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Thus, f is the desived quasi-isomorphism and the Theorem is proved,

We observe that the comstruction of s} except for the condition
4 <4, which is most essential for the proof of the Theorem, resembles
a similar construction given in [1] of [2].

As an immediate consequence of the above theorem we have [3]:

COROLLARY. Bwery partial order in a set P can be extonded to a simple
order in the same set P preserving the original order among the elements of P,
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On embedding curves in surfaces
by

K. Borsuk (Warszawa)

I. Preliminaries

1. Elementary properties of surfaces. By a bounded surface
we understand here a continunm N such that every point of it has
a neighborhood which is a disk, ie. a topological image of the square.
In particular, the disk, the circular ring (annulus) and the Mébius band
are bounded surfaces. The points of a bounded surface N for which no
neighborhood is homeomorphic to the Xuclidean plane E? constitute
a set N* called the boundary of N. The set N —N* is said to be the interior
of the bounded surface N; it will be denoted by N°. The set N°* is the
union of & finite number of simple closed curves disjoint with one another.
If we mateh each of these curves with the boundary of a disk, then we
obtain from N anotber bounded surface M with an empty boundary,
ie. a closed surface, or simply & surface. Hence every bounded surface
is homeomorphic to a subset of a surface.

A bounded. surface is said to be orientable if it does not contain
topologically the Mo6bius band. All other bounded surfaces are said to
be non-orientable.

A gsubset X, of a space X is said to have arbitrarily small neigh-
borhoods (in X) with a property («) provided every neighborhood of X,
contains a neighborhood of X, with property («). 1f there exists a neigh-
borhood U, of X, such that every neighborhood of X, contained in U,
bas property (), then we say that the property («) holds for all suffi-
ciently small neighborhoods of X,.

Tet us formulate some elementary properties of surfaces:

(1.1) Bach closed subset of « surface M has arbitrarily small neighborhoods
(in M) which are bounded surfaces.

(1.2) Each arc (and also each disk) lying on @ surface M has arbitrarily
small neighborhoods which are disks.

(1.3) If C is a simple closed curve lying on a surface M, then only the
following two cases are possible: (i) O has arbitrarily small neigh-
borhoods homeomorphic to the -Mobius band. (i) C has arbitrarily
small neighborhoods homeomorphic to the anmulus.
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In case (i) the curve ( is said to be one-sided (on M), in c .
two-sz:ded. If M is orientable, then each simple cloi'od ({,iéi"xfillo(?e (1.1)
two-sided on M. If M is non-orientable, then M containg al ’ s
curves.

We say that a subset X, of a space X decomposes a ; p
(globally) if the set ¥ —X, is not connected. In thg case bv»:]?elize?ly 0?: X
qeeted, we say that X, locally decomposes Y provided for ever IS‘CO-I?-
clently small neighborhood U of X, the set X, decomposes the get 3;]' i
Moreover, we say that X, decomposes ¥ ot a point Yy e ¥ ‘f)l‘ovidegl\ §

k 0

decomposes every sufficiently gmal ighbor! f K
gocomposes y all neighborhood of Yo It i3 well

50 one-gided

(1.4) I? M is an orientable surface. the’)’b € i p. l()St“ 4 Ui
very simple [4 g G
. f] Y d curve O C !

(1.0) I? M is a 6'%7'16509, then €ve: ¥ ¥ ourve C
F Y Svm: le olosed "
¢ . O .]'[ dGCO’)npOS@S

(1.6) If M is o surface, then every are LC M decompo

belonging to the interior of L. o A8 a3 ssoh.goint

y § Y g
To e Ver, urfa ce M corr esponds an 1nteg@l (Jl[) 9 (‘a,lled the eNUS
of M ] deﬁned as the ma lea:l Illllnbel Of mu [)llar“- y dis oint s, ])]6 010 sed

curves in M which together do not decom 1 ]
i mropomt pose M. Let us recall the fol-

(1.7)  Two surfaces M and M’ are ho ic %
: meomorphic if and only i)
both orientable or both non-orientable and y(ﬂ{I) = y??llﬁ ’I) W they are

(1.8) _’[’w; (31}7:;‘4;98 M and M’ are homeomorphic if and only if pyM)
= Pyq or == )

e t=1,2, where pyX) denotes the i-ih Beits number

The fundamental theorem on surfaces gives

D.141) an explicit enumeration of (see, for instance, [8],

11 topological
4 i a. pological types of them. L
denote the perforated tore, i.e. the bounded surface which we get froz:lj

K} interi £ ﬂ]‘ k a1l 1 Q de
the sn’:fa(ze of a ‘]Ole by IeIn()Vlng the nterior of a 8 y all &

1.9 2
(1.9) zctztcl? s;wface M of genus m is homeomorphic to the space which is
lymg%i'n ﬂgﬁmbtke spi;’ere 8 by replacing m disjoint dishs Dyy Dyy ooy Dy
Y m bounded disjos in
o o Iy m disjoint surfaces Ny, N,, vy N in the
(i) {f M is orientable,
) 1=1,2,..,m.
i) If M is now-orientable, the b
7 Ny is hom i b0
all other N; are homew:wrphia t; P, romarpite 1o and
(i) Nyn 82 = N2 A S =D} for every 4 =1,2,..,m.

then Ny is homeomorphic to P for every
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Moreover, let us recall that
(1.10) Bvery bounded surface is triangulable.

2. Plane sets. A set 4 is said to be plane if it is homeomorphic
to a subset of the Euclidean plane E?, or, which is the same, to a proper
subset of the sphere 82 Let us recall that
(2.1) A bounded surface N = S§* is plane if and only if every simple

closed curve OC N° decomposes N.

In particular

(2.2) A bounded surface N with a non-empty and connected boundary N*
and such that every simple closed curve CC N° decomposes Nis
o disk.

Moreover, let us recall that

(2.3) The interior of the perforated tore P and also of the Mobius band
Q contain simple closed curves which do mot decompose them.

The following theorem of Kuratowski ([4], p.272) characterizes

1-dimensional plane ANR’s:
(2.4) TuEoREM. A 1-dimensional ANR is plane if and only if it does
not contain topologically any of the following two graphs:
K, which 4s the wnion of all edges of a tetrahedron and of a segment
joining two points lying in the interiors of two opposite edges of it.
K', which is the union of all edges of a tetrahedron and of all seg-
ments joining its barycenire with its vertices.

In the sequel we need also the following elementary fact ([4], p. 282)

(2.5) The graph K is homeomorphic to a subset of the perforated tore P
and also to a subset of the Mobius band Q.

Let us observe that for every surface M there exists a graph which
is not homeomorphic to any subset of M. In order to see it, let us de-
note by Hm (for every m =1,2,..) the graph which is the union of m
digjoint grapbs homeomorphic to K. Then
(2.6) A surface M contains topologically the graph Hm if and only if

(M) = m.

Proof. It follows by (1.9) and (2.5) that y(M) = m imples that
H, is topologically contained in M. On the other hand, if M contains
m digjoint copies Ky, Ksy ..., Km of the graph K, then (1.1) implies that
there exists in M a system of m disjoint bounded surfaces Ny, Noy ooy Nm
such that K¢ C N2. Tet Osy o Oiay ooy Cimy DO simple closed curves which
are components of Ni, and let Dy y Digy wery Digy e disjoint digks. ]?y
matehing C;; with Di; we get from Ni a surface M, which contains
topologically K. Since §? does not contain K, we infer by (2..1) that
y(M;) > 0. Hence there is on M¢ a simple closed curve C; which does


GUEST


76 K. Borsuk

not decompose M;. Let us consider a disk Dj; CDg;—C,. BEvidently
there is a homeomorphism h; mapping M; onto itself such that hi{Dyy)
= Dy;. Then hi0;) is a simple closed curve on N7 which does not de.
compose MM, and consequently does not decompose Ny either. Tt follows
at once that the system of disjoint curves 7y(0y), ho(Ca), -.., hin(Cm) does
not decompose M, whence y(M) = m.

(2.7) ProBLEM. Let M be an orientable and M’ a non-orientable surface
with y(M) = y(M'). Is it true that there ewist two graphs G C M
and & C M’ such that @ is not homeomorphic o any subset of M’

and G is not homeomorphic to any subset of M?
Some results concerning similar problems are given by . Vézsonyi[9].

3. Moore decompositions. By a Moore decomposition of o space
we understand any upper semicontinuous decomposition X of M guch
that each element A of X is a continuum having arbitrarily small neigh-
borhoods (in ) homeomorphic to the plane E° It follows by (1.2) that
each upper semicontinuous decomposition X of a surface M into ele-
ments which are disks, ares and individual points is necessarily a Moore
decomposition. Evidently every element of a Moore decomposition is
acyelic in all dimensions.

By a classical theorem of R. L. Moore ([6], p. 427), the decompo-
sition space of a Moore decomposition of E® ig homeomorphic to Ae.
Let us observe that an analogous proposition holds also for every sur-
face M, i.e.: :

(3.1) If M is a surface, then for every Moore decomposition X of M the
decomposition space My is homeomorphic to M.

Proof. Consider an element 4 of the decomposition X and let U
be its neighborhood homeomorphic to E2. Since the decompogition X is
upper gemicontinuous, there exists a compact neighborhood V and 4
(in M) such that every element B of X such that B~V = 0 is a subset
of U. Now let us denote by X’ the decomposition of U whose non-deg-
enerate elements are all those elements B of X for which B AV #0.
Evidently 2’ is a Moore decomposition of U/, whence its decompogition
space Us- is homeomorphic to H®. Moreover, Usy is locally homeomor-
phic to M at the point 4 ¢ 2. It follows that M. r I8 & confinuum
lqea,lly homeomorphic to 2, i.e. it is a surface. Moreover, by the clas-
sical theorem of L. Vietoris ([10], p. 470) the Betti numbers of My are
the same as the corresponding Betti numbers of M. By (1.8), the sur-
face My is homeomorphic to M.

4. An elementary lemma. Now let us establish a simple lemma,
concerning locally connected continua, which we need in the sequel:
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LemumA. Let X be a locally connected subcontinuum of a space M
and G a collection of indices. Assume that to each index T €T cor-
responds an open subset G, of M and o locally connected continuum
F,.C M satisfying the following conditions:

() For every &> 0 the inequality 8(F.) < e holds for almost all
indices T €G.

(8) v #7" implies Gz Gy = 0.

(¥) 0 % X ~ (G, —G,)CF, for every index v €.

Then the set

(4.1)

X=X UF
€0 7€Q
is a locally connected continuum.

Proof. Since X is a locally connected continuum, there is a con-
tinuous map f of the circle S onto X. It follows by (B) and (y) that the
sets FX(@,) are open, disjoint and non-empty proper subsets of §*. Hence
each component J-, of the set 77*(G) is an open subare of §'. Moreover,
it follows by (B) that all sets J., are disjoint with one another. Let
a,, and b,, be the end-points of J,,. By (y), the points f(a.,), 7(by)
both belong to F-.

Since F, is a locally connected continuum, there exists a continuous
function f., which maps the closure J,, of J,, into F: and satisfies
the conditions:

fr,r(a'r.v) = f(af.i)y ft,*(br,v) = f(bt,r) .

Moreover, we may assume that
(4.2) For every index v T there is an index v, such that f,,,,(f,,,_t) = F;
jor every => 0 and for every indez v the inequality 8[fru(J-0)] <&
holds for almost all indices v.
Now let us set

@S — U]A—.l(Gt)n

for every point
€[

F(a) = feulw)  for every point zed.,.
We infer by («) and (4.2) that f’ is a continuous map of St onto X'.

Hence X’ is a locally connected continunum.

II. On locally plane curves

5. Embedding of 1-dimensional ANR’s in surfaces. A set X
is said to be locally plane if every point # € X has a plane neighborhood.
As has been shown by T. Wazewski ([11], p. 57), every dendrite is plane.
‘We infer that every space in which each point has a neighborhood which
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is a dendrite is locally plane. Since 1-dimensional ANR’s (compact) are
the same as compacta locally homeomorphie to dendrites, it follows that
(5.1) Bovery 1-dimensional ANR s locally plane.

Now let us prove the following

(5.2) THEOREM. If X 45 an ANR-space such that dim X < 2 and p,(X)
<n and if M is a surface with y(M) > n—4, then X is homeomor-
phic to a subset of M.

We start with the following

(5.3) LemMA. For every X ¢ ANR with dim X =1 and with p,(X) <0 there
s a decomposition X = X, v X, such that X, is a dendrite, X, is an
ANR with p(X,) = p(X)—1 amd X; ~ X, consisis of two points.

Proof. The hypothesis py(X) > 0 implies that X contains a simple
closed curve C. Since the set of ramification points of X is at most
countable ([5], p. 229), there is a point a ¢ ¢ of order 2 in X. We infer
that there exists a dendrite X, C X which is a neighborhood of & in X
and is such that set X; ~ X —X,; consists of exactly two points b, c.
Setting X, = X—X,, we have X = X, u X,, and since X and X, ~ X,
are ANR’s, we infer ([1], p. 226) that X,¢ ANR. Moreover, X;, a8 a den-
drite, does not contain C. It follows that b,ce C and that X, ~n X —X,
is 'a carrier of a 0-dimensional true cycle which is homologous to zero
in the sets X, and X,. It follows (as a special case of the theorem of
Mayer-Vietoris) that

D(X) = py(Xy)+py(Xp) 41,

and since p(X;) =0, we get p,(X,) = p,(X)—1. Thus the proof of
Lemma (5.3) is finished.

Now we prove Theorem (5.2) by induection (*). Let X ¢ ANR and
dimX < 2. Evidently for the graphs K and K’ of Kuratowski we have
PfE) =4 and p(K') =6. If p(X)<n=4, then X contains neither
K nor K’, and we infer by (2.4) that X is homeomorphic-to a subset
of each surface. Thus proposition (5.2) is true for m < 4.

Let us assume now that for an m >4 proposition (5.2) holds if
7 < m, and let us consider the case n = m-41. Let M be a surface with
y(M)>n—4=m—3>1 Thus y(M)>1 and, the projective plane
being a surface of genus 1, we conclude that M is not homeomorphic
to the projective plane. It follows by (1.9) that M may be represented
as the union of two bounded surfaces N, and N, having a simple closed
curve O as their common boundary and such that

(a) P nN§ =0,

(b) N, is homeomorphic to the perforated tore P.

(*) The present form of this proof iz due to J. J. Charatonik.
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Let us observe that if we add to N, a disk D with the boundary C
and the interior disjoint with N,, then we get a surface M, such that

Y(M,) =y(M)—1>n—8 =m—4.

By Lemma (5.3) there exists a decomposition
X=X,vX,,

where X, is a dendrite and X, an ANR-set with p(X,) <#—1 and
where X, ~ X, consists of two points @ and b. Moreover, the hypothesis
of induction implies that there exists a homeomorphism %, mapping X,
onto & subset of M,. Since each point of a 1-dimensional ANR-set lying
in the Euclidean plane is accessible from its complement ([1], p. 233),
we infer that there are in M, two disjoint disks D, and D, such that
Dy~ Ty Xy) = (ho(@)) and Dy ~ by(X,) = {he(D)). On the other hand, there
exists a homeomorphism %; mapping X; onto a subset of §* and there
are on S two disjoint disks Dj and Df such that

Do (X)) = (hfa))  and  Dj e y(Xy) = (l(B)) -

Now let us consider a disk D C M, containing the disks D, and Dj

in its interior. Let us fix a positive orientation on D and also on 82
They induce positive orientations on the boundaries D;, D, D4 and Dj*
of the disks D,, Dy, D, and Df. Manifestly there exists a homeomor-
phism % mapping Di v Dg onto D;* v Di* which preserves the positive
orientation and maps hy(a) onto ki(a) and hy(b) onto hy(b). If we identify
every point y e D v Dj with the point h(y) e Dy* v Dj*, we get from
the sets M, = (Dg v D§) and 82—(Dy v Dt°) a surface M’ homeomor-
phic to M, and the homeomorphisms %, and h, give together a homeo-
morphism of the set X =X, u X, into M’. Thus the proof of Theo-
rem (5.2) is finished.

(5.4) ProsLEM. Is it true that every ANR-space of dimension <n such
that each of its poinis has a neighborhood homeomorphic to a subset
of the Buclidean n-space E" is homeomorphic to a subset of an
n-dimensional manifold?t

6. Locally plane curve which cannot be embedded in any
surface.

Let us prove the following
(6.1) THmoREM. There ewisis a locally plane and locally connected curve

which is not homeomorphic to any subsel of any surface.

Proof. Consider in the Euclidean 3-space E* a tetrahedron T with
vertices a, b, ¢,d and let ¢, denote the point dividing the segment ac
at the ratio 1 : (n—1), and d, denote the point dividing the segment bd
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at the same ratio 1 : (n—1). The points a, b, ¢, dy are vertices of a tetra-
hedron T, and the segment ¢ni1dn41 joins two inner points of two op-
posite edges of it. It follows that the set

X, = ab @ty w adn Ben w bl Cnlly - Cpp1Gniy

is homeomorphic to the graph K, whenee it is not plane. Moreover, it
follows by our construction that

lim X, = ab .
Setting -
(6.2) X=X,

Nl
we get a curve which is the union of two sets
Z=X-bd avd % =X-—ac,

open in X. In order to prove that X is locally plane, it suffices to show
that Z and Z’ arve plane, and since Z is homeomorphic with Z’, it suf-
fices to construct a homeomorphism % mapping Z onto a subset of E®.

In order to do that, let us consider in E? an orthogonal system of
coordinates @,y and let

o' =(0,0), b =(1,0),

1 , 1 . 2 " 1
a=(og) w=(3) &=fuzm) #=(.-

for n=1,2,..

Now let us consider the linear maps f,g,/n,fn,fn given by the
following conditions:

f: ab—d’b’ with  f(a) =d', f(b) = b’;
g: ac—>a'c’ with  g(a) =a’, g(¢) =
fui Cndn—>chdy with - fu(es) = ¢h, faldy) = dm
1o oonb—>cpby,  With  fh(ea) = oh, fo(D) = b
Wiadha'dy  with  fi(a) =/, fil(de) =i
Setting .
f{=) for weab—(b),
gl@) for gweac,
h(z) = \falw) for @ Codn—(dn),
ful@) for @ecnb—(b),
(@) for e ady—(dy),

icm
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we get a homeomorphism % mapping Z onto the set

=ab v u U
n=1

Thus the proof that X is a locally plane curve is concluded.

Now let us prove that X is not homeomorphic to any subset of any
surface. Suppose, on the contrary, that there exists a homeomorphlsm
ho mapping X onto a subset ho(X) of a surface M. Then ho(ab) is an arc
in M and we infer by (1.2) that there is a disk D C M containing hy(ab)
in its interior. It follows by (6.2) that for almost all indices # the set ho(Xn)
is a subset of D. But this is impossible, because the set X, is not plane.

In order to conclude the proof of Theorem (6.1), it suffices to show
that X is a subset of a locally plane and locally connected curve. Let
us consider, for every ¢=1,2,..,n and for » =1,2, ..., the point G
decomposing the segment a’b’ abt the ratio i: (n+1—1) and let Ly; de-
note the segment which is parallel to the segment a'c; and has a;, as
one of its end-points, with the other end-point lying on the segment
cndn. Moreover, let L ; denote the segment parallel to a’c. with one
end-point in a;, and the other on the segment a’d;. We easily verify
that the set

(Bren v cndhw @ & dy) —didy C B .

oo n
Y =ZyvJ U (Lnivdiny)
n=1 i=1
is locally conmected and it is easy to show that the homeomorphism
B Z,~Z can be extended to a homeomorphism ¢ of the set ¥’ onto
a subset of E®*—bd so that for every &> 0 there exists an index n(e)
sueh that for n > n(s) the diameters of the sets @(Ln,;v Lj;) are less
than e. Setting .
Y=9(XY)ubd,
we easily see that ¥ is a locally connected curve containing Z and such that
Y = (Y') wbd v o(X)—ad,

where each of the sets ¢(X’) and bd w ¢(¥’) —ac is open in ¥ and homeo-
morphic to the set ¥’ C E? Hence the set Y is locally plane and (since
it contains Z) it is not homeomorphic to any subset of any surface.
Thus the proof of Theorem (6.1) is concluded.

III. S-curves in surfaces

7. Auy-curves. Let M be a surface. A locally connected curve
A CM is said to be an S-curve in M (cf. G. T. Whyburn [13], p. 321)
if there exists a sequence {D;} of mutually disjoint disks in M such that

oo
A=M—{)D3.
t=1
Fundamenta Mathematicae, T. LIX 6

(7.1)
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We can easily see that the hypothesis that A is locally connected
implies

(7.2) lim 6(Ds) = 0.

On the other hand, if {Ds} is a sequence of mutually disjoint disks
in M, satisfying (7.2), and if the set iU D; is dense in M, then the set
=1

A given by formula (7.1) is a locally connected curve.
By a theorem of G. T. Whyburn ([13], p. 322), any two 8 -curves
in the sphere §* are homeomorphic. More exactly:

(7.3) If A= ,S'z—ifj D; and A’ = Sﬂ—pl Dj are two 8 -curves in 8 and
=1 o=

if hy 18 a homeomorphism mapping Dy onto Dy, then hy can be ca-
tended to a homeomorphism h: A—A'.

Let us apply (7.3) to prove the following generalization of the theo-
rem of Whyburn: :
(7.4) Any two 8-curves in a given surface M are homeemorphic.

Proof. Let A be an S-curve in the surface M, given by (7.1). By
(1.10) there exists a triangulation 7T, of M. Consider the upper semi-
continuous decomposition X of M whose non-degenerate elements are
disks D;. It follows by (1.2) that X is a Moore decomposition of I,
whence by (3.1) the decomposition space My is homeomorphic to M.
Since the subset of My consisting of all points d; corresponding to disks
D; is only countable, we see at once that there exists a triangulation
T, of M isomorphic to the triangulation T, and such that no point dy
belongs to the 1-dimensional skeleton Z of the triangulation T, i.e. to
the union of all 1-dimensional simplexes of T;. This skeleton Z may
be considered as lying in the set 4 — D Dy and thus we get a triangu-

=1
lation T of M isomorphic to T, and such that every disk Dy lies in the
interior of a triangle 4 ¢7. Now let us consider another §-curve
A'=M— O Dy in M. By the same argument we get another triangu-
=1
lation 7" of M isomorphic to T, and such that every disk Dj lies in the
interior of a triangle 4’e T". Let Z’ denote the 1-dimengional skele-
ton of 71".

Since 7' and 7T are isomorphic, there exists a homeomorphism
h: M—M’ such that each triangle 4 ¢ 7' is mapped by h onto a triangle
4’ ¢ T'. Evidently the common part of the curve 4 with the triangle 4
(and also the common part of A’ with 4’) may be congidered as an
S-curve on a sphere, which we obtain if we match the boundary of the
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triangle with the boundary of another triangle. It follows by (7.3) that
the partial homeomorphism

hjAc: 4°—A'
can be extended to a homeomorphism

by : And—sA'~A".
Setting

1'(z) = ha(x)  for every point e d ~ A, where AT,

we get a homeomorphism ' mapping 4 onto 4’. Thus the proof of (7.4)
is finished.

It follows by (7.4) that, from the topological point of view, there
caists only one 8-curve in each surface IM; it will be denoted by Axs.

8. The boundary and the interior of A4j. Consider now in
a surface M an S-curve 4 given by formula (7.1). Let us prove that

(8.1) Nome of the curves D} decomposes A at any point a € Dj.

It suffices to prove that for every &> O there exists a neighborhood
U of a in A such that every two points a,, a, ¢ U~D; can be joined in
the set 4 —D; by a continuum with diameter less than e. First let us
observe that (7.2) implies that there exists a positive number 5 < }e
sueh that the distance between the point ¢ and every disk D; with § = 4
and with diameter > e is greater than #». Moreover, since the set
M—D;D A —D; is uniformly locally connected, there exists a neighborhood
U of a in A such that every two points a,, a, ¢ U—D; can be joined in
M —D; by an are I with diameter less than #. Let B denote the set of
all indices % such that L~ Dy == 0. Then lemma (4.1) implies that
the set

X' =(L—JDpv UDi
keR keR

13 a continuum joining the points a,, ¢, in the set 4—D; and its dia-
meter is less than e, because 6(L) <7< ie and 6(Dr) < ¢ for every
index % ¢ R. Thus the proof of (8.1) is finished.

By an analogous argument we show that

(8.2) D; does not locally decompose A.

Now let us prove that
(=]
(8.3) If aedAd—\J Dy, then every simple closed curve CC A containing
=1

the point o decomposes A at a.
" Proof. Evidently there exists for every > 0 a disk DC M with
diameter less than ¢ such that @ e D° and that the set D°—C is the union

6*
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of two regions & and G,. In order to prove that C locally decomposes
A at the point e it suffices to show that each of the sets A ~ G and
A A @, is non-empty. Suppose, on the contrary, that A ~ Gy =0. Then
there is an index 4, such that G; C D§,. Since a ey, we conclude that
@ € Dj,, which contradicts the relation ae A—Df. By the same argu-
ment we infer that A ~ Gy 7% 0. Thus the proof of (8.3) is concluded.
Tt follows by (8.1) and (8.3) that the subset A° of 4 given by the
formula .
(8.4) At = iL__JlDi
is topologically marked out in the curve A. This set A° will be said to
be the boundary of the §-curve A, and the set
A’ =A4—-A"
will be said to be the énterior of A. We can easily see that the set 4°
coincides with the subset of 4 consisting of all points  such that every
are L C A containing # in its interior locally decomposes 4 at the point .
Now let us congider an arbitrarily given subcompactum ¥ of M
of dimension less than 2. Bvidently there exists in the set M —XY a se-
quence {D;} of mutually digjoint disks satisfying (7.2) and such that

the set DD,- is dense in M. It follows that the set 4, given by the
(£ )

formula (7.1), is an S-curve in M and that ¥ C A° Hence
(8.8) If Y is a subcompactum of M amd dimY <1, then there emisis
an S-curve in M containing Y in its interior.

9. Two lemmas. In this section we establish two lemmas which
we need for the proof of the principal theorem in Section 11. In both
lemmas A denotes an §-curve in a surface M given by the formula (7.1).
(9.3) Lmmma. Let LC A° be an arc and let 2, be a point of its interior.

Then there exist in A:

(i) A sequence {Cn} of simple closed curves with diameters con-
verging to zero such that the set Ly = Cp ~ L is an are contain-
ing w, wn its interior for every m =1,2, ..

(ii) An are L’ starting from m, and disjoint with all sets Op— ().

Proof. Consider a disk D'C M containing #, in its interior and
such that D'°—L is the union of two distinet regions Gy and @,. It fol-
lows by (7.2) that for every natural number » there exists a disk D, CD’
with the following properties:

(9.2) A ) A
(9.3) S(Dp) < 1[3n.
(9.4) If DinDL#0 then D;CD® and 6(Dy) < 1/3n.

icm
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Let F, denote the union of the set D ~ 4 and of all curves Di
such. that D} ~ D} 5 0. By Lemma (4.1) we infer that F, is a local
continuum with diameter less than 1/n which decomposes the disk D’
between its boundary D’ and the point ,. It follows that F, contains
a .sianle closed curve (; which is the boundary of a disk DY C.D’ con-
taining x, in its interior. Evidently there is an are I; C () with the
interior in @; and with end-points a, b belonging to different compo-
nents of the set L—(,). We infer that ¢ and b are end-points of another
are L, CL containing the point ,. Setting

Cun=L,uI, for

n=1,2,..,

we get a sequence of simple closed curves satisfying condition (i).

) Let us denote by G, for every s> 0, the set of all points z e G,
‘Wlﬂl o(w, @) < e. Since mye4°, we infer by (7.2) that there exists a pos-
itive number g so small that D; ~ D, 0 7 0 implies D; C G,. Now let
us consider an are I, starting from @, and such that L,—(z)C Go -
Since w, € A°, there is a point @, e (Ly—A)—(2,). Let B denote the set
of all indices ¢ such that D} ~ L, # 0. It follows by (4.1) that the set

F=(L,~ ) D3)o U D;
ieR icR

is a locally connected subcontinuum of A containing the points =,
and @, and such that F—(z,) C G. This continuum contains an arc I’
with end-points %, and . It is clear that this arc satisfies condition (ii).
Thus the proof of Lemma (9.1) is finished.

(9.5) LEMMA. If a compactum X C A° does not decompose the surface M,
then the set A —X s connected.

' Proof. Let a,b e A—X. Then there is an are LC M —X with end-
points @ and b. Let Z denote the union of L and of all curves D} such
that L ~ D7 #0. It follows by Lemma (4.1) that the set Z ~ A=

o
Z—\ D¢ is a subcontinuum of the set .4 —X containing the points ¢ and b.
Tl
Hence the set 4 —X is connected.
10. Embedding S-curves in surfaces. Let us prove the fol-
lowing
(10.1) TerEorEM. If M and M’ are surfaces and either M is orientable

or M and M’ are both non-orieniable, then y(M) < y(M’') implies
that Ay 4s homeomorplic to a subset of Ay .

Proof. First let us assume that M is orientable and that M’ is

another surface, its gemus m' = y(M’) being greater than the genus
m = y(M) of M. It follows by (1.9) that M’ is a surface which we get
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from M by replacing k = m'—m digjoint disks Dy, Dy, ..., Dy lying on
M by k disjoint bounded surfaces Ny, Ny, ..., Nk, each of them homeo-
morphic either to the perforated tore P or to the Mdbius band @, and
that NyA M =N A M =D; fori=1,2,...,k By (7.4) and (7.1) we
may assume that the system of disks Dy, D, ..., Dy may be completed

to the sequence of disjoint disks {Ds} such that A = M’——iU1 D3 . It fol-

lows that Ay C M’, whence in the case where M is orientable, the proof
of (10.1) ig finished.

The proof in the case where M and I’ are non-orvientable is anal-
ogous, but in that case we can assume that each of the bounded sur-
faces Ny, Ny, ..., Nx (where &k = m’—m) is homeomorphic to the per-
forated tore P.

11. S-curves which cannot be embedded in a given sur-
face. As a complement to Theorem (10.1) let us prove the following

(11.1) TeEoREM. Let M and M’ be two surfaces. The curve Ay is not
homeomorphic to any subset of M’ im the following three cases:
Case 1. M is non-orientable and M’ is orientable.
Case 2. y(M) > y(M').
Case 3. M is orientable and M’ is non-orientable with y (M)
= y(M").

Proof. In case 1, the surface M containg a Mobius band. Evidently
the equator of this band is a simple closed curve C such that if we cut
M along it, then we get from C another simple closed curve B, and
from M —(a) bounded surface N having B as its boundary. Then there
exists a map ¢ of N onto M which is a homeomorphism on the set
N® = N—B. If we identify B with the boundary of a disk D, we gebt
from N and D a surface M*.

By (8.5) we can assume that € is a subset of the interior A° of the
8-curve A = Ay. By cutting M along € and by matching B with the
boundary of the disk D, we get from A a curve A* on the surface M*.

~ Manifestly, if
A=M-\)D;

Tl

then .
4= — (g™ (D) v 1,
Tl

and consequently 4* is an S-curve on M* containing B in its boundary.
It follows by (8.1) that B has arbitrarily small neighborhood U* in A*
with U*—B connected. Since the partial map ¢ = ¢/(¥ —B) is a homeo-
morphism of the set N —B onto M—(, and since 4*—BC N —B, we
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infer that the set U = ¢ u ¢ (U*—B) is a neighborhood of ¢ in 4 such
that the set U—C is connected. Moreover, if the neighborhood U* of B
in the space 4* is sufficiently small, then the neighborhood U of € in
the space A is arbitrarily small. Thus we have shown that

(11.2) There exists in A a simple closed curve C having arbitrarily small
neighborhoods U in A with U—C connected.

Suppose now that there exists a homeomorphism % mapping the
curve 4 onto a subset of an orientable surface J’. Then ¢’ = k(0) is
a simple closed curve on M’ and (1.3) implies that ¢’ has a neighbor-
hood W (in M') homeomorphic to an annulus. Then ¢ C W° and W°—C’
is the union of two regions G, G, with G; ~ G = (’. Consider an arc
LCC and a point z, ¢ L’. Since ¢ C A° we infer by Lemma (9.1) that
there exists in A a sequence of simple closed curves {C,} and an arc L’
satisfying conditions (i) and (ii) of this Lemma. Then at least one of
the sets Gy, G, (say, the set @) contains an infinite collection of simple
closed curves k(Cp). Then #; = h(x,) is an accumulation point for the
set h(4d) ~ Gy. Moreover, the set h(Cp) ~h(L) is a subarc of the arc
h(L) for every m =1,2,.. If we recall that z; is an end-point of the
are h(L') and that h(Cn)~ h(L'—(25)) =0, we infer that A{L'— (a}))
C@,. Hence x is also an accumulation point of the set h(4) A Gs.
It follows that for every neighborhood V CW of the curve ' in the set
h(A), the set V—C' is not connected. But this contradicts proposition
(11.2) since k is a homeomorphism. Thus in case 1 the proof is concluded.

Passing to case 2, consider in M a system of m = (M) mutually
disjoint simple closed curves (i, Cy, ..., Cm, which together do not de-
compose M. By (8.5), we can assume that there exists in M an §-curve
A such that C; v Cou ..U 0 C A° Tt follows by Lemma (9.5) that

o0
(11.3) The set A~ C; is conmected.
=1

Suppose now that there is a homeomorphism b mapping 4 onto
a subset h(4) of the surface M'. Then h(Cy), h(Cy), ..., h(Cm) are simple
closed curves in M’, disjoint with one another. Since m' —y(M') is less
that m, we infer that the set M’——Gh((}’t) contains two distinct com-

=1

ponents G; and @, such that for an index 4, the curve h(Cy) is con-
tained in the boundary of G; and also in the boundary of &,. Then the
set G4 v Gy u h(Cy) is a neighborhood in M’ of the curve h(C;) de-
composing this neighborhood into two regions G; and G,. Applying
Lemma (9.1), we infer that for every point a4 e h(C;) there exists in
h(4) a sequence {Cy} of simple closed curves with diameters converging

‘t0 zero and such that L, = C) A h(C;) is an arc containing the point
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@} in its interior for each n =1,2,.. Moreover, there exists an are
I’ Ch(A) starting from o) and disjoint with all sets Cp— (2). We infer,
as in the proof in case 1, that #f is an accumulation point for the sets
h(4) ~ G and h(4) A G,. Since @, and G, are distinet components of

m
the set M — CL) h(C:), we infer that the setiU h(Cs) decomposes the seb
i—1 =1

h(4), which by (11.3) is impossible, because » is a homeomorphism.

It remains to consider case 3. Then y(M) = y(M’') =m and let
0., Oy ooy O be a gystem of mutually disjoint simple closed curves
on M which together do not decompose M. By (8.5), the §-curve 4

m
on M (given by formula (7.1)) can be found so that | ) €t C .4° Tt fol-
el

lows by Lemma (9.5) that the set W = A—p: 0; iy connected.
Now let us suppose that there exists a homeomorphism

h: A—-A'CM.
Consider a simple closed curve U, which is the boundary of one of the
disks D;. Then the system of curves h(C), h(C4), ..., h(Om) decomposes
the surface M’. Consequently there are at least two distinet components
@ and @’ of the set M’'—h(C)—h(C)—...—h(COm), both containing
h(0) is their boundaries and such that the whole (connected) set h(W)
lies in one of them (say in G). Then the set N =& is a bounded sur-
face, having the curve h(C) as its boundary. If @' contains a simple
closed curve ¢’ which does not decompose the bounded surface N, then
the mutually disjoint curves C’, h(Cy), ..., #(Om) together do mnot de-
compose the surface M’. But this contradicts the hypothesis that y(M’)
= m. It follows by (2.2) that N is a disk.

Thus we have shown that each of the curves h(.D]) is the boundary
of a disk Dj such that Dj° C M’'—h(4). Since the diameters of the sets
h(D;) converge to zero, the diameters of the disks D; converge to zero.
It follows that if we extend the homeomorphism h/D; te a homeomor-
phism of the whole disk D¢ onto Dj for every i=1,2,..., we get 4 hom-
eomorphism %’ of the whole surface M onto a subset of M’. But this
is possible only if /(M) = M’'. If we recall that M is assumed to be
orientable, we infer that M’ must also be orientable. Thus the proof
of theorem (11.1) is concluded.

12. Final remarks. It follows by Theorem (11.1) that two §-cur-
ves A and Apy are homeomorphic if and only if the surfaces M and M’
are homeomorphic. Thus the correspondence between the topological
types of surfaces M and of the curves Ay is one-to-one. Since the de-
composition of an #-dimensional manifold into the Cartesian product
of 1-dimensional  and 2-dimensional factors is topologically unique
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([2], p. 296), the question arises whether a decomposition of finite-di-
mensional compacta into the Cartesian products of S-curves is topo-
logically unique. In particular the following case seems to be interesting.
Let P be the perforated tore, B the annulus and N a 2-sphere with
three holes. By a remark due to J. H. C. Whitehead ([12], p. 827) the
Cartesian produets P xR and N X R are homeomorphic. But P may be
considered as the first approximation of the S-curve Ar, where 7' de-
notes the tore, and N is an approximation of the 8-curve Am (the usual
universal plane eurve of Sierpingki). Thus the following problem arises
(12.1) Are the Cartesian products Ar X Ag and Ag X Agq homeomorphic?

If the answer is positive, then the problem concerning the uni-
queness of the decomposition of finite-dimensional continua into Carte-
sian products of curves ([3], p. 110) is solved negatively. Let us observe
that for finite-dimensional ANR-spaces the uniqueness of the Cartesian
decomposition into 1-dimensional factors has recently been proved by
H. Patkowska ([7]).

Warsaw, 1965.
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