coverm on ehoiee

TerorEM 3 (R. Rado). Let {X4: i eI} be a family of non-empty finite
sets, fmd suppose that for each finite subset A of I we are given o choice
Tunction f" for ihe family {Xy: i e A}. Then there exists a choice Sfunction f
for {Xy: K e I} such that, whenever A is a finite subset of I, there is a finite
set B with A CBC I and f(i) = fg(i) for all ie A. ’

. CIi‘ B, and R, are partial ordering relations on the same set P, and
1 C Ry, we say that R, is an extension of R,. Szpilrajn [17] has proved
that any partial order on a set P has a linear extension., Following Dushnik
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and Miller [3], we define the dimension of the partially ordered set (P, R)
as the smallest cardinal & such that R is the intersection of % linear orders
on P. This definition may also be given in the following equivalent form:
the dimension of (P, R) is the smallest cardinal % such that (P, E) can
be isomorphically embedded in the cardinal produet of & linearly ordered
sets. A proof of the equivalence of these definitions is given in [13]. It
is clear that there exist pwo-sets of any finite dimension and also of
conntably infinite dimension. However, it is an open question whether
there exist pwo-sets of uncountable dimension.

We now obtain another characterization of a pwo-set. For this
purpose we first prove a lemma.

TEMMA 1. If (P, R) is a partially ordered set containing an infinite
totally unordered subset, then there is a linear extension of B which is not
a well ordering.

Proof. Let {1, Qo) ---s G, ---} be an infinite totally unordered subset
of P. We define a relation R, on P by » R,y if and only if (i) Ry or (ii)
sRq, and ¢ Ry. Then R, is a partial ordering of P and is an extension
of R. Also note that ¢, R,q, by (ii). We then define B, by xR,y it and
only if (i) # R,y or (ii) 2 R,gs and ¢, R,y. Continuing by induction, we may
thus define, for each n =1,2, ..., a relation E, on P by zRyy if and
only if (i) #Rn—1y or (ii) #Ry—1¢n+1 and @nRu—1y. Bach R, is an extension
of R, and Ry C Bpyq for all n. Detine § = |J {Ra: #=1,2,...}. Then §
is a partial ordering of P, and the sequence {gs} is strictly decreasing
in (P, 8) (i.e.; gu+18gs for all n). Tf 8* ig any linear extension of S, then
(P, 8*) is not well ordered. But S* is also a linear extension of E.

‘We now have

THEOREM 4. A partially ordered set (P, E) is pwo if and only if every
linear extension of R is a well ordering of P.

Proof. Assume that (P, R) is pwo, and let I be any linear extension
of R. Then the identity mapping is order-preserving on (P, R) onto (P, L),
and hence L is a well ordering. To prove the converse, suppose that every
linear extension of R is a well ordering. Then clearly P can contain no
infinite sequence {z,} which is strietly decreasing in the order E, because
such & sequence would De strictly decreasing in any extension of K.
Furthermore, by Lemma 1, (P, E) contains no infinite totally unordered
subset. Hence, by Theorem 1(c), (P, R) is pwo.

For pwo-sets of finite dimension, we now have the following useful
“representation’”’ theorem.

TeEorREM 5. Let (P, R) be a partially ordered set of finite dimension.
Then (P, R) is pwo if and only if (P, R) is isomorphic to a subset of the
cardinal product of a finite number of well ordered sets.
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Proof. Suppose that (P, RB) has finite dimension and is pwo. Then
there exists a finite number of linear extensions Ly, ..., Ly of R such that
R=){Li: =1, ..,n}; and furthermore each L; iy a well ordering
by Theorem 4. Let (IT, <) denote the cardinal product of the well ordered
sets (P, L), ..., (P, Ly). For each x ¢ P, left f; denote the function in I7
defined by fu(t) = @ for all i =1, 2, ..., n. Note that fo < fy if and only
if #Lsy for all i ==1,..,n; and this is also equivalent to 2#Ry. Hence
(P, R) is isomorphic to the subset {fs: @ ¢ P} C II. The proof of the
converse statement iy trivial, since any subset of a pwo-set is pwo.

3. Order ideals. Throughout this section and the next we shall
often refer to a partially ordered set P without explicit mention of the
order relation, which will usually be denoted by <. It W C P, we say
that W is an order ideal (lower set, in the terminology of Kruskal and
Nagh-Williams) in P if and only if whenever ¥ ¢ W and & <y, then also
x e W. The set of all order ideals of P (including @ and P itself) will be
denoted by L(P). With respect to the usual ordering of set inclusion,
L(P) forms a complete lattice. :

If P is a pwo-set and the lattice L (P) is also pwo, we shall say that P
is mormal. The following example, which is due to Kruskal [8], shows
that there exist non-normal pwo-sets. Let o denote the non-negative
integers (with the usual order), and let J, = wX w. We define a partial
ordering < on J, as follows. Let a = (ay, a,) and b = (b,, b,) be any elements
of Jy. If a;= b, we define a <b if and only if a, < by; if a, < b,, we
define a<b if and only if a,+a, <3b,. Then (J,, <) is a pwo-set.
For each i = 0,1, ..., let Cy = {(®, ¥): # = n}. Let 4, be the order ideal
of J, generated by 0, ie., 4dp = {aed,: a<<b for some be C,}. Then
clearly 4; and 4; are incomparable sets if ¢ # j. Thus L(J,) contains an
infinite totally unordered subset and J, is non-normal.

Kruskal [8] has shown, furthermore, that any non-normal pwo-set
contains an isomorphic image of J,.

L(P) does have the following property, however.

TH?E‘.OREM 6. If P is a pwo-set, then L(P) contains no infinite strictly
decreasing sequence.

Proof. Suppose that there exists an infinite strictly decreasing
sequence {Wn} of order ideals of P. Then for each n, there exists @y € Wyp—
.*W’f‘“' But P is pwo implies @ < 2y for some 4, § with ¢ < j. But this
implies @¢ ¢ W;, contradicting the definition of the sequence {@,}.

Leyma 2. If Q is a subset of a normal pwo-set P, then Q is normal.
_ Proof. We are of course considering the ordering on ¢ to he that
induced by the ordering on P. Let {W,} be any sequence of order ideals
of Q. Let 4, = {5 ¢ P: <y for some y ¢ Wa}. Then {4,} is a sequence
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of order ideals of P, and hence by hypothesis there exist ¢+ and j with
i<j and 4;C A;. Hence Wi = 4:~Q C 45~ @ = W;, completing the
proof.

We now have

TrEoREM 7. If P is a finite-dimensional pwo-set, then P is normal.

Proof. By Lemma 11 of [12] we infer immediately that the cardinal
product of finitely many well ordered sets is normal. By Theorem 5, P is
igomorphic to a subset of such a product, and Theorem 7 thus follows
from Lemma 2.

Theorem 7 shows, incidentally, that Kruskal’s pwo-set J, must have
infinite dimension.

4, M-decompositions. We shall now construct by transfinite
induction a useful “canonical” decomposition of an arbitrary pwo-set
(P, <). In this section the small Greek letters a, B, v, and A will denote
ordinal numbers. Let M, be the minimal subset of P. If M, is defined
for all ordinals a < 8, define M as the minimal subset of P— (J {Ma:
a< B}, If A is the first ordinal for which M; = @, then the family of
finite non-empty sets {M.: a < 1} will be referred to as the M - decomposi-
tion of P. The members of this family will be called M -sets. Clearly P is
the union of all its M -sets; and if y ¢ M, for some § < A, then for all
a < f there exists © e M, with z <y.

We now state two simple lemmas whose proofs may be left to the
reader.

Levuma 3. If P is a pwo-set with M-decomposition {M.: a < A}, and
W e L(P), then the M -decomposition of W is {M, ~W: a <y} for some
y< A

LeMMA 4. Let P and P’ be pwo-sets
(M, a< A} el {Mi: a< L'}, respectively.

(i) If f is an isomorphism of P onto P, then fIM,] = M, for all a < 4
(and hence A = 1'). _

(i) If f and g are both isomorphisms of P onto P', and x is any element
of P, then f(x) and g(z) are in the same M -set of P’.

Tt F = {Wy: i el}is a family of order ideals of P, let us say that &

with . M - decompositions

- i8 up-directed if and only if for every ¢,j I, there exists k ¢ I with Wi v

o W; C Wi. We now have the following theorem, which we shall need
in the next section.

THEoREM 8. Let P and P’ be pwo-sets, and I a set of indices. Let
(Wi seI} and {Wi: i-eI} be up-directed families of order ideals of P
and P’, respectively. Suppose also that P = U{We ie}, PP=U{Wg
i eI}, and W, is isomorphic 1o W for all i e I. Then P is isomorphic to P’.
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Proof. Let {M,: a < A} and {M;: e« < A’} be the M -decompositions
of P and P’, respectively. For each 7 e I, let f; be an isomorphism of W,
onto W;. Let & be any element of P. Using Lemma 4(ii), it is easy to show
that for all ¢ with # ¢ Wy, all the elements fi(«) lie in the same M -get
of P’. Thus for each x ¢ P, there is a unique M -set of P’, which we denote
by M., which contains all images fi(x) for all ¢ with # ¢ W;. (The sets M,
of course need not all be distinet.) Let 4 be any finite subset of P. Since
each z ¢ 4 is in some Wy, and {W,: i e I} is up-directed, there is some W,
with 4 C Wi. We denote the restriction fr|4 of the function f; to the
set A by fa. Thus for each finite 4 C P, there is a choice function fy for
the family {M,: » ¢ A} such that f4 is an isomorphism of 4 into P'.
Now by Rado’s Theorem (Theorem 3), there is a choice function f for
{M;: @ ¢ P} such that, for all finite A C P, there ig a finite set B with
ACBCP and f(z) = fe(r) for all x <« A. Clearly f is an isomorphism
of P into P'. :

Now we must prove that f is onto P’. To do this, we first show that
fIM.] C Miforall a < A (and hence A < 1'). Given any oy < 4, let 4 = M,,.
There exists a finite set B with 4 C B C P and f(z) = fp(x) for all 2z € 4.
Algo there exists & I such that B C Wy, and the function fp is the restric-
tion to B of the isomorphism fr. By Lemms 3, the M -decompositions
of Wy and Wi are {Wx ~ Mo a < 9} and {Wi ~ Ml a < y}, respectively,
for some y > ay; and fu[ Wi ~ M,] = Wi ~ M; for all a < y (Lemma 4).
But Mo, C Wi, and so fx[ M,,] C Mg, But also for any # ¢ M,,, we have
f(@) = falw) = fulx). Hence f[M,,] C M. :

To conclude the proof of Theorem 8, we may reverse the roles of P
and P’ and prove, analogously, that there exists an isomorphism ¢ of P’
into P with g[M;] C M, for all ¢ < 1’ (and hence A’ < A). From this we
conclude that A = 4/, and also that |M,| = M| for all a < A. Butb since I,
and M are finite, we must have f[M,]= M, for all a < 1, and hence f
is onto P’ ' .

The following simple example shows that Theorem 8 does not hold
for arbitrary partially ordered sets P and P’. Let P he the set of all in-
tegers and P’ the set of all negative integers, and let these sets have their
usual ordering. For i = 1,2, ..., leb W; = {k ¢ P: k =4}, and let W, = P’
for all 4. These families of order ideals are both up-directed. Since W
is isomorphic to W for all 4, the hypotheses of Theorem & are all satistied
except for the condition of partial well ordering. But P is not isomorphic
to P’.

‘We prove next (also for use in Section B) a theorexn which may be
considered as an extension of Konig's “Infinity Lemma” ({71, p. 81

THEOREM 9. If P is a pwo-set with M -decomposition {M,: a < 1},

then there is a chain in P containing precisely one element from each M -set
of P.
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Proof. Let I denotetheset of all ordinals less than 1, and let 4 be any
finite subset of I. Using the properties of the M - decomposition and making
a finite number of choices, we may construct a function f4 e []{M,: a ¢ A}
such that f4A] is a chain. Thus we may apply Rado’s Theorem to the
tamily {M,: a< 1} to obtain a function ge J[{M.: a< A} such that,
for each finite 4 C I, thereis a finite set B with A C B C I and g(a) = fz(a)
for all a € 4. It is clear that the image g[I] of T with respect to ¢ is a chain
in P containing precisely one element from each J/-set.

The reader will observe that the Konig Infinity Lemma may be
obtained from Theorem 9 by setting 1 = w.

The following corollary of Theorem 9 is obvious.

COROLLARY 1. Any infinite pwo-set P contains a chain C with |C] = |P|.

As another corollary to Theorem 9, of incidental interest, we may
easily prove a well-known theorem of Lindenbaum on well orderings E5].
If (P, R) is a partially ordered set and ¥ C P, let us denote the ordering
induced by R on Y by R/Y: ie, R/[Y =R~ (¥ xY). We then
have )

COROLLARY 2. Let X be an infinite set, and suppose that {R,, ..., R}
is amy finite set of well orderings of X. Then there exists ¥ C X with |Y| = |X|
and Ry Y = Ry|Y for all & and j (i, =1, ..., k).

Proof. Consider the well ordered sets (X, Ri), for ¢ =1, ..., k, and
let (P, <) denote their cardinal product. Bach ¢ X occurs as an element,
say @1, of (X, R;). The correspondence (..., ®s) is the.n 3 1:1
mapping of X onto a subset of P, which we identify with X itself. By
Theorem 2, P is pwo, and hence so is its subset X. By Corollary 1 to
Theorem 9, X contains a chain ¥ with |¥|= [X|. If #,y <Y, then by
definition of the cardinal product order we have xRy for all 4, or y R
for all 4. Thus all the orderings R; coincide on the set ¥: i.e., R/ Y = B/ ¥
for all ¢ and j.

5, Partial ordinals. Let P be any partially ordered set..We
define the order type of P, denoted by =P, as the class of all partially
ordered sets which are isomorphic to P. The order type of a pwo-set
will be called a partial ordinal. We shall denote partial ordi‘nals by small
Greek letters, such as u, o, and £ Sets of partial ord.inals W_111 be denoted
by capital Greek letters. The class of all partial ord'ma.IS Wﬂl be denoted
by &, and the subclass of § consisting of the ordinals will be denoted
by O.

Y We now define a relation < on the class 7 as follows. If 7P, 7Q €9,
then P < v if and only if P is isomorphic to an order idesiul of Q. The
relation < is obviously reflexive and transitive. The following theorem
and corollary show that it is also antisymmetric.
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TaeorEM 10. If (P, <) is & pwo-sel, and f is an isomorphism of P
onto an order ideal f[P] of P, then f[P]= P.

Proof. The proof of the theorem will be by contradiction. Let us
define f° as the identity function, and for n a positive integer, let f"
=fo f**. Assume that f[P]# P. We shall then prove by induction that
for all &, (i) fP] is a proper subset of f*UP), and (ii) f°[P] is an order
ideal of P. v

Note that (i) is true for the case n =1 by assumption. Suppose,
then, that f"[P]Cf"[P] for some n. Let e " '[P]—f"[P]. Then
flan) e f'LP). If f*[P] = f"[P], then f(a) « f*7'[P] and hence there exists
y < f'[P] with f(y) = f(z,). Since y # x,, this contradicts the hypothesis
that f is 1:1. Hence f**'[P]C f"[P].

Next we prove (ii) by induction. The case n = 1 is trivially true by
hypothesis. Suppose, then, that f°[P] is an order ideal of P for some .
Let wef*"'[P] and let » <w. We shall prove that v ef"*'[P]. Since
u e f"[P], and f'[P] is an order ideal, we know that v ¢ f"[P]. Hence there
exists # € f* [ P] with f(z) = v. Also, there exists y ¢ /" '[P] with f(f(y)) = u.
Thus we have f(z) <f (f(y)); and since f is an isomorphism, it follows
that © < f(y). But f(y) e f"[P] and f"[P] is an order ideal: hence ¢ f"[P].
Hence v = f(«) ¢ f*T'[P]. This completes the proof of (ii).

(i) and (i) now imply that {f"{P]} is an infinite strictly decreasing
sequence in L(P), which contrddicts Theorem 6. This completes the
proof of Theorem 10.

The following corollary, which proves that the relation < is anti-
symmetric on 7, is now obvious.

CorROLLARY 1. If P and Q are pwo-sets, and each is isomorphic fo an
order ideal of the other, then P and Q are isomorphic.

It should be noted at this point that the partial ordering relation <,
which we defined above for partial ordinals, does not provide us with
a partial ordering of the class of order types of all partially ordered sets,
because of the failure of the antisymmetric property. A simple example
to show that Corollary 1 fails for arbitrary partially ordered sets is obtained
by taking P as the set of all real numbers (with the usual order), and @
as the set of all real numbers with a greatest element adjoined.

The reader will also note that the ordering induced by < on the
subclass O of T agrees with the usual ordering of the ordinal numbers.

‘We have two more simple corollaries of Theorem 10.

COROLLARY 2. If A and B are distinct order ideals of a pwo-set P
and A is isomorphic to B, then A and B are incomparable sets.

CorOLLARY 3. If P is a normal pwo-set, then every family of mutually
isomorphic order ideals of P is finite.
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Now let P be any pwo-set, and write I'(P) = {¢ ¢ T: ¢ < tP}. The
correspondence @ —7¢ then defines & mapping of the complete lattice L (P)
onto I'(P). This mapping is order-preserving but it need not be 1:1,
gince mutually isomorphic order ideals map into the same image in I'(P).
I'(P) may fail to be pwo if P is non-normal, and the reader may verify
that this is indeed the case for I'(J,). Also I'(P) need not be complete,
nor even a lattice. As an example of this, consider the pwo-sets with the
following Hasse diagrams.

TFig. 1

Let P denote the cardinal sum 4-+B, in the sense of Birkhoff
([1], p- 7). Also, let the two “components” of B be B; and B,. Then, in
I'(P), the pair of partial ordinals v4 and B has no greatest lower bound;
for the set of common lower bounds of r4 and vB contains the two
maximal elements vB; and vB,. Hence I'(P) is not a lattice.

Although I'(P) may fail to be a complete lattice, it does have a certain
completeness property in the normal case, which is a consequence of
the following theorem.

THEOREM 11. If P is a normal pwo-set and D is a chain in L(P), then
(I J {W: WeD}) =lub. tW: WeD}.

Proof. Let 4 be the chain of partial ordinals {tW: W e D} in I'(P),
and let ‘4* be the set of all upper bounds of 4 in I'(P). Let
A= |J{W: WeD)}, and suppose that B is any member of L(P) with
7B e 4*. We shall show that 74 < 7B. For each o € 4, there exists a set E,
of order ideals in B such that W, ¢ B, implies tW, = o. Bach F, is a non-
empty, totally unordered, finite subset of L(B), by Corollaries 2 and 3
of Theorem 10. Moreover, {H,: o ¢4} iy precisely the M -decomposition
of the pwo-set || {H,: ¢ ¢ 4). Hence by Theorem 9 we may choose exactly
one W/ from each J, such that {W}: o ¢ 4} is linearly ordered by inclusion.
Let A’ = [ J {W}: o e 4}. Also, for each o € 4, let ¥, be the member of D
with 7V, = 0. Then V, is isomorphic to W for all o ¢ 4, and hence by
Theorem 8, A is isomorphic to 4. But A’ C B, and so 74 < vB. Hence
74 = lub. 4.
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COROLLARY. If P is @ normal pwo-set, then every chain in I'(P) has
a least wpper bound in I'(P).

Proof. If 4is any chain in I'(P), then, as in the proof of Theorem 11,
we may use Theorem 9 to select a chain D in L(FP) whose image under
the mapping v is precisely 4. Then z(|J{W: W ¢ D}) =1lub. 4.

We now prove another theorem describing the structure of I'(P).

TurorEM 12. Let P be a normal pwo-set. If oy, o, € I'(P), then (a) the
set of upper bounds in I'(P) of oy and o, has a finite minimal subset, and (b)
the set of lower bounds of oy and o, has a finite mavimal subset.

Proof. (a) is obvious, since I'(P) is pwo. To prove (b), let X be
the set of all common lower bounds of ¢, and o,. If 4 i§ any chain in X,
then 4 has a least upper bound & in I'(P), by Theorem 11. But ¢, and o,
are upper bounds of 4; hence £ < oy, & < 0y, and § ¢ X. Thus every chain
in X has a least upper bound in X, and hence by Zorn’s Lemma, 2 has
a maximal subset, which must be finite.

It is natural to ask whether the class O of ordinals can be charac-
terized “abstractly’ as a certain subelass of . It is clear that if y €O,
then {o¢T: o <y} is linearly ordered, but this property is not charac-
teristic of the ordinals. Consider, for example, the pwo-set (P, <), where
P ={a,b,c} and b < a, ¢ < a (but b and ¢ are incomparable). Since the
order ideals {b} and {c} are isomorphie, I'(P) is linearly ordered. However,
we do have the following theorem.

TuroREM 13. Lét y be a partial ordinal with y = tP. A necessary
and sufficient condition that y be an ordinal is that P be isomorphic to
{oeT: o<yl

Proof. The necessity of the condition is clear. To prove the suffi-
ciency, assume that P is isomorphic to {s e T: ¢ < y}, but that y is not
an ordinal. This means that P is not linearly ordered. Let {M,: a < A}
be the M -decomposition of P, and let f be an isomorphism of P onto
{o0eF: 0 < y}. Let {M,: a< A} be the M-decomposition of {0 €T: o < y}.
Then f[M,] = M; for all a < 1, by Lemma 4. Since P is not linearly
ordered, there is a least ordinal f < 1 such that both M, and M} contain
more than one element. Then | J {M,: o< f} is a chain, say C; and so
is f[C] = U {M}: a< B}. Let us consider the partial ordinal v0. We
assert that 70 ¢ f[ 0]. For if this were not so, then vC ¢ M} for some o = .
This would mean that (i) 0 is incomparable with gome partial ordinal
o <y, or (ii) 70 has a pair of incomparable predecessors in {o: o < y}.
But this is impossible, because the order ideal ¢ e L(P) is comparable
with all elements of L(P) and contains no pair of incomparable order
ideals.

Now let Q =1I'(0) = {&: o < v0} and consider two possibilities.
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Case 1. 2 = f[0]. Note that L(C) consists of all initial segments
of 0, together with C itself, partially ordered by inclusion; and further-
more L(C) is isomorphic to Q. Now if Q = f[C], it follows that € is
isomorphic to L(C). But this is a contradietion, since ¢ is well ordered.
Case 2. QCf[C]. In this case z0 is not the greatest element of f[(1,
and hence Q2 is an initial segment of f[(]. But then we have ( isomorphic
to f[C] and also to an initial segment of f[{C]: again a contradiction.

6. Arithmetic of partial ordinals. It may be remarked, in
conclusion, that there is an arithmetic of partial ordinals which is a natural
generalization of the arithmetic of ordinal numbers. It is easy to verify
that the ordinal sum and ordinal product ([1], [2]) of two pwo-sets are
also pwo-gets. This enables us to define the sum and product of partial
ordinals in a natural way. Of more interest is the possibility of also de-
fining exponentiation for partial ordinals. It is to be noted that Birkhoff’s
ordinal power ([1], [2]) does not provide us with a satisfactory definition
of exponentiation, since it P and @ are pwo-sets, the ordinal power °P
may fail to be pwo. A satisfactory definition may be obtained, however,

" by generalizing the constructive procedure used by Sierpirski [16] in

defining exponents for ordinal numbers. The details of this constructmn
will not be given here.
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On a property of sets of positive measure
by
B. Sodnomov (Ulan-Ude)

1. For any subsets 4, B of the real line we put A+ B = {a+b:
acd, beB}, A—B={a—b: aecd, beB}, D(4,B)={la—b]: aecd,
beB}, D(4)=D(A, A). D(A) is called the set of distances of 4.

For every subset B of the real line, B® denotes the symmetrical
reflection of E, & being the center of symmetry. It is evident that

A+B=A—-B", A-B=A+BY,
D(4,B) =[(4—B) v (B—4)] [0, ), D4)=(A-4)n[0, ).

If B, denotes the intersection of ¥ and E® then E, is symmetric
with respect to & If £ is a metric density point for ¥ then £ is also a metric
density point for E.

mE denotes the Lebesgue measure of E.

We say that a system Z, of 3" congruent and disjoint segments
Attty Where tr € {0, 1, 2}, is quite symmetricif for any natural number k,
1<k < n, it satisfies the following conditions:

(%) Abyyotistiritn NG Aiy il th 8, aTE Symmetric with respect to the
center of Ay, ten1n,.a provided the sequence B, thii, oy tn 48 obtained
from the sequence ti, tiyry -.., tn DY the substitution O for 2 and 2 for 0;

(%) Aitantoosynponyn Wil cotncide with Ao e,,..00-1,0.55.09nekn if the
real line will be translated at o distamce such that As,..,4-11.,..1 C0INCIdes
With dg,,...00-1,1,11¢ :

A perfect set F' is called guite symmetric if there exists a sequence
of quite symmetric systems Xy, Zy, ..., Zn, ... such that the segment
Ay patn 0F Zn containg the segments Aip,..tnt) te{0,1,2}, of Z,;; the
centers of Ay, 4,1, a0d Ay y,... a1 coincide and F = nﬂl Sy, where Sy =Ag 4.

2. TuEorEM 1. If F is a quite symmetric perfect set, then there exists
a perfect set P such that P+P = F. v

Proof. We denote the length of dug,.m bY 2a-
Let be 4; = [de, be}, te{0,1,2}
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