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A structure theory for a class
of lattice ordered semirings *

by
F. A. Smith (Columbus, Ohio)

Introduction. A semiring 8 is a set of elements which is closed
under two binary associative commutative operations (<) and (-) such
that a(b+-¢) = ab+ac for all a,b,ce S, containing elements 0 and 1
such that s+0 = s and s-1 = s for all s ¢ 8. A semiring 8 will be called
positive if 1--s has a multiplicative inverse for all s e S.

The theory of semirings is relatively new. Bourne in [1] and Bourne
and Zassenhaus in [2] have presented some partial results generalizing
the Jacobson structure theory for semirings. In 1955, Slowikowski and
Zawadowski in [7] studied the structure space of commutative positive
semirings. Although they did not attempt to present an algebraic struc-
ture theory, their work seemed to indicate that a structure theory was
possible for this class of semirings.

If § is a semiring, let T(8) ={wxeS: o+2 = 2} and K(8) = {weS:
£+4a = x+b implies @ = b}. These elements will be called respectively
the a-idempotent and a-cancellable elements. In Section 1 we prove that
every positive semiring is a-idempotent or contains a copy of the non-
negative rational numbers.

On every semiring § there is a natural quasi-order defined by letting
a < bif a+o = b is solvable in §. A semiring § will be called an 1-sems-
ring if § is lattice ordered under the natural quasi-order and a—(b V ¢)
= (a+0d) V(a+¢) and a4+ (b Ac)=(a+b) A (a+c) for all a,b,ceS.
A semiring § will be called archimedian if ne < a for n=1,2,.. im-
plies # ¢ T'. In Section 3, we show that in a positive archimedian I-semi-
ring 8, then K(8)={wef: s A T = {0} and that if {1 A %: keK}
has & supremum in K, then 8§ = E+{ze¢8: 2 A K = {0}}. In Section 4,
we show that both 7' and K are an intersection of prime I-ideals but
that even under very strong hypothesis, the same is not true for 7K.

* This research was supported by the National Science Foundation on contract
no. 3335 and is part of the author’s doctoral dissertation written under the direction
of Professor Melvin Henriksen.
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In Section 5, we consider semirings. which are s11bqirect gums of
subdirectly irreducible archimedian semili"lygs. We. show that every po-
sitive I-semiring satisfies the f-ring condition of Bll‘k]:foff am:l Pllerce [4],
and using some of their results prove that eYery §emmng Y.V'hlch' i3 a sub-
direct sum of subdirectly irreducible archimedian sgn-furmgs is a sub-
direct sum of a-idempotent semirings and subsemirings of the non-

negative real numbers.

1. Preliminaries. o

DEFINITION 1.1. A semiring is a set of elements S which. is closed
under two binary operations, addition (+) and multiplication (-), such
that the following properties arve satisfied:

(i) Both addition and multiplication are associative and commutalive.

(i) Multiplication is distributive over addition; i.e. a(b+c¢) = ab-}ac
for all a,b,cef.

(iii) There are elements 0 and 1 in 8 such that for every s e 8 we have

s+0=s and 1l-s=s.

Exampres 1.2. (i) Any commutative ring with identity is a semiring.

(i) Any distributive lattice with maximal and minimal elements
is a semiring.

(iii) The set C*+X) of all non-negative continuous 1'ea1-va1ued‘ fum.-.—
tions on a topological space X with the usual pointwise operations is
a semiring.

Let § be a semiring. We will say that an element s e § has an inverse
if there is an element s—'e 8 such that s-s~'=1. An element that has
an inverse will be called a unit. The set of units of S will be denoted by
£(8) or, more simply, by £.

DEFINITION 1.3. A semiring 8 will be called positive if 1-+s is a unit
for every se8.

ExaMPrEs 1.3. (ii) and (iii) are positive but (i) is not.

Since we are primarily interested in posifive semirings, we will
consider only positive semirings unless more generality can easily be
maintained.

PROPOSITION 1.4. If 8 is a positive semiring, then 0 is multiplicative
annshilator. ‘

Proof. Let ¢ ¢8. Then 0 = 02+ 0 = 00+ 01 = 0(1+2), s0

0=0-1=0[(1+2) " +ad+s)™" =00+2)  +0z{1+z)"
=0(1+2) " +0(1+a)(1+2) " =01+2) " +0-1 =0(1+a)”.
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Hence )
0=01=0(1+a)" (1+2)=0(1+z)=0z.

In [7], Corollary 5, p. 219, structure theory is used to prove a weaker
result than the preceding.

A non empty subset I of a semiring S will be called an ¢deal if for
all a,bel and se 8, s(a+b)eI. An ideal P will be called prime if ab e P
is equivalent to a € P or b ¢ P. An ideal I will be called a %k-ideal if a,
a-+b el implies b e I. An ideal I will be called an 1-ideal if a--be I is
equivalent to ael and bel.

A mapping F from a semiring § into a semiring 8’ will be called
a homomorphism if for all a, b€ 8, F(a-b) = F(a)-F(b), F{a+b) = F(a)+
+F(b) and ¥ (0) = 0. An equivalence relation 0 on a semiring § is called
a congruence relation if a = b(0) implies a+s = b-+s(6) and as = bs(0)
for all se8.

Let § be a semiring and € a congruence relation on 8. Let
[a] = {ze8: . =a(0)} and let Sy = {[a]: a € S}. If we define [a]-[b]
= [a+b] and [a]-[b] = [ab], then S, is a semiring and the mapping
F: 8§—8, is a homomorphism of § onto S,. This homomorphism will
be called the natural homomorphism of § onto S,.

Let I be an ideal of §. We will say that @ = b(g,) or, more simply,
a = b(I) if there are elements %,j eI such that a4 = b-+4. This is
easily seen to be a congruence relation. Thus §/T = S8y, is a semiring.
Note that [0] is a k-ideal; in fact [0] is the smallest k-ideal containing I.
We have just proved the following proposition.

ProrosirionN 1.5. If F: §—>8'is a homomorphism, then {s<S: F(s) = 0}
is a k-ideal. Conversely, if 0 is a congruence relation, then there is
a semiring Sy and a homomorphism F such that F(a) = F(b) if and only
if a=b(b).

DErFINITION 1.6. A semiring 8 will be called semisimple if the inter-
section of all the maximal ideals is {0}.

In [7], Theorem 3, p. 219, Slowikowski and Zawadowski proved
the following:

ProrosiTioN 1.7. A positive semiring S is semisimple if and only if
for every » £ 0 in 8, there is a non-unit y in S such that x+y Q.

‘We will now introduee two subsets of a semiring that will play an
important role.

DrrFINITION 1.8. If S is a semiring, let

(i) T(8) ={rel: 2+o=ua},

(ii) K(8) = {we8: s+a=a+b implies a = b}.

We will call 7' = T'(8) the set of a-idempotent elements of §, and
K = K(8) the set of a-cancellable elements of S. If S = T, then § will
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be called an a-idempotent semiring, and if § = K, then S will be called
an a-cancellable semiring. )

Tt is easily seen that I’ is an ideal. o

We will denote by N the set of all positive integers.

Bxamerms 1.9. (i) For each ne XN, let Sy = {0,2% &', ..., 2"} and
b ata=a, ®4+a=a-+2" =205 0-a=a-0=0 _for .a]l a e S,
gia) = gmintni+il, Clearly S, is a positive semiring with identity element
2 for each neN. .

(ii) For each n ¢ N, let S = {0, a0, @y .eey ) witt} :»dditifm.a,s 'in ()
and multiplication defined by i = a7 if i4-j < n, ol =0 if i+47> n,
and 0-a=a-0 =0 for all & 8" Clearly S is a positive semiring with
identity element a9, for each neN.

(iil) Let 8 = {0,a% % ..., @ ...} with addition defined as in (i)
and multiplication defined by a@f-af = 2+ and 0-a=0a'0=0 for .a]l
a 8. Clearly 8 is a positive semiring with identity element a°. Notice
that & and S, are homomorphic images of § for each n eN.

ProposrrIoN 1.10. If 8 is a positive semiring, then K is an l-ideal.

Proof. Clearly K is closed under addition. Let keK and se A_S_’i
It ks+a = ks-b, then k(L+s)+a= k(1+4s)+b. Thus 7a+a(1—{js)
= k+b(1+s8) " s0 a(l+s)" = b(1+s)7", whence o =b. Thus K is an
ideal. Let ¢-+v ¢ K. If 2+ a = o+Db, then x+y-+a = o+y-+b, whence
a="0, so weK. Thus K iy an I-ideal.

Tt § fails to be positive, K need not be an ideal. For, let S be the
non-negative integers together with a distinguished point {p}. Add and
multiply non-negative integers as usual, let n+p =p for every n € 8,
let np = p for every 0 #n <8, and let 0p = 0. It is easily verified that
§ is a semiring which is not positive since 1+p = p is not a unit. Now
K (8) is the set of non-negative integers, which is not an ideal.

Lmvva 1.11. Let 8 be a positive semiring with multiplicative identity
element e. If there emist positive integers m, m ¢ N such that ne--me = ne,
then 8 is a-idempotent.

Proof. We may assume that m > 1 since ne = ne-me = ne- 2me
and 2m> 1. If p >n is an integer, then pe = pe--qme for every non-
negative integer g. Let »> 1 be an integer such that m"> n. Now mfe
= mre+mr—lme = 2mre since m'>n. But § is positive, hence mre 18
unit, whence e = 2¢, so § is a-idempotent.

Let Q+ denote the semiring of non-negative rational numbers with
the usual operations:

~ TeEOREM 1.12. If 8 is o positive semiring, then either S is a-idem-
potent or 8 contains a copy of Q.
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Proof. Let ¢ be the multiplicate identity element of §. Define
F: @Q+—8 by F(plg) = pe(ge)™ . It is easily seen that F is a homomor-
phism. If F(p/q) = F(r/s), then (pe)(ge)™ = (re)(se)™?, so0 pse = qre. Now
either ps = gr, whence p/q = /s and F is an isomorphism, or ps 5 gr,
80 by Lemma 1.11, § is a-idempotent.

CoroLLARY 1.13. Every finile positive semiring is a-idempotent.

2. l=semirings. Every semiring 8 has a natural quasi-order defined
by letting a <b if a4 2 =b is solvable in &§.

DEFINITION 2.1. A semiring § is said to be partially ordered if S is
partially ordered under the natural quasi-order.

PrOPOSITION 2.2. A semiring S8 4s partially ordered if and only if
a-+x = a implies a+y = a for all y <a.

Clearly every subsemiring 8’ of a partially ordered semiring § is
partially ordered but the partial order on 8 need not be the same as
the partial order on S.

Exiwmpre 2.3. Let § = {f: [0,1]—=R*} and 8§ = {f: [0, 1]>R*: f(0)
# 0} v {0}. Clearly 8" is a subsemiring of § and 8’ is partially ordered,
however 1 and 14, where # denotes the identity function, are com-
parable in § but incomparable in §'.

PROPORITION 2.4, An ideal I in a partially ordered semiring is an
I-ideal if and only if a <b and bel imply acl.

DrrFmvITION 2.5. If 4 is a subset of a semiring S, then a(4)
= {re8: 24 = {0}} will be called the annihilator of A.

If 4 is a subset of a partially ordered semiring §, then a(4) is
an l-ideal.

DerFINITION 2.6. A partially ordered semiring 8 will be called archi-
median if nz < a for every n e N implies = e T.

ProrosITION 2.7. If 8 4s am archimedian semiring, then T 4s an
l-ideal.

The following example shows that 7' need not be an I-ideal if §
fails to be archimedian.

ExAMPLE 2.8. Let § = QF U QF where @ and @F are disjoint copies
of Q+, with the following operations @, O. If as, bie@F for 4=1,2,
then a’®b¢=af+biy 4 Db=bDa=a, & Ob1=a1b1, a’szl
= b, ©ay = (ab),, and a, © b, = 0,. § is easily seen to be totally ordered.
But § is not archimedian since n(ly) =n, <0, for all neXN. Now
T = {0,,0,} is not an I-ideal since 1,<0,e7 and 1,¢T.

Geometrically this example can be visualized as two digjoint copies
of the non-negative rational number with the upper one absorbing the
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lower one under addition and the lower one absorbing the upper one
under multiplication (see Fig. 1).

DEFINITION 2.9. A semiring § will be called an I-semiring if § is
a lattice under the matural quasi-order and both a-(b Vv ¢) = (a+b) v
Vv (a+¢) and a-4(b A ¢) = (a-+D) A (a+0) hold for all a,b,ceS.

Consider the following lattice S (see Fig. 2). Define a+y = 2 Vv g,
-y =0 unless wor y=1and 1-2=2 for all ,y ¢ 8. § is easily seen
to be a positive semiring, and (S, <) is clearly a lattice. But a--(b A o)
= a, while (a+b) A (a+0) =d, so § is not an 1-semiring.

oil _ i
04
oa‘l ' ¢ ¢
0, 0
Fig. 1 TFig. 2

PROPOSITION 2.10. If 8 is am l-semiring and a,b,c €8, then:
1) (@ AB)+(aVDd) =a+d.

(i) If a A b =0, then a A (b+c)=aAc.

(iii) If u 4s & wnit, then u(a A b) = ua A ub and u(a v b) = ua v ub.

(iv) If teT, then t A (a--b) = ( A @)+ (t A D).

(v) If a=b(I), where I is an l-ideal, then ¢ v b=a A b(I).

Let {Sy: ael} be a family of semirings. We construct the com-
plete direct sum and the subdirect sum of the family {§,} in the usual
fashion and denote them by X{Sq= g aeI'} and 358, = Ys{8s: ael'}

Remark 211.

" 1) It each 8§, is positive, archimedian, a-cancellable, a-iderpotent
or an I-gemiring, then so is X 8,.

2) If each § is a-idempotent, a-cancellable or archimedian, then
50 is 2e 8.

Example 2.3 is a semiring which is a subdirect sum of totally
ordered semirings, but is not an !-semiring.

DEFINITION 2.12. A semiring 8 is said to be subdirectly irreducible
if every isomorphism 6 of § onto a subdirect sum s{S: aeI'} of

a family of semirings is such that the mapping s->[6(s)], is an isomnor-
phism for at least one ael.

If § is not subdirectly irreducible, it will be called subdirectly
reducible.
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The proofs of the following properties are similar to the ones used
in ring theory and are thus omitted.

PROPOSITION 2.13. If {0,,ael'} is a collection of non-trivial con-
gruence relations on a semiring S such that A 6, = 0, then S is subdirectly

ael’

reducible.

THEOREM 2.14. If 8 is & subdirectly irreducible 1-semiring, then the
intersection of every finite collection of mnon-zero 1-tideals is a non-zero
1-ideal.

COBOLLARY 2.15. If S is an l-semiring and I, I,, ..., In are non-zero
N
1-ideals such that (" I, = {0}, then § is subdirectly reducible.
a=1

If § is a positive archimedian semiring, then T and K are [-ideals,
so we have:

COROLLARY 2.16. If S s a subdirecily irreducible positive archimedian
1-semiring, then T = {0} or K ={0}.

Remark 2.17. If a and b are distinet elements of a semiring § such
that for every non-zero congruence relation 6 on S we have a = b(0),
then S is subdirectly irreducible.

DrrFmNITION 2.18. If I and J are ideals in a semiring 8, then by
I+J we mean the smallest ideal containing both I and oJ.

TEEOREM 2.19. If § is an archimedian positive 1-semiring, then T'+K
is an 1-ideal. .

For the remainder of this paper, we will be concerned only with
positive I-semirings. Thus whenever it will be inconvenient to do other-
wise, we will state the results only for that case.

3. A decomposition theorem.

DerrNITION 3.1. If S is an I-semiring and A is a subset of §,
then o(d)={zeS:zAa=0 for all aecd} is called the orthogonal
complement of A.

ProposITION 3.2. If 8 is @ positive 1-semiring and A C 8, then o(4)
is an l-ideal.

Proof. We need only to show that o(A) is rclosed under mul-
tiplication. If zeo(4), seS and aed, then szAa<az(l+s)ra
= (1+8)[z A a(l+8 1< (1+5s)(z A a) =0, whence szen(4).

PROPOSITION 3.3. If S is a positive [-semiring, then © Ay = 0 im-
plies my = 0.

Proof. With no loss of generality we may assume <1 and y <1
since, by Proposition 2.10, # A ¥ = 0 if and only if [(1+a) " (1+) @] A
A [@+2)*(1+7)""] =0, and 2y = 0 if and only it (1+2) (1 +y) "y
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=0 M 2<1 and y <1, then 2y < o and oy <y, whence 0 < oy < o A
Ay = 0. Thus zy = 0.

COROLLARY 3.4. If 8 is a positive 1-semiring and A CS, then
o(4)Ca(4).

THEOREM 3.5. If 8 is a positive 1-semiring, then S is the direct sum
of K and o(K) if and only if {LAk: keK} has a supremum in K.

_Proof. If § =K @o(K), then there exists % <K and c,en(K)
such that 1= k,+¢. Now by Proposition 2.10, 1 Ak = (Tig--) A k
=T A B < ko, Since oy A %= 0. Thus sup{l A k: ke K} =k since %
=Tk, A Lle{l A% keK} Conversely, let & = sup{l A k: ke IK}. Since
%, <1, there is an element ¢, ¢ 8 such that ky+-¢p==1. Let ke K and
¥ =c, Ak Since &' <&, there is an o such that ¢ ==&+ Hence
1= kgt = kot %' 42 Thus Fk+% <1, 50 K+ e{l Ak keK}
It follows that k4% < %,. Hence, since %, is a-cancellable, k' = 0, so
6, €0(K). Thus for any @ ¢S, & = #6,+ xky, s0 § = (K)DK.

THEOREM 3.6. If 8 is a positive 1-semiring and {L A k: % e K} has
a supremum in K, then a(K) = o(K).

Proof. By the preceding theorem 8 =K @ o(K), 50 1 = ¢~k
For some ¢,eo(K) and %k e K. Let zea(K). Now & = wty-+ak, = @6,
en(K), so o(K)Ca(X). Then by Corollary 3.4 o(K) == a(K).

] COROLLARY 3.7. If 8 4s a positive 1-semiring, then 8§ = K @ a(K)
if and only if {1 A k: keK} has a supremum in K.

The following example shows that {1 A %: ke K} can have a su-
premum not in K. In this case o(K) may contain K.

Emm 3.8. Let § be the semiring in Example 2.8. As was noted
before, S is a tfta,lly ordered positive semiring and hence an. I-semiring.
Oleg.rlyKK =QF, o(E) = {05}, a(K)=Q7F v {0;} and sup{l A %: ke K}
=0,¢ K. .

The following example shows that the analogue for ' of Theorem 3.5
and Corollary 3.7 do not hold.

Exampie 3.9. Let § be the set of all sequences (w,, #;, ¥y, -..) such
that @ €@+, w1 eI if ¢ > 0, and {i: @ # 0 is finite} where I is the two
elfament lattice, together with the sequence (0,0, 0, ...) under coordinate-
wise addition and multiplication. It is easily seen that § is an archi-
median, semisimple, positive I-semiring. Now 7' = {(2:): @, = 0}, whence
sup{l At: teT}=(0,1,1,1,..)eT. But o(T) = a(T) = K = {(0)}, %0
8+ T @o(T) =T @a(T). ’

The more complicated Example 4.8 shows the same thing. In that
example T' = {[(as), (0)]} and sup{l A #: te T} = [(1), (0)] ¢ 7. But o(T)
=o(T) =K = {{(0), (a5)]}: (s} el} 50 8 =T ®o(T) =T @ (D).
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Theorem 3.5 and Corollary 3.7 show that a condition on the a-can-
cellable elements yields a decomposition of the semiring. We will now
show that under very reagonable hypothesis the a-idempotent elements
completely determine the a-cancellable elements.

PROPOSITION 3.10. If 8 is an archimedian semiring and x e T, then
p+a = a for oll a > x. Cowversely, if a+a = a for some a €S then weT.

TeEoREM 3.11. If 8 is a positive archimedian 1-semiring, then
o(T) = K.

Proof. Since § is a positive archimedian semiring, both 7' and K
ave l-ideals. Thus {t A k: teT, ke K}CT ~n K = {0}, s0 o(T)D K. Let
weo(T) and suppose w+a = w-+b. Let 2 be such that (& A B)+2=a.
Now #--(a A D) = (+a) A (2-+D) = #+a = xz--(a A b)+2, whence by
the previous proposition ze I. But by Proposition 2.10 v =2 A @ =2 A
(m+a) =2 A (@+Dd)=2Ab since zAz= 0. Thus 2<b, whence
z< a A b, so by the previous proposition a A b= (& A b)+2 = a. Dually
aAb=Db, so a=D>, whence z<K. Thus o(T) = K.

CoROLLARY 3.12. If § is a positive archimedian 1-semiring and x ¢ K,
then there s am element tye T such that o >tz # 0.

CoROLLARY 3.13. If 8 is a positive archimedian 1-semiring, then
S is o direct sum of o(K) and o(T) if and only if {1 AR LeK) has
a supremum in K.

Proof. Theorem 3.5 and Theorem 3.11.

The following example shows that the analogue of Theorem 3.11
for K does not hold.

ExAMPLE 3.14. Let B be the Boolean algebra of finite and cofinite
subsets of the integers. Let § = {(a,D): aeQt, beB and b finite im-
plies @ = 0}. Now K = {(0,0)} ginee if (a,b) < K, then b is the empty
set, whence a = 0. But T' = {(0, b): beB} 8. Thus a(K) = o(K) = T.

4. a-idempotent and a-cancellable ideals. In this section we
will show that under reasonable hypothesis both the a-idempotent and
a-cancellable ideals are the intersection of prime I-ideals and present
a very important example.

ProposITION 4.1. If 8 is an l-semiring, I is an l-ideal, and A s
a multiplicative system disjoint from T then there is a prime 1-ideal P dis-
joint from A with ICP.

PropoRITION 4.2. If 8§ 8 an l-semiring and I is an 1-ideal of 8, then
T is an intersection of prime U-ideals if and only if ot eI implies @ <I.

TamormM 4.3. If S is an archimedian positive 1-semiring, then T is
an intersection of prime 1-ideals.

Proof. By the previous proposition it is enough to show af‘ze T
implies # e T. Let 2* ¢ T' and assume first that @ << 1. Now there 1s an
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element @ € § such that #4+a = 1. Since 7' is an ideal, o ¢ T' for a1
n = 2. For n >4, we have

n—2
- - -3 —2i_t
1=(a+a)" *=a""+(n—2)a" m~[—2a" ',
T=2
50
n—2 n-1
; Al 2.
ax = a,n-lm_!_ (,n, —2)a"‘2m2—l— Zan—l—lw'i-é-l e a”’lm—|~ 2 an—igpt
= im2
Thus
n—1 n_1
naw = nav=g- 2 a1t  ar - nen—lw4- Z =t == (g )" == 1,
= i

Hence naz <1 for n= 1,2, .., so ave T gince § is archimedian. Thus
2 = g(w+a) = x*+ax ¢ T. For the general case, note that 42 e 7' if and
only if [#(1+®) e and that o(1+2)"" <1,

COROLLARY 4.4. Every nilpotent element of am archimedian positive
1-semiring s a-idempotent.

COROLLARY 4.5. An a-cancellable positive 1-semiring has no non-zero
nilpotent elemenits.

THEOREM 4.6. If § is an archimedian positive 1-semiring, then K is
an inlersection of prime 1-ideals if and only if 8 has no non-vero milpotent
elements.

Proof. Suppose that S has no non-zero nilpotent elements and let
@ €8 with o ¢ K. By Corollary 3.12, there iy an element ¢ ¢ 7 such that
#>1+#0. Thus, since ¢ is not a-cancellable, 2*3> 12 5= 0. Hence by
Proposition 8.10, #?4-# = 4? so 2 ¢ K. By Propositional 4.2, K is an
intersection of prime I-ideals. Conversely, if #* =0 and u ¢ K, then by
Proposition. 4.2, K is not an intersection of prime I-ideals, so # ¢ K. But
by Corollary 4.4, €T, so § has no non-zero nilpotent elements.

CoroLLARY 4.7. If 8 is a semisimple archimedian positive 1- semiring,
then K is an inlersection of prime I-ideals.

Proof. Let o* = 0. Clearly every maximal ideal is prime, so @ € M
for every maximal ideal M. But § is semisimple, 50 @ = 0 and § has
no non-zero nilpotent elements. Thus by the previous theorem, K is an
ntersection of prime I-ideals.

i The preceding theorems show that, under reasonable hypotheses,
both 7' and K are intersections of prime l-ideals, and Theorem I. 3.12

shows that T-4K is an I-ideal. Unfortunately 7'4-K mneed not be an
intersection of prime I-ideals as is shown by

ExsampLe 4.8. The following is an example of a semisimple archi-

median positive I-semiring in which 74K is not an intersection of
prime I-ideals.
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Structure theory for a cluss of semirings

Before presenting the example, it will be necessary to present several
other semirings which will be used in the main example.

Let S, and I be as in Example 1.9 and let S be the sub-semiring
of 8, ® ;o< I in which z; =1 for all but finitely many 's.

It iis—'lclear that & is a positive semiring.

Tf as < be for all 4, then (ad)+ (i) = (b)). Thus the natural order
coincides with the coordinatewise order. Hence, since (8, <) is a lattice
and 8, and I are I-semirings, 8’ is also an I-semiring.

§’ is archimedian since it is a-idempotent.

Let I = {(@i)is0: @1 Q+ and Zo'aﬁ < oo}, let I = {(@1)imo: TieQF

1>

and 2 @, < oo}, and let S§* be the sub-semiring of X1Q+ in ‘which
i>0 i~
(a1) =>(0+w1—zf) where ¢eQ+ and (@1), (1) el3. Let (a) = (c+@—#0),
(B1) = (¢’ +a;—=27), and (y:) be elements of 8*.

Tt is clear that S* is a positive semiring and the natural order on S*
coincides with the coordinatewise order.

Thus &* is an Il-semiring since (a;) A (Bs) = (as A i) € 8%, and
() v (Be) = (e V Bo) € 8% (@) =+ [(v3) A (B9)] = [an) + (y9)] A [(a) + (Ba)]
and (ag)+[(B0) V (70)] = [(es)+(B)] V [(as)+(79)] since these properties
hold in each coordinate. ) )

By Remark 2.11, §* is archimedian since each coordmfiute 5.

We are now ready to define a semisimple archimedian positive
1-semiring in which 7K is not an intersection of prime 1-ideals. .

Let 8 = {[(a1), (a)]: (a1) € 8, (@) € 8%, (o) ¢l imp]ies. ay > 3,and (a) ¢ o
implies @, = 1} with coordinatewise operations. ‘We will denote elements
of 8§ by the letters a,b,c¢ where a={(as), (as)], b= [(bs), (Bs)] and
’ [;(Sci)i; (?;)]semiring since if a@,bel, then a+-b = [{@s+bs), (t_l:—[—ﬁi)],
and a-b = [(asbs), (esBs)] are elements of 8. For if (ai+Ps) ﬂlj_ thegl
(as) ¢1F or (B1) e lf, 80 ay>> @ or by> v, whence a+by > and a ,]Il)e .
It (oy+pi) ¢ 1, then (a) U or Bk, 80 gy =1 +01' by=1, w +fance
ap+-by =1 and a+beS. If (api) ¢ U, ;uhen (@) ¢ W a_)l_ld (/31)1@‘ A >01‘
(Be) ¢4 and () ¢ 1, since if (a), (B) ¢ then (asfs) eh”. Thus 4 /zf
and by =1 or by>2 and @y =1, 50 agby > @, whence a,beS. If (asfBi) ¢ ‘fi
then (as) ¢4 and (Bi) ¢ 1, s0 @ =1 and b =1, whence @y by =1 an
“r E’_Dsl;e commutative, associative and distributive laws clearly hold in &,
whence § is a po;itive 'semi;;intfil. o and S axe

i imedian since bo .

g 112 E;I(;(;illisilmple. For by Proposition 1.8, %t, sufﬁ(jes to shirfjw ihz(m)t
if @ % 0, there is a non-unit ¢ such that a+s is 2 unit. I\To?:;h a : 0,
then (ay) # (0) or (an) # 0. If (as) # 0, then there is an n, With s, 7 0,


GUEST


60 F. A. Smith

> [(1), (1)] €8, whence a+sef2, but s ¢ L gince sz, = 0. If (o) % 0, then
there is an n, With a, # 0, 80 let s =[(1), (07)] where (o4) is defined. by
oi=1, i #n and oy, = 0. Now a-+5=[(1)], (an A L)] e, 80 a+ts5¢Q,
but s ¢2 since op, = 0.

Clearly T = {[(ar), (O)1}, K = {[(0), (en)]: (as) e &} and T+ K =
T(a), (@) (a) e &) Let s = [(1), (1/5)], s ¢ T+K since (15) ¢1, bu
8% = [(1), (1)i#)] ¢ T-+K, since (1/i) 1. Hence by Proposition 4.2, T--K
is not the intersection of prime I-ideals. Thus § has all the desired
properties.

In the next sections we will present & partial structore theory for
2 class of I-semirings. Birkhoff has proved that every algebra can he
written. as a subdirect sum of subdirvectly irreducible algebras. With
this in mind, we will examine the subdirectly irreducible semirings.

5. l~homomorphisms and /-congruence relations.

DepiniTIoN 5.1. If 8 and 8’ are l-semirings and f: 88" is a homo-
morphism, then f will be called an 1- homomorphism if f(avbd) =f(a)Vvf(b)
and f(a A b) =f(a) A (D).

DEFINITION 5.2. A congruence relation 6 of an I-semiring 8 will be
called an I-congruence relation if a = b(0) implies o vz =b v »(0) and
aANr=bAx(0) for all ze8.

Remark 5.3. It is easily seen that the kernel of an I-homomor-
phism is an I-ideal.

LemMA 5.4. If I is an l-ideal of an l-semiring S8 and a = o+t (1),
then a =b(I) for all be8 such that ¢ <b < ata.

Proof. If a < b< a+x, then b = a+y. Now with no loss of gen-
erality we may assume y < 2 since b = a4y = (a+y) A (a-+2) = a+
+(@Ay) and 2 A y<o Now since a = a+ux(I), there are elements
%y, 9% € I such that a+4, = at+o+4,. Thus a-+y-+i, < a4y = a1y,
whence a+y-4, = (a+y+41%) A (a+4) = a--[(y+15) A 4] and (y+145) A
Aty el since I is an 1-ideal. Hence a-y = a(I).

CorOLLARY 5.5. If I is a proper l-ideal of am_1-semiring S, then
8/T is a partially ordered semiring.

PROPOSITION 5.6. If I is an l-ideal of an 1-semiring S, then a = b(I)
if and only if av b=a A b(I).

Levma 6.7. If I is an 1-ideal in an 1-semiring 8, then g, is an 1-con-
gruence relation. «

Proof. Let a,be S with a = b(I) and let weS. By the previous
proposition, a =b(I) if and only if a A b= a v b(I), s0 we may assume
a < b. Since ¢ = b(I), there are elements i, 4, ¢ I such that a4, = b1,
Now avae<bVve<(d+i) Vv (@+i) = (a-+i) v (@)= (aV o) +i
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=a V #(I). Thus by Lemma 5.4, a Ve =>b v a(I). Dually a A z=b A
A o(I). Hence I is an I-congruence relatior.

THEOREM 5.8. If I is a proper l-ideal in an 1-semiring, then S/I is an
1-semiring and the natural homomorphism f: 8—8/I is an - homomorphism.

Proof. Let a,belS and for all 8 let [#]= {y: ¥ = 2(I)}. By Cor-
ollary 1.5, 8/T is partially ordered. Clearly [a v b] > [a] and [a v b] >[b].
Suppose x¢ 8 and [2] = [a], [#]>1[b], ie., there are elements y,ze S
with [2] = [a]4-1y], [#] = [b]4-[2]. Now 2=a+y(I) and z =b-+2(I)
so = (a+y)Vv(b+2)=av b)), whence [2]>[avb]l. Thus [a]V[b]
=[a v b]. Dually [a A D] = [a] A [D]. Let a,b,ce8. Now [a]+([b] v [c])
=[a+(bve)l=[(a+D)V(a+e)]=[(e+b)]v[(a+e)] = (lal+[b])V([al+[c]).
Dually [a]+([0] A [e]) = ([a]+[b]) A ([e] +[c]), and hence S/I is an
1-semiring and f is an l-homomorphism.

THEOREM 5.9. If 8 48 a subdirectly irreducible archimedian 1-semd-
ring, then S is a-idempotent or a-cancellable.

Proof. For each se 8, leb B[s] = {feT: { < s}. Define a=>5b(6) if
for all N >0 and all sequences {(w:, a)}ie, such that z;e§ and a; is
one of the operations +, -, vV, A, we have

B[( (e ) aymy) ) aszN] = B[(...((balml) Qo) ) aNmN] .

Tt is easily seen that 6 is an I-congruence relation since the above
equality holds for all such finite sequences. Now let a, b ¢ § and assume
@ =b(0) and @ =b(g,). By Proposition 5.6, we may assume a3 b, so
there is an # with a = b-+2. Now, since a = b(p,), there is an element ¢
guch that a-+t=>b-+t hence b-+¢= ata+t=>btx+? so vl by
Proposition TL.1.10. Now # < a, whence # ¢ B[a] = B[b], so & < b. Hence
by Proposition 3.10, ¢ = b4 = b. Thus 6 A g, = 0. Now, since § is
subdirectly irreducible and 6,7 are congruence relations, by Proposi-
tion 2.13, either 6 or g, is trivial. If ¢, = 0, then T = {0}, so by Theo-
rem 3.11, § = K. Suppose that 6 is the trivial congruence relation and
let {(w:, at)}ﬁ‘:.l be an arbitrary sequence of elements and operations. Now

B [(..‘(((Qalwl) 0 35) 4y ) ) aNmN] < B[(...(({Z(lalml)}azmg) o) ) aNa:N]
< B[[ (2 (o) ay0s} 0 s) ) anN] <.
<B [2 ( ((es2) aa) asma)...) aNmN]
—B [( (((Layar) ayy) aﬁma)...) anN]
<B [( (20,2 aam) aswa)“.) anN] )

Thus 2 =:1(6), whence 2 =1, so § is a-idempotent.
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The following example shows that a totally ordered subdirectly
irreducible positive semirin; need not be a-idempotent or ¢-cancellable.

ExAsMPLE 5.10. Let § be the semiring in Example 2.8. As was pre-
viously noted, § is totally ordered and not archimedian. We will now
show that § is subdirectly irreducible. Let 6 be a non-frivial congruence
relation. Now there are elements a, b ¢S with a 5 b and a = b(#).

Case I. Suppose a,b¢@Qf and a # O 5= b. Then ab™ = 1, = ba™*(f)
where ab™* > 1, or ba ™ > 1,. Assume ab™' > 1,. Now there is an integer
n with (ab™)" > 2. Thus 1, < 2 < (@b™)" == 1,(6), so by Lemma 1.4,
1, = 2,(0). Thus 1y =1,-1; = 1,- 2 == 25().

Case IT. Suppose @,beQF and a 7 0, £ b. Thus by = 1, == b,
where 07'hy> 1, or aybi* > 1,. Assume ai 'b,> 1,. Now a7 by = Ly Coy
30 since 1,, ¢z € QF, there is an integer n with ne, > 1,. Thus 1, < 2, < 1,-+
+ ey =1,(0), so by Lemma 1.4, 1, = 2,(0).

Case III. Suppose a @y, beQF and a=0,. Now 2-b, < a; < 20,
== 2D,(0), whence by Lemma 1.4, a, = 24,(0) so by Case I, 1, = 2,(0).

Case IV. Suppose a = 0, and b € Q7 such that b # 0,. Now b, < 2b,
< 0, = by(8), whence by Lemma 1.4, b, = 2b,(0) s0o by Case IL, 1, == 2,(0).

Case V. Suppose ¢ = 0, and b e Q7 such that b, % 0,. Now b} =0
= b,(0), so by Case I, 1, = 2,(0).

Case VI. Suppose a=0,, b= 0,. Now 0, <1, <2, << 0, = 0,(0),
50 by Lemma 5.4, 1, = 2,(6).

Case VIL. Suppose ¢ eQf and b = 0,. Now 0, < a, < 2a, = 0,(0),
hence by Lemma 5.4, a, = 2a,(0), 80 by Case IL, 1, == 2,(0).

Thus for any non-trivial congruence relation 0, 1, == 240), so by
Remark 2.17, S is subdirectly irreducible.

DEFINITION 5.11. An I-semiring S will be called an f-semiring if
a AD =0 implies a A be =0 for all ¢e8S.

THEOREM 5.12. If 8 is a positive 1-semiring, then S is an f - semiring.

Proof. Let a,beS such that a A b= 0 and let ¢ e 8. Now a A be
=1+ {1 +0)"a] A [bo(146) 7] < (L+0)(a A b)} = O since (1+0) "< 1
and ¢(1+46)7' < 1. Thus a A be =0, so § is an f-semiring.

‘A ring A will be called a partially ordered ring if A iy partially
f)rde);ed and a > b implies a-+¢ > b+4¢ for each ce.d and ¢ > 0, b =0
implies ab > 0. If 4 is lattice ordered, then it will be called a latiioe
ordered ring. If A is totally ordered, then it will be called an ordered ring.
A lattice ordered ring 4 will be called an f-ring if @ A b = 0 implies
aAbe=aAch for all ¢>0.

11_1.[5], Theorem 2; p. 106, Fuchs has shown that any a-cancellable
l-semiring § can be embedded in a partially ordered ring .4 consisting
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of all formal differences @—y where 2,yeS such that 8= {wed:
@3> 0}. Now since {a—b|=(avb)—(aAb)eS for all a,bed, by a
theorem of Birkhoff’s ([3], Theorem 2, p. 215), 4 is a lattice ordered ring.
Moreover, since § is positive, by the previous theorem, 4 is an f-ring.

Thus we have proved

THEOREM b5.13. If 8 is an a-cancellable positive 1-semiring, then
S can be embedded in an f-ving A such that 8 = {x e A: © 3> 0}.

In [4], p. 56, Birkhoff and Pierce have proved

PROPOSITION H.14. Any f-ring con be written as a subdirect sum of
subdirectly irreducible f-rings and every subdirecily irreducible f-ring is
an ordered ring.

THEOREM 5.15. If 8 is a subdirectly irreducible - cancellable positive
1-semiring, then S is totally ordered. Moreover if S s archimedian, then
S is a subsemiring of the non-negative real nwmbers.

Proof. By Theorem 5.13, S can be embedded in an f-ring 4 such
that § = {# €« 4: &> 0}. Now by Proposition 5.14, there is a family of
subdirectly irreducible, hence totally ordered, f-rings {4,: a eI'} such
that 4 = Ds{dy: ael'}. For each a let Af = {wedy 23>0} Clearly
AY is an a-cancellable positive. I-semiring and S={red: >0}
= 3{4F: aeI'}. But 8 is subdirectly irreducible, so there is an o el”
sueh that § is isomorphic to A%. Thus § is totally ordered. Now if 8 is
archimedian, then 4 is an ordered archimedian ring so A is a subring
of the real numbers. Thus § = {wed: x> 0} is a subsemiring of the
non-negative real numbers.

THEOREM 5.16. Let S be a positive 1-semiring. If S has a represen-
tation as a subdirect sum of subdirvectly irreducible archimedian 1-semirings,
then § is a subdivect sum of a-idempotent 1-semirings and subsemirings
of the nmon-negative real numbers.

Proof. Proposition 5.14, Theorem 5.9, and Theorem 5.15.

It is easily seen that not every positive archimedian I-semiring
has a representation as a subdirect sum of subdirectly irreducible archi-
median I-semirings; e.g., the semiring of non-negative Lebesgue meas-
urable function modulo the null functions. In ring theory, every such
ring is a subdirect sum of subdirectly jrreducible ordered rings. This
leads us to state the following questions:

(i) Is every subdirectly irreducible a-idempotent positive I-semi-
ring totally ordered?

(ii) Is every positive archimedian I-semiring the subdirect sum of
totally ordered semirings?
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Regular iteration of functions with multiplier 1
by
A. Smajdor (Katowice)

Let f(x) be a function which is defined, continuous and strictly
increasing in an interval (a, d), & > —oo, b < +co. Furthermore
o< f(xy<wow for wze(a,bd).

DerNITION 1. A one-parametr family of functions f*(x), u e {—oo,
+ o), is called an dteration group of the function f(x) provided that
the following conditions ave fulfilled (see [6], [4]):
(I) for every w e (—oo, -o0) the function f*(z) is defined, continuous
and strictly inmcreasing in am interval (a, by), where & << by < b;
(IX) for every pair of w,v e (—o0, 4 0q)
()] = 7*()
holds for every m for which both sides are meaningful;
(II1) fHw) ={(#) for @ € (a,b);
(IV) for every fimed x e (a,b), f*() is a continuous function of u.

Tt follows from conditions (II) and (ITI) that, for integral u, (=)
are identical with the natural iterates f*(z) of the function f(») defined by

o)==, o) =fI'@], n=0,1,£2,..

We note also that it follows from (II) that for every fixed itera.’gion
group and for every « and v the functions fY(«) and f°(#) are commutative:
1) F1%@)) = 1) -

Tt is known (see [1], [2], [9]) that every iteration group @) of the
function f(z) is given by the formula
(2) - (@) = o a(@)+ul,
where a(r) is & continnous and strictly monotonic solution of the Abel
equation
) alf{#)] = al@)+1,
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