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Point transitive flows, algebras of functions
and the Bebutov system
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Introduction. In this paper we will be concerned with certain kinds
of dynamical systems and algebras of complex valued functions associ-
ated with them. By a dynamical system or flow we mean an action of the
additive group of real numbers T' as a transformation group on a topologi-
cal space X. More precisely, there is a continumous map =: I'x XX -
satisfying #(0, @) = @, and a(ty, w(ty, 2)) = w(h+1,8) (@ X, 4,1, T).

‘We write tz instead of w(?, #). If » ¢ X, the orbit of x is the set y(x).
= [te] — oo <t < co]. In the dynamical systems studied here, we suppose
that every orbit closure y(x) is compact.

As general references for dynamical systems, consult [11] and [14].

Now, let us explain the three objects mentioned in our title.

(1) The point transitive flows—those dynamical systems with compact
phase space which contain a dense orbit.

(2) The algebra % of bounded uniformly continuous complex valued
functions of a real variable and this subalgebras which are closed under
uniform convergence, complex conjugation and translation.

(3) The Bebutov dynamical system—the bounded uniformly con-
tinuous functions from the real to the complex numbers, provided with
the compact open topology and made into a dynamical system by transla-
tion of functions. ’

We are going to study these and the ways in which they are interre-
lated. The basic connection between (1) and (2) is that the point transitive
flows are precisely those dynamical systems which can be obtained as
maximal ideal spaces of the sub-algebras described in (2). This is studied
in detail in section I. The “shift operators” of a subalgebra A’ (the homo-
morphisms of A’ of norm one which commute with translation) are shown
to correspond to the endomorphisms of the dynamical system (P’, T) in

* The vesearch of the first named author was supported by contract SAR[DA-31-
124-ARO (D) 166.
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the maximal ideal space. These in turn correspond to a certain subsemi-
group of the enveloping. semigroup of (P, T) (theorem I.1). (The en-
veloping semigroup is a kind of_comp%ctification of the real line 7. T ig
regarded as a subset of the space pr , the enveloping semigroup is the
clogure of T in this space.) The maximal ideal space of % is the universal
point transitive flow (every such flow i3 a homomorphic image of it)
(theorem I.2). It is shown (theorem I.4) that all shift operators of sub-
algebras are restrictions of shift operators of %, and that the shift invariant
subalgebras are those whose maximal ideal spaces are isomorphic to
their own enveloping seémigroups (theorem IL.5).

In section II, the Bebutov system (B, T) is studied. By virtue of
theorems of Bebutov and Kakutani, (B, T') is “universal” in the sense
that a large class of compact metric flows may be embedded in it. Its
enveloping semigroup coincides (as a set) with the shift operators of ¥,
and iz shown to be isomorphic with the enveloping semigroup of the
universal point transitive flow. The maximal ideal space of a subalgebra B
“of 9 is embeddable in (B, T if and only if B is generated by the translates
of a single element (corollary IL.5). Moreover, two functions have iso-
morphic orbit closures in (B, T) if and only if they generate the same
algebra (corollary ITI.7).

The minimal functions are considered in section ITI. These are the
functions whose orbit closures in the Bebutov system are minimal sets.
A subalgebra B of U consists of minimal functions if and only if its maximal
ideal space is a minimal dynamical system (theorem IIL.4). Two such
“minimal” subalgebras which we study are the distal and weakly distal
funetions. o

In section IV, we consider the (Bohr) almost periodic functions.
We obtain a necessary and sufficient condition for the orbit closures
of two almost periodic functions to be isomorphic, in terms of the supports
of their Fourier transforms (theorem IV.2).

. Some of our results are similar to those obtained by other authors.
In [10], Ellis considers subalgebras of the continuous funetions on the
Stone-Cech compactification of a discrete group. Knapp, [13], studies
shift operators as well as minimal and distal functions; we show that
our definitions are equivalent to his. Some aspects of the Bebutov gystem
were studied in [3]. In order to make this paper self-contained, and also
since our viewpoint i3 somewhat different, there will be some duplication
with the above work here. We have tried to indicate each such occurence.

Much of what we do here is evidently capable of generalization to
transformation groups (X, T), where 7 is an arbitrary topological group.
‘We have restricted ourselves to the case of the real numbers, since we
wish to make use of the Bebutov-Kakutani theorem. Bxtensions of our
work depend upon generalizations of this theorem.
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I. The subalgebras of A and their maximal ideal spaces.
Let U be the algebra of all bounded uniformly continuous functions from
the real numbers 7' into the ecomplex numbers C. We make A & Banach
»-algebra by defining

Il = sup 7)) and o5 = FT0).

By a x, closed, invariant subalgebra %' of % we mean a subalgebra
which is closed in the norm topology, contains the complex conjugates
of each of its elements and is invariant under translation by elements
of T. That iy, if fe ', then fi = ¢f ¢ A where 1f(s) = fi(s) = f(s-1).

Let A’ be a x, closed, invariant subalgebra of %, and let P’ be the
maximal ideal space of W. P’ is constructed as follows. Let A™* be the
dual space of A’, and, for each ¢ e T, let pj ¢ A'* be defined by pi(f) = f(¢)
(fe ). Then P’ is the weak star closure of the set {pj| ¢ ¢ T}; P’ is known
to be compact ([15]). If ¢ € T, then ¢ induces a self homeomorphism of P,
which we again denote by ¢, defined by tu(f) = u(fi) (1 < P’, f € ). Since
the action of I' on A’ is continuous in both variables, the same is true
of the action of 7' on P’. Thus (P’, T) is a dynamical system. It is point
transitive, since by definition y(pg) = {tpj| ¢ e T} = {pi| t e T} is dense
in P’. We will call pg a distinguished point of P'. .
. For each fe 2, there corresponds a unique fe ¢(P’) such that f(¢)
= f(pl) = f(tpi); f is the Gelfand transform of f. The mapping f-f is an
isometric isomorphism of A’ onto C(P') ([15]).

Conversely, it (P’, T) is a point transitive dynamical system with P’
compact, and p; € P’ has a dense orbit, let A" = [f: T—=C| f(1) = F(ips),
for some F'e ((P')]. Then A’ iy a *, closed, invariant subalgebra of .
It is easy to see that ity maximal ideal space is homeomorphic with P’,
and, indeed, the action of 7' on P’ as defined above is identical with the
original action. Thus there is a one-to-one correspondence between x,
closed, invariant subalgebras 9’ of %, and point transitive flows (P’, T)
with P’ compact, and pje P’ a distinguished point with dense orbit.

If A is a %, closed, invariant subalgebra of %A, a shift operator is
& homomorphism &: A -»A' such that ||§| = 1, & = ¢£, for each te 7T,
and &(f*) = (&f)* for all feA’. The set of shift operators of A’ will be
denoted by S(U'); clearly S(U) is a semigroup under composition.

Closely related to the shift operators are the endomorphisms §(P’)
of the dynamical system (P’, T); that is, the continuous maps z: P’ P’
such that at = tm. Note that §(P’) is also a semigroup under composition,
and that each = e §(F’) is completely determined by its value at p;.

If £ ¢ 8(W), let H; denote the homomorphism of C(P’) defined by
Hef(pi) = £f (). Then ([6], p. 278), there is a unique m; ¢ §(P’) such that

&f(Y) = Hf(pi) = f(mepi). The map £->m; is one to one onto, and, since
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H f = 5} it follows from a routine computation that mg, = m,m,. r:l‘hus

8 &I’) a.m,i §(P') are a;nti-isomorphic; If mweb&(P'), we may regard it ag
itt operator as follows: wf(t) = f(api). .

’ Shiﬁ;ﬁl.(;’tl;ler approach to shift operators, essentially the one develgped

by Knapp in [13], is by means of certain nets in T. Let {fy} be a net in T

= limf(t,-+s) exists pointwise for each feA’, and such
such that g(s) 151]‘(1‘ F5)

imit function g is in A’'. Then the net {¢,} defines a map & A A’
Zi? ;ﬁhfslgzsl:r to see tl?at Ee S(A). Gonversely,’if EeS(A) We, show that’
there is a net {{,} in T such that f (¢, s)'+£f(s). For, letﬂm:e € :‘3(1J ), Whelef
is the maximal ideal space of W', satisfying £f(1) = f(mept). Pelt {tn} b,e
a net in T such thabt twpi—>meps. Then tnf(s) = f(tn--$) = f((ta-+5)pi)
= F(tapl 1) = &f(s).
—f(tgé:: );{1(25%3 {tfj}c(ili T admissible if it defines a shift operator & in
just described.
e 1’;122;2@;31;5;1 another semigroup which will concern us. Tf.liS is'the
enveloping semigroup of the dynamical system (P, T') (_[8}) which is deﬁne:i
as follows. Regard T as a group of maps from P’ 130 1tselfz and let E (P")
be the closure of T in P'F', (Then, if {£} is a et in B(P), &£ it m}d
only if &u(p’y—&(p’), for all p’ ¢ P’,) Since P is compa.c?;, so is E(f’ ),
and T acts on. B(P’) by (t€)(p') = t(¢(p")). Thus (E(P'), T) is a dyl’lan'u_c'qul
system, and since ¢ (= the identity map of P’) has a der_xse orbit, 1@ ,1§
point transitive. Moreover, it is not difficult to show thz.mt }f &, neB(P .),
then & € H(P') (where &n(p') = &(n(p’))), so that E(?”) ig indeed a semi-
group. We remark that although the elements o.f T define homeomor_phlsms
of P’ onto itself, the eléments of E(P’') are, in general, not continuous,
onto or one to one. Note also that & = t£, for £ ¢ B(P’), t ¢ T'; however,
E(P') is not in general commutative. .
Next, we show how &(P’) and S(%') are related to a certain sub-
migroup of E(P’'). ;
® %‘irstliy, let (P(’) =[p" eP'| p' = m(p;), some m e §(P’)], and then let

By(P') = [£ « B(P')| &pi e« Pi] = [§ € B{P')| &pi = w(ps), some me&(P)].

Now Hy(P') is a subsemigroup of E(P’). To show this, first note that, %f
@ e §(P'), and 5 ¢ B(P’), then s = no. Let &, ¢ Ty(P’) and let Tog y Ty € E(Pl)
such that mg(po) = épo and m,(ps) = npy. Then 7&p; = nme(ps) = me(npf)
= mem,(po). That is, nf e By(P’).

Since the elements of §(P') are determined by their values at the
point pg, we may define a map Ho(P’') onto &§(P’) by é->z;. The argument
in the preceding paragraph shows that mgm, = m,, 80 the map £-m;
is an antihomomorphism. -

We remark further that if m; = z,, then & agrees with » on P}, and
conversely. For, if m; =z, then £p,=np,. If p' <P}, then there is
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a 0 € §(P') for which 9(p;) = p’, and then &p' = E0(pf) = 60(éps) = 6(
= 10(po) = np’.
Now, if Py = P’, then ByP') = (P Thus, if
Py = P'—that is to say & =g,
Thus we have proved

THEOREM L1. Let A’ be a *, closed, invariant subalgebra of A, and
let P’ be the maximal ideql space of W'. Let P;, By(P’), 8 ') and &(P")
be defined as above. Then there is am antihomomorphism & >, of By(P’)
onto &(P’) and an antiisomorphism of §(P") onto 8(A'). Let o By(P') -8 ()
be the homomorphism obtained by the composition of these maps. Then, if
we identify notationally o(&) with & we may write

F(eph) = flowpi) = &£(r).

If Py =P, then o: B(P)~>8(') is an Lsomorphism.

Now, we want to consider a point transitive flow, which, in a sense,
“encompasses” all such flows. We say that a point transitive dynamical
system (P, T) with a distinguished point p, is a universal point transitive
system if, for any point transitive dynamical System (X, T), with dense
orbit (), there is a homomorphism (that is, a continuous map which
commutes with the action of T) n: (P » T)>(X, T') such that z(p,) = .

If guch a system exists, it ig unique up to isomorphism. For, suppose
that (P, T') and (@, 7') were both universal point transitive systems with
distinguished points p, and %, respectively. Then, let s: (P, T)>(Q,T)
and 6: (@, T)~(P, T) be homomorphisms such that %(Po) = ¢o and
6(2) = py. We see that =6 and 0= are the identity maps on @ and P,
respectively, so (P, 7) and (@, T') are isomorphic and the isomorphism
preserves the distinguished points. The next theorem proves the exigtence
of universal point transitive dynamical systems.

THEOREM I.2. Let P be the mawimal ideal space of A. Then (P, T)
ts the univarsal point tramsitive system with distingwished point p,.

Proof. It (X, 7) is point transitive and {tmy: t e T} is dense, let
W' =[feW| f(t) = I (ta,), some F e ¢ (X)]. We see that %’ is isometrically
isomorphic to ¢/(X). Since A’ C oA, the inclusion map induces an isometry
of 0(X) into C(P). This isometry induces a homomorphism s: (P, T)—
(X, I). Since p, and a, correspond to evaluation at t = 0, we see that
7(po) = @,. This concludes the proof. ‘

TapoREM L.3. P, == P; that 18, if q ¢ P then there is a m e §(P) such
that 7 (py) = q.

Proof. Let @ = closure of {tg: t e T}). Then (@, T) is point transitive
with dense orbit {tg: ¢ ¢ 7). From the definition of universal point transi-
tive dynamical system (P, T) there is a n: (P, T)-(Q y TYC (P, T) for
which #(p,) = ¢. The proof is completed.

Fundamenta Mathematicae, T, LX 9

1P3)

=y, §=17 on
and the map &—>m is one to one.
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i hat H(P) is antiisomorphic with
Referring to theorem I.1 we see & :
§(P). Thus E(P) is isomorphie with S(%) and each element &eH(P)
can be regarded as being in 8(A) as follows:

£f(2) = F(&po) = F(t€p0) -

The next theorem shows that it suffices always 13.0 .Work with §(2);
that is, the shift operators on subalgebras are restrictions of elements
of 8(2).

TamorEM I.4. Let A be *, closed, imvariamt in W, Let &'t A A be
a % homomorphism of norm 1 such that &1 = &' for each t € T. Then there
is a £eS(N) for which &f = EF for each feW'.

Proof. Let P’ be the maximal ideal gpace of A and let m: PP’
be the homomorphism such that (&f)(p) = f((p)) (fe A’ =_0(17’),p e P).
If g € O(P) = ¥, it is easy to see that g « image &' if and only if g is constant
on all sets of the form #=(p’) (p’ € P’). From this it follows that "2[_” = 5"(%[‘)
is a #, closed, invariant subalgebra of . Let P’ be the maximal 1d.ea1
space of A’’, with distinguished point py'. Then & induces a homomorphism
a's (P, T)~(P', T) for which #'(p¢’) =p'. Let »: (P, T)~(P", T) and
0: (P, T)—~(P', T) such that »(p,) = py and 0(p,) = p; (» and 0 are
onto). We have the diagram:

(P, 1) (P, T)
3 0
(P, T);‘,’ (P, 1)

We must show that there is a homomorphism =: (P, T)-(P, T') which
completes .the diagram. There is a p ¢ P for which 0(p) = p' = z'v(p,).
Choose = such that m(p,) =p. Then 6m(p,) = 0(p) = n'»(p,). Since all
maps are continuous, we have 0n = ='v, We define £f(¢) = f(nt;po.) for
feW. We wish to show that &’f = &f for fe . If f ¢ A’ then there is an
F ¢ O(P’) such that f(t) = F(tpo) and £'f(t) = F(x'tpy’). We observe that
since f(t) =F(tp) and f(t) = F(ips) = F(0tp,), that f(p) = F(6p) for
p € P. Thus we have .

5 (8) = F(ntpo) = F (Otpy) = F(w'vipy) = F(w'tvpe) = F(w'tpy’) = &'f(1) -
‘This ‘completes the proof. (See also [10], lemma 2.)
We say that an algebra U’ is shift invariant if L' C U/, for-all £ ¢ 8 ().
TEEOREM L1.5. Leét A" be a closed, x, invariant subalgebra of A, and

let P’ be the mavimal ideal space of W, with distinguished point ps. Then
the following are equivalent:

(1) A’ iz shift imvariant.
(2) Po =P ;
(3) (P, 1) is isomorphic with (E(P’), 7).
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Proof. (1) <= (2). Let »: (P, T)->(P', T) with v(po) = pj, where »
iginduced by the inclusion %’ C . Invariance of U’ under all shift operators
is equivalent to the assertion that, if # e §(P), then there is a = ¢ &(P")
such that the following diagram commutes:

& —> (P, T)
(P, 1) = (P, )

Now, suppose that such a n' always exists. Let P eP andlet pe P
such that v(p) = p’. Choose = ¢ §(P) such that 7(py) = p, and choose =’
to complete the diagram. Then p’ = »(p) = PR (Py) = 7'y (py) = '(p}).

Conversely, suppose Pj = P’, and let x e 8(F). Let p' = vx(p,), and
choose #’ € §(P) such that »'(pf) = p’. Then v (Po) = p' = 7' (pg) = 7' (p,),
and therefore »m = @’». The proof is completed.

(3) = (2). It &e E(P'), let ve e 8(E(P')) be defined by wi(n) = né
(97 € E’(P’)). Then, if ¢ is the identity of B (P'); we(e) = &, and (2) is satisfied,
since (P, T) and (E(P’), T) are isomorphie.

(2) = (3). Consider the homomorphism o: (B(P'), T)>(P', T) de-
fined by (&) = épo; o is continuous and onto. Suppose o(&) = o(n). Then
7t5(po). = m,(po). Sinee P§ = P’, theorem L1 tells us & = 7, and ¢ is one-one.

TreoREM 1.6. Let A’ and P’ be as in theorem 1.5, and let A" be the
smallest shift invariant dalgebra containing N'. Then the mawimal ideal
space P of W' is isomorphic with B (P').

Proof. The idea of the proof is to construct homomorphisms
v: (P, T)—~(B(P"), T) and, ¢: (B(P"), T)~>(P', T) for which y(py) = e
and ¢(e) = pg. If we let B be the subalgebra of U obtained by*festricting
continuous functions on Z(P’) to y(e), then we have A’ D BOUA. To
complete the proof we need only observe that B is a *, closed, shift in-
variant algebra. From the hypothesis it follows that % = 8 and thus
(P", T) and (E (P, T) are isomorphic. We now fill in the details. The '
homomorphism ¢ is given by ¢(&) = £(pi) for ¢ e E(P'). The homo-
morphism ¢ iy defined as follows: Since A’ C N, there is an onto homo-
morphism w: (P, I') - (P', T). Let 6: (E(P”),T)»(E(P’),T) be the
induced semi-group homomorphism defined by 0(&")m(p”) = m(E"p"),
§" e B(P"), p" « P ([8]). Since A" is #, closed, and shift invariant, there
is an isomorphism i: (P, T)~>(B(P"), T). We let p = 0 o A and observe
that v (p') = e. It is clear that B, the algebra of restrictions of continuous
functions to y(e), is  and closed. To see that it is ghift invariant we remark
that the maps n—>&n (£ fixed in H(P')) are endomorphisms (B(P), T)
and we apply theorem I.5. Compare [10] proposition 7. :

II. The Bebutov system. Until now, we have been considering
the bounded uniformly continuous functions f: T'-C provided with the
: g*
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topology of uniform econvergence. It is also convenient to provide this
et with the compact open topology (or, what is the same thing, the
topology of uniform convergence On compact sets). This topology is
induced by the metric .

= min { su H—g ()|, 1/T} .
olfs 9) = sup | {sup 17() g, 1/}

Tf we define, as above, #f(s) = f(s--1), then this action of T' defines
a dynamical system, ealled the Bebutov dynamical system, and denoted
by (B, T). . o _

We write y(f) for the orbit of f in B, i.e., the set [fi| teT]. Since
every fe B is uniformly continuous, it follows that every orbit closure
»(f) is compact.

The importance of the Bebutov system is a consequence of the
following remarkable theorem of Kalutani ([12]) which is a generalization

and simplification of a theorem of Bebutov ([14], p. 33): every dynamical '

system (X, T), where the phase space X is compact metric and whose
set of stationary points is either empty or homeomorphic to a subset
of T, may be isomorphically embedded in the Bebutov system (B, 7).
We shall refer to this theorem as the Bebutov-Kakutani theorem.
Kakutani actually used the space O of all continuous functions
on T with the above metric. This space is complete whereas B is not.
The Kakutani-Bebutov theorem however applies to B for the following
reason: A function f in ¢ has compact orbit closure if and only if it is
bounded and uniformly continuous ([11], p. 10). In other words if X is
" compact, then any homomorphic image of it in (€, T) is contained in (B, T).

Let us reiterate that % and B consist of the same collection of func-
tions—the bounded uniformly continuous functions from 7' to C, and
that the action of T by translation gives rise to a dynamical system in
both cases. Each of 9 and B has advantages and disadvantages. U is
more useful when algebraic questions are considered. In the dynamical
system (2, T), T acts as a group of isometries, and orbit closures are
not, in general, compact. Thus (%, T) is of limited interest as a dynamical
system. On the other hand, all orbit closures in (B, T) are compact, but,
as we shall see in Section III, it is badly behaved algebraically.

Next, we want to relate the enveloping semigroup B (B) of (B, TI)
with the shift operators §(U) defined in the preceding section. Now, the
space B is obviously not compact; indeed, it contains a subspace homeo-
morphic with the real line (namely, the constant real valued functions.)
However, every orbit closure is compact, and thig is all that is needed
for the enveloping semigroup to be defined. For, we may regard T a8

a subset of fll_ ¥(f), which is compact. Then define E(B) to be the closure

im© Point transitive flows, algebras of functions, Bebutov system 125

of T'in fltz;y(f ). B(B) 1, as before, a compaet semigroup. We show that

the enveloping semigroup H(B) of (B, T) coincides wit i
operators S(A). For, let & e S(A). Then, as we have seeI]:, illllzriegsoins};l;?
missible net {»} in I which determines £ That is, for every feB and
seT, taf(8) = f(tuts) >&f(s). Now, since the family {t,f} is equitni-
formly continuous, and uniformly bounded, this convergence is actually
uniiorml on compact sets. Covnersely, if ty—>&eB(B), then tof—>éf
uniformly on compact sets. Therefore, certainl

seT, and & is a shift operator. , 27 Tt 8> 4f(e) for each

Thus 8(N) and E(B) are identical as sets. However, we find it con-
venient to continue to distinguish between them conceptually. An element £
of §(A) 18 to be regarded as a map of U to itself, and with respect to the
norm toplogy of A, & is continuous. If we regard & as in B (B), it is not
in general continuous. To compensate somewhat for this, E(B) h’as a com-
pact topology, the topology of pointwise convergence. (This is the topology
for shift operators defined in [13].)

However, if £, & in B(B), it is not in general true that &,f->£f in 9.
F_Ofl let fe B be any function which is not Bohr almost periodie, so
(»(f), T) is not equicontinuous. (These notions are defined in Section IVv.)
Then there is a sequence fu ¢ y(f) such that o(f, fa) >0, but o(tafa, taf)
> &> 0, for some sequence t, e T. Since f, e y(f), thereis a & ¢ B(B)
such that &uf == fu. By choosing a subnet if necessary suppose &, & ¢ B (B);
t.hen, since &nf = fa—>f, & = f. However, &,f does not approach & in oA,
(ie. uniformly) since, as we have observed, o(tafn, tnf) > & > 0.

Now, let (P,T) denote the.universal point transitive dynamical
system with distinguished point p,. We show that its enveloping semi-
group H(P) is isomorphic with B (B). We have just observed that B (B)
= §(A). Moreover, from section I we know, since P, = P, that each
£ €« B(P) determines a unique element of ¥ (B), which we still call &, such

~

that &f(t) = f(&ps), and that this correspondence is an (algebraic) iso-
morphism.

' ‘It is only necessary to show that this mapping from F(P) to E(B)
15 bicontinuous. Since H(P) and E(B) are compact, and the mapping
1 one-to-one onto, it iz sufficient to show that the inverse mapping
from'E(B) to B(P) ig continuous. Suppose, then, that & ->& in B(B).
Oon‘m.dering &n and & as in B(P), we must ghow that &,p->£p, for each
peP. For all fe U = B we have £uf—&f, and therefore f(tknpo) —F(tp,)-
If peP, there is a me&(P) for which m(p,) =p, and since &p =
Eam(py) = m(€ny)y Ep = Em(py) = w(£p,), and we must show that wénp,—>
jnfpo. This is equivalent to showing that §(mésp,)->§(mép,), for each
g O(P). It we let §om = 7, our previous argument applies, and the asser-
tion follows. .
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The further study of the Bebutov system is facilitated by the notion
of a function coming from a flow. Let (X, T) be a dynamical System,
let » € X, and let f: T—C be defined by restricting I to the orbit of »;
that is, f(1) = F(fw). It is easy to see that f e U; we say that f comes from
(X, T) at @ This notion was defined and studied extensively in [3].

We denote by U, the set of fe W which come from (X, T) at 2. U, is
a %, closed, invariant subalgebra of 2. For the most part, we only con-
sider %, when y(#) = X; in this case U is isomorphic with C{X). In
particular, if g e B, %, will mean the set of f ¢ % which come from (y(g), T)
at g. -

gLet (P, T) be the universal point transitive flow with distinguished

point p,, and let feA. Then, as we have seen, the Gelfand transform
f e O(P) satisfies f(ip,) = f(t). That is, Ay, = A. :

Levma IL1. Let (X, T), (¥, T) be point transitive flows with » e X,
y e Y having dense orbits. Then W, C Ay if and only if there is a homo-
morphism m: (X, T)>(Y, T) such that n(x) =y.

Proof. Suppose that such a homomorphism exists. ILet fey,
80 f(t) = ¥ (ty) for some F ¢ O(¥). Let G = F°x ¢ C{X). Then fty = G (i),
and fes. ,

If A C Wy, let ¢ denote the inclusion map. Then the maximal ideal
spaces of Ay and Ay are, respectively, X and ¥, and the homomorphism x
induced by i maps z to y.

The next lemma is an immediate consequence of the Stone-Weier-
strass theorem.

LrMMA IL2. Let (X, T) be a point transitive flow, veX a point
with dense orbit, and B a *, closed invariant subalgebra of . Suppose
that B = [F e C(X)| F(ix) = f(t), some feB]=[} f € B] separates points
of X. Then B =U,.

If K C Y, by A(K) we mean the *, closed, invariant, algebra generated
by K. If f e, we write A(f) instead of A

If (X, T) is a dynamical system, and I an arbitrary set, then (X7, T
is the dynamical system defined by the coordinatewise action of Tjie., if
Z = (@), then the jth coordinate of % is twy (j € I). This is in conformity
with our definition of the dynamical system (B(X), T), where B(X) is
regarded as a subspace of [L V(@)

ze€

TreorEM I1.3. Let K = {f,| a eI} be a family of functions in %UA.
Let f* be the point of BY whose a-th coordinate is f., and let X = »(f*) C BL.
Then Wp = A(K). :

. 1?1'oof. Clearly, for each aeI, f, € Up, and since Wy is a *, cloged,
invariant algebra % (f.) C Ay, and therefore W(K) C Ay
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Now, let &, 7eH(B) (which we identify with B (BY) such that
£f* #nf* For ael, veTl, let H,, e C(B') be defined by He:((g5)pe1)
= (742)(0) = gu(v). Then H,.(if*) = zf(t). Now tfa € U(fo) CUA(K), so H,,
(or strictly speaking, its restriction to X) is in 9(K). N ow, if &f* 5= nf*,
there is an ael and & TeT such that &f.(z) # nf,(r); that is, Ho(&f*)
# Haq(nf*). Therefore, A(K) separates points of X, and by lemma II.2,
W(K) = Wps. '

From this theorem, we may deduce a number of corollaries rather
easily.

CoroLLARY IT.4. Let f e and lot X = y(f). Then %A, = A(f).

__Since U is isomorphic with ¢ (;(_f)), the maximal ideal space of 90y
is y(f). Using this fact, and the corollary just proved, we can characterize
the maximal ideal spaces of those algebras which are generated by a single
element of .

CororLAwY IL5. Let B be & *, closed, invariant algebra, and let X

“be the mazimal ideal space of B. Then (X, T) is embeddable in the Bebutov

system (B, T) if and only if B = N(f), for some feB.
CorOLLARY IL6. Let (X, T) be point transitive, let @ ¢ X such that

y(#) = X, and let f ¢ . Then f e Wy if and only if there is a homomorphism

m: (X, T)>((7), T) with =(z) = f.

Proof. Such a homomorphism exists if and only if 9(f) C A, by
lemma II.1 and corollary IL.4. But %A, is a *, invariant, closed algebra,
80 this is equivalent to fe Uj. :

Of course, it is possible for two distinet functions f and g to have
isomorphie orbit closure in (B, T'). Our next result, which follows imme-
diately from corollaries IT.4 and IL.6 tells us when this occurs.

CorOLLARY IL.7. Let f,ge¥W, X =9(f), ¥ =y(g). Then there is
a homomorphism =: (X, T)~(¥Y, T) with =(f) = g if and only if g « A(S).
Hence (X, T') and (¥, T) are isomorphic, with f corresponding to g, if and
only if A(f) = Ag).

CoroLLARY IL.8. Let fe, and lot Us(f) demote the smallest shift
invariant, x, closed algebra containing f. Then the mawimal ideal space

of As(f) is B(y(f)).

Proof. The maximal ideal space of A(f) = Uy is »(f). Now apply
theorem I.6.

CororrAry IL.9. Let f, g « . Then Us(f) = Ws(g) if and only if B (y(f))
is isomorphic with H(y(g)).

The final result in this section says that, under certain conditions,
a countably generated subalgebra of ¥ is generated by a single element.
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TEroREM I1.10. Let K be o finite or countable subset of B, and suppose

that theve is an h in K such that y(h) has no stationary points. Then there
is a g e W such that (K) = A(g).

Proof. By corollary IL5, it is sufficient to show that the maximal
ideal space of A(K) is embeddable in the Bebutov system. Let
K = {f,fa ..}, and let f*=(f;) eB By theorem IL3, W(K) = UAp,
so the maximal ideal space of U(K) is »(f*) C B?, which is metrizable.
Mdreover, the set of stationary points of y(f*) is empty. Therefore y (")
is embeddable in (B, T'), and the proof is completed.

III. Minimal functions and their subalgebras. Let (X, T)
be a dynamical system. Recall that a minimal set in (X, T') is a non-empty,
closed invariant set M which has no proper subset with the same prop-
erties ([11], 2.12). Equivalently, a non-empty set M is minimal if
y(@) = M, for all z <« M. (Hence (M, T) is certainly point transitive.)
Any compact invariant subset of X contains a minimal set; this is proved
by a simple application of Zorn’s lemma.

If we X, (@) is & minimal set if and only if o is an almost periodic
point—that is, if U is a neighborhood of #, the set A = [te T| tr e U]
is a relatively dense subset of T ([11], 4.05 and 4.07).

In this section, we consider the subset M of U consisting of thoge
functions f whose orbit closures v(f) are minimal subsets of the Bebutov
system (B, T).

The firgt theorem in thls section will characterize I in several ways.

In order to state this theorem, it is necessary to discuss the enveloping
semigroup further.

Let (X,T) be any dynamical system, with every y(x) compact.
A left ideal in E = E(X) is a subset I such that BEICI. A left ideal I
is called ménimal it it contains no proper non-empty subset which is also
a left ideal. Ellis hag shown ([8], lemma 1) that the minimal left ideals
in E coincide with the minimal sets of the dynamical gystem (B, T).
Since B is compact, this assures us that there is at least one minimal
left ideal in ¥, and that the minimal left ideals are closed. Tt can also be
shown that any minimal left ideal I contains idempotents, and that,
if # is an almost periodic point of X, there is at least one 1demp01;ent
# eI such that wzw = 2 ([8], lemma 2 and theorem 1),

Now we can state and prove our theorem concerning the equivalent
characterizations of the minimal functions.

TaeorEM TIL1. Let f e U. Then the following are equivalent:

(1) feM.

(2) If & a shift operator, then there is a shift operator n such that n&f = f.
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(8) f comes from some minimal set (X, T).

(4) If I is a minimal left ideal in B(B), then feIW =
g eA].

(8) If I is a minimal left ideal in B (B), and J is the set of idempotents
in I, then fedJU.

((2) is the definition of minimal function in [13].)

(&g &<,

Proof If (X, T) is any dynamical system and ¢ e X, the orbit
closure y(e) = [Ex| & ¢ E(X)]. The equivalence of (1) and (2) follows
from this ‘Mld the fact, observed earlier, that the shift operators of 9
are the elements of F (B).

The equivalence of (1) with (4) and (5) is proved in [8] (theorem 1).

If f< M, then f comes from the minimal set (y(f), 7). If f comes
from a minimal set (X, T), then by lemma II.1 and corollary I1.4,
7(f), T) is a homomorphic image of (X, T) and is therefore a minimal

set. This shows that (1) and (3) are equivalent. (Another proof is in [37,
theorem 3.7.)

CororrARY IIL.2. If fe 9, then A(f) C M.

Proof. If g ¢A(f), then g eA;, by ecorollary IL.4. The result now
follows from theorem IIL.1, (3).

THEOREM IIL.3. M is shift invariant, * closed, and uniformly closed.
Proof. The shift invariance of M is a consequence of (2) in theo-
rem IIT.1. It is immediate that Mt is * closed. Now, let f, be a sequence
of minimal functions converging uniformly to f. Let ¢ > 0, = > 0 and let »
be chosen so that ||f— fu|| < /3. Let 4 be a relatively dense subset of T
such that |fa(s)— #fa(s)] < ¢/3, for ¢ € A and |s| < v. Then for such ¢ and s,

[FO—=1 ()] = [f(&)—=Fls+0)] < [F(8)—Ful8)| + |fals)— falt+8)]| +

+ falt+8)—f(t+8) < e.
The proof is completed. ‘

The set M is not an algebra. In [3], Hahn and L. Auslander show,
by an example, that the sum of two minimal functions need not be
a minimal function. We show this later, by a different method.

However, Mt does contain some interesing subalgebras. By a minimal
algebra, we shall mean a x, closed, invariant algebra B such that 8 C M.
Now, theorem IILL tells us that M =JUA = |J [w| u eJ], where J
ig the set of idempotents in any minimal left ideal I of E(B). Since all
shift operators are continuous in the uniform topology, and commute
with translations, 490 is a minimal algebra. Thus 9t is a union of minimal
algebras. Our next result establishes the conmnection between minimal
algebras and minimal sets.
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TaEorEM IIL4. Let B be a x, closed, invariant subalgebra of A. Then B
is a minimal algebra if and only if there is a minimal set (X, T) and an ¢ ¢ X
such that B = A,. Moreover, B determines (X, T) wp to isomorphism.

Proof. If (X, T) is minimal, and @ <X, then Ay is *, closed, and
invariant, and, by theorem ITT.1 (3), U, C M.

Now, suppose that B is a minimal algebra. Let X denote the maxima]
ideal space of B. We know that (X, T) is point transitive, and that
B = Ay, for some zeX with y{#) = X. The minimality of (X, T) is
a consequence of the following lemma.

Levua IIL5. Let (X, T) be point iransitive and not minimal. Let
qe X with y(q) = X. Then there is an f: T ->C which comes from g such
that f is mot a minimal function.

Proof. Since (X, T) is not minimal, ¢ is not an almost periodic
point. Therefore, there is a neighborhood V of ¢, and a sequence #, —>--co
such that tg¢ ¥V for t,—n <t <i,+n. Let U be a neighborhood of ¢
such that UCV, and let Fe O(X) such that 0 < F(r) <1, F(r) =0
for re U and F(r) =1, for »¢ V. Let f: T—C be defined by f(t) = F(ig).
Then, if g i3 the metric of the Bebutov system,

olfy ) = sup If®)—F@+0)] = 1f(0)—F()] ,

which equals 1 if t,—n < 7 < t,+n. But then the set 4 = [v ¢ T'| o(f, 7f)
< 1] is not relatively dense and f is not an almost periodic point of (B, T').

This completes the proof of the lemma, and it follows that (X, T)
is minimal. The uniqueness of (X, T') follows from the facts that an algebra
determines its maximal ideal space uniquely, and may be identified with
the continuous fungtions on that space.

CorOLLARY IIL.6. If (X, T) s point transitive and not minimal,
then (X, T') has a meirizable homomorphic image with the same property.

A wundversal minimal set for T is a minimal set (M, T') such that
every minimal set (X, T') is a homomorphic image of (M, 7). It is a con-
sequence of the work of Ellis [9] and Chu [5] that a universal minimal
set exists and is unique up to isomorphism.

Now, let (P, T) be the universal point transitive flow, with distin-
guished point p,, and let (X, T) be any minimal set. Then, since (X, T)

* iy point transitive, there is a homomorphism = of (P, T) onto (X, T)
(and, indeed, = may be chosen so that p, is mapped to any preassigned
point of X). .

Let M be any minimal subset of P, and let =’ be the restriction of w
to M. Then n’ maps M onto X (since a homomorphism of a compact
invariant set into a minimal set is always onto). That is, (X, 7T) is a homo-
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morphic image of (M, T), and (M, T) is a universal minimal set. This
argument also shows that all the minimal subsets of P are isomorphic.

* Now, let M be a minimal set in (P, T), let m ¢ M » let I be a minimal
left ideal in E(P), and let u be the (unique) idempotent in I such that
um = m, [8]. Suppose that fe A comes from M at m. Then there is an
F e 0(M) such that f(t) = F(tm). Let {s,} be a net in 7 such that sp->
> ¢ B(B) = B(P). Since suf(t) = f(t+sx) = F(tsam), suf(t) >uf(t), and
F(tspm)~F (tum) = F (tm) = f(8), it follows that uf = f. That is, if fe
comes from M at m, then feu. Conversely, if feull, let m’ = up, e M.
Since um = m, there ig an automorphism ¢ of (M, T) such that g(m) = m'
([2], theorem 4). Let I = f|M, and let G = Fp ¢ C(M). Then

G(tm) = F (p(tm)) = F(tm') = f(tm') = F(tup,) = uf(t) = (1)

since f e . That is, feWp.
Thus we have proved:

TrmorEM IIL.7. Let M be a minimal subset of (P, T). Then M is
a universal minimal set. If m e M, and I is a minimal left ideal in E(P),
then Wp, = wl, where u is the idempotent in I such that um = m. Therefore,
the mawimal ideal space of the minimal algebra u is the universal minimal set.

Now we consider two related minimal algebras. In order to define
these, we need the notion of a proximal pair. of points.

Let (X, T') be a dynamical system. The points # and y are said to
be prowimal if there is a 2 ¢ X and a nebt {t,} in T such that t,z->z and
by —2. If » and y are not proximal, they are called distal. A point x ¢ X
is said to be a distal point, if, for every y ¢ X with y # , « and y are distal.
The dynamical system (X, T) is distal if every ¢ X is a distal point.

If # is a distal point of X, then » is an almost periodic point ([11,
lemma 2). It follows that if (X, T) is distal, then (X, T) is pointwise
almost periodic (every orbit closure is minimal.).

A function f e U is said to be weakly distal if f comes from a distal
point of some dynamical system (X, T), and is said to be distal if f comes
from a point of some distal dynamical system. Let D and W denote the
distal and weakly distal functions. Obviously D C W; we shall see later
that the inclusion ix proper. From the remarks in the preceding paragraph,
a weakly distal function is minimal.

TugoreM ILL.8. Let feN. Then the following are equivalent.

(1) few.

(2) f is a distal point of (y(f), T).

(3) uf = f, for oll idempotent shift operators w.

Proof. (1) = (3). Let (X, 7) be minimal, let z, ¢ X be a distal
point, and let F e ((X) such that F(tn,) = f(t). Let v: (P, T)>(X, T)

)
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be a homomorphism such that () = @,. Let .G ='F°y: € O (P). Then
@(tp) — P(p(p) = F(tm) = (1), so & =f. Now, it w is an_idempotent
in E(P), up, is proximal to p,, and (up,) is proximal to y(po) = a,, so
wlupy) = 7. Then uf(t) = F(tup) = G(iupy) = F (tp(up) — F (tay) = f(1).

(3) = (2). Let I be a minimal left ideal in E(B), and let % be an

idempotent in I. Then f = uf ¢ I C M. Now, if g € y( f) is proximal to f,
then g = uf for some idempotent » in H(B) ([1& _‘tlworem 4). Since uf = f,
for all idempotents u, f is a distal point of (y(f), T).

(2) = (1). f comes from itself in (y(f), T).

TerorREM II1.9. Let feA. Then the following are equivalent.

(1) feD.

@) (v(f), T) is a distal minimal set.

(3) If &, my, 1€ S(A) such that &nf = Enofy then nuf = nuf.

(4) If u,&e8(N) and w s idempotent, then uéf = Ef.

(Condition (3) is Knapp’s definition of distal function ([13]) and con-
dition (4) is similar to his theorem 1.)

Proof. (1) = (2). Let (X, T) be distal minimal, and let f come
from # ¢ X. Then (y(f), T) is a homomorphic image of (X, T), and is
therefore distal and minimal. (This follows from the fact that a flow
(Y, T) is distal if and only if the product flow (¥ xY, T) is pointwise
almost periodic.) Alternately, it can easily be shown that, for every
Ee S(A) = BE(B), &f e D C W, and then (2) of the preceding theorem may
be applied.

(2) = (1). f comes from (y(f), 7).

(2) = (4). feD, & « DC W. By (3) of the preceding theorem, uéf = &f.

(4) = (2). By (3) of the preceding theorem &f ¢ W, for all &< S (A)
= B(B). Then &f is a distal point of (y (&f), T) = (y(f), T); that is, (y(f), T)
is distal. .

(2) = (3). In any dynamical system (X, T), # and y are proximal
if and only if &z = £y for some £ € B(X), ([8]). Now, énf = &n,f implies
mf and n,f are proximal and therefore »,f = #,f.

(3) = (2). Let g,k e y(f), and suppose that they are proximal. There
exigh 7, and 7, e S(A) such that n,f =g and n,f = h. Since g and b are
proximal, there is a &e §() for which &nyf = &g = &b = &nuf. By (3),
g = mf = naf = h. This proves that (y(f), T) is distal.

The two theorems just proved tell us that W and D are *, closed,
invariant subalgebras of 9N, and that D iz also shift invariant. By (3)
of theorem IIL.8, we may write W = (M) [4W|% an idempotent in S(A)].
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Also, since y(f) =[&f] £<8(W], we can say that feD if and only if
& e W for all & e S(NA). :

We can use theorem IL.9 to show that D is a proper subset of W.
Let (X, T) be & non-distal minimal set, where X is metrizable and con-
taing & distal point @, ([11], 12.56). By the Bebutov-Kakutani theorem,

there is an f € A such that ('y (), T) is isomorphic with (X, T') and f corre-
sponds to &, under the isomorphism. Then fe W. However, f¢ D, for, if
it were, (y(f), T) (and therefore (X, T)) would be distal.

Let W and D be the maximal ideal spaces of W and D respectively.
Since W and D are subalgebras of M, (W, 7) and (D, T) are minimal
sets. Let w, e W be the image of 0 ¢ T under the natural maps; i.e. wy(f)
= f(wo) = f(O).A Now, singe J e W implies uf = f for all idempotents in B(B), it
follows that Jluwe) = flwp), for all fe W, and all idempotents » in B (W).
Since [f| fe W] = O(W), we have ww, = w,, and wy 18 a distal point.
Similarly, if @, <D is the image of 0, and if & = &my e D, from uéf = £f,
forallf e D, we obtain uéx, = £x,, or uzx = =z, for allw ¢ D and idempotents u
in B(D). That is, every point of D is distal, so (D, T) is distal. If W’ C W
and D’ C D, then the same argument shows that the maximal ideal spaces
(W', T) and (D', T) have the properties, respectively, of possessing
a distal point, and being distal. Finally, if (W’", T') is a minimal set with
distal point wg’ and W" is the algebra of functions coming from wj, then
theorem IIL.8 tells us W C W, and thus there is a homomorphism from
(W, T) onto (W",T) taking w, to wy. Similarly, any distal minimal
set s a homomorphic image of (D, T). This proves most of

TarorEM ITL10 (1) (W, T) is o minimal set with a distal point w,,
which is universal in the following sense: any minimal set containing a distal
point is a homomorphic image of (W, T) and the homomorphism cam be
chosen so that w, is mapped into any distal point. These properties determine
(W, T) up to isomorphism.

(2) (D, T') is the universal distal minimal set. That is, (D, T) is distal,

‘and any distal minimal set is a homomorphic image of (D, T). These prop-

erties determine (D, T) up to isomorphism.

Proof. It is only necessary to prove the uniqueness of (D, T). This
is known ([8], theorem 4.6), but we give another proof, using the algebra D.
We show that if £ ¢ §(20), then & maps D onto itself. This will imply that H,
maps O(D) onto itself, and it follows easily that = is one to one. Thus
(D, T) is coalescent (every endomorphism iy an automorphism), and is
therefore unique up to isomorphism. Now &DC D; to prove &D = D,
we regard £ as an element of #(B). Let F = [né| n e B(B)]. Then F is
closed in B(B) and F2 C F. Thus F contains an idempotent ([7], lemmsa 1).
Let 5 e B(B) such that v == »£ is an idempotent. Let fe D. Then & énf
= funf = Enf (since unf = yf, by theorem ITL.9 (4)). Then by theorem ITI.9
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(3), &nf=f. That ig, if feD and g = nf, &g = f. The proof iy com-
pleted. . .
Now D is a proper subset of W, so there is & homomorphism of (W, T)
onto (D, T) which is not one-one. Since (D, T) is coalescent, it follows
easily that (D, T) and (W, T) are not isomorphie.

We do not know whether (W, T) is coalescent. It is known that
there are minimal sets which contain distal point and are not coalescent, [2].

TamorEM II111. Let B be a *, closed, shift invariant subalgebra
of A such that BC M. Then B Co.

Proof. Let X be the maximal ideal space of B. It is sufficient to
show that (X, T) is distal. By theorem L5 (3), (X, T) is isomorphic with
(B(X), T) and, since B cm, (B(X), T) is minimal. It follows easily from
minimality that if &e E(X), there is an % e B(X) such that né =e, the
identity of E(X). Now, if #,y ¢ X are proximal, there is a & ¢ E(X) such
that £z = &y. Then, if e B(X) such that nf=¢, 2= néx = nky = y.
That is, (X, T} is distal.

COROLLARY IIL.12. Let fe M such that Ws(f) CIM. Then feD.

We conclude this section by showing, as promised earlier, that the
sam of two minimal functions need not be minimal. For, suppose f4 g ¢ M
whenever f and g are in M. Now, the square of a minimal function is
always minimal, so, if f,ge M, then fg= Jg((f—l— g)—f2— g?‘) e M. Since
theorem ITI.3 tells us that I is *, closed, and shift invariant, this would
say that Ot is a *, closed, shift invariant algebra. In particular As(f) C M,
whenever fe¢t. But this contradiets corollary IIL.12, since there are
minimal set§ which are not distal ([11], 12.56), and therefore (by the
Bebutov-Kakutani theorem and theorem IIT.10) minimal functions
which are not distal.

1V. Equicontinuos flows and almost periodic functions.

In section IT we gave a criterion for (v (f), T) and (y(¢), T) to be isomorphic,
if f, g € B. In this section we show that if f and g are almost periodie
functions, this question can be answerd in terms of their Fourier transforms.
The proof uses standard methods of harmonie analysis applied to equi-
continuous flows.

The dynamical system (X, T) is said to be equicontinuous if T,
regarded as a family of maps of X to X, forms an equicontinuous family.
That is, if U denotes the uniformity of X, and a U, then there is
a d ¢ W such that (x,y) s implies (tz, ty) € a, for all te T. An equicon-
tinuous flow is obviously distal; the converse is not true, even if the
flow is minimal ([4], chapter IV).

Let us summarize, as theorem IV.1l some known result on equicon-
tinuous flows.
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THEOR],MVI, I_V‘l' @ T h.e dynamical system (X, T) is equicontinuous
if and only if it is almost periodic; that is, for every o U, there is a relatively
dense A C T such that (v,tz) e a, for all we X, and te A,

(2) ’_I’h.a Sflow (X, -T) is equicontinuous and minimal if and only if it
s a solenmdal_ topological group. That is, X can be gwen the structure of
a compact abelian group, and there is a continuous homomorphism a: T =X

such that a(T) = X. Any x ¢ X may be chosen as the tdentity, and then the
group structure is unique.

Proof. [11], 4.38 and 4.44.

Note that (1) tells us that every e X is an almost periodic point
and therefore X is o union of minimal sets. (2) reduces the study of equij
continuous minimal sets to solenoidal groups. '

Now, let feB. By theorem IV.1, (5(f), T) is equicontinuous if and
only if, for any &> 0, there iy a relatively dense 4 C T such that
olisf, sf) <&, for all ted, and seT. This is equivalent to [f(t48)—
—f(s)l < e forall{e 4 and s ¢ T. This is the definition of a (Bohr) almost
periodic fumction, [3].

The almost periodic functions may also be defined as those f-whose
orbit closure in (U,T) is compact, [3]. (Recall, here we mean compact
in the uniform topology.) The equivalence of these two definitions may
be proved using theorem IV.L (1). From this it also follows that, if f is
glmgst periodic, the closure of y(f) in % is equal to the closure of »{f)
in B.

~ Using this latter characterization, it is easy to show that the almost

‘periodic functions form a *, closed invariant subalgebra B of A. Since, for

fe®B, (y(f), T) is an equicontinuouns minimal set, B is a minimal algebra.

Let § denote the maximal ideal space of B. Then (8, T) is a minimal
set;. indeed, Chu ([5], lemma 9) has shown that (B, T) is the wuniversal
equicontinuous minimal set (that is, (8, T) is equicontinuous, and every
equicontinwous minimal set iy a homomorphic image of it). B is called
the Bokr compactification of T; its delining property is that every almost
periodic funetion f may be extended to fe O (B). As a general reference
consult [15].

Now we recall some elementary facts concerning the character groups
of a solenoidal group. Let Ty denote the real numbers with the discrete
topology. A compact abelian group G-is a solenoid if and only if its character
group @* iy isomorphic with a subgroup I' of T. (In particular, g* is
1somorphic. with Z7y.) If I' is a subgroup of T4, and @& = I'*, the dense
one parameter subgroup given by the homomorphism a: 7 —@, is obtained
a8 the dual map of the injection o*: I'>T, ([11], 4.54).

Let f be an almostTperiodic function, and let f be its extension to 8,
80 f(t) = f(0(1)) (where 0: T is a continuous homomorphism with
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G(T) = B.) For seTq, ko 0(B) is defined by At) = ¢ (te T). (Thus
Js € p*.) The Fourier transform f of f is defined by

7o) = [ Gsy o) (@),
f

where dz is normalized Haar measure on . We may also write

T
ﬁ@==mng%:£fuw*mm-

I'—00

Let - - ‘
car(f) = [s  Ta| f(s) 0],
and let T’(?) be the subgroup of Ty generated by ca.l'(ﬁ. The purpose of
this section is to prove the following theorem.

THEOREM IV.2. Let f and g be almost periodic functions. Then the
equicontinuous minimal sets (y(f), T) and (y(g), T) are isomorphic if and
only if I'(f) = T'(@)

The proof is preceded by a sequence of lemmas.

LemmA IV.3. Let f be an almost periodic function and let I' be a sub-
group of Ty such that I'D 1’(7‘7. Let G =TI*, and let a: T —G be the dual
of the injection a*: I'>T. Then there is an f' € C(G) such that f(t) = f'(a(t)).

Proof. Let : §—>& be the homomorphism such that 7(6(t)) = (1),
and let fe 0(8) satistying f(t) = 7(0(t)). Thus ¢ = p/kers. Since car(f) C r,
it follows readily, using the uniqueness of the Fourier transform, that f
is constant on cosets of § by the subgroup I't = annihilator of I' = kerm.
Define ' € ((G) by f'(@+TI'*) = f(x). The proof is completed.

The next lemma is a converse.

LeMMA IV.4. Let f be an almost periodic function. Let @ be a sole'noidgl
group such that f(t) =f’(a(t)), for some f' e O(G). Then G* = I'DI(f).

Proof. Again, let #: f—~@ such that =(6(t) = a(f). Now f’(n(e(t)))
= f'(a(t)) = f(t) =F(6(t). Since f = f*°x on 6(T), f = f*x, and f is constant
on cosets of 8 modkern = I'". Again it follows that car () C I'. Since I’
is -a subgroup, we have PG‘)C I. .

Let @ be a solenoidal group, and now regard (¢, 7) as an equicon-
tinuous minimal seb, = a(t)w (e T,x¢G). Let ¢ = a(0), the identity
of @ Then using the terminology of section II, lemmag IV.3 and IV.4
say: feW, if and only it I'(f) C G*.

Ii f is almost periodic, we write Xy for y(J), regarded as a solenoidal
group, where y: T'->Xy is defined by y(t) = #f = f;. Thus f is the identity
of the group X;.
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Lemma IV.5. X3 = I(F).
Proof. f=1y(0) is the identity of the group X;. Now, fe %, so

~

I'(f)C X}. Let @ = I'(}*. Then feU., where ¢ is the identity of @
(lemma IV.3). By corollary I1.6, there is a group homomorphism z: G =X;

such that z(e) = f. Since this homomorphism is onto, we have I'(f)
= G*D X7}.
We can now prove theorem IV.2. Let S and g be almost periodic

functions. Then (y(f), T) and (y(g), T) are isomorphic if and only if
geUA(f) and feAlg) (corollary II.7) or, what is the same thing (corol-
lary I1.4), g €% and f €Y. By the remark following lemma IV.4, this
is true if and only if I'(fyC X}, and I'(§) C X}, since f and ¢ are the
identities, respectively, of the groups X; and X;. An application of
lemma IV.5 completes the proof.
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