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Equationally compaclt algebras (I)

by
B. Weglorz (Wroctaw)

0. Introduction. Thig paper gives a study of equationally compact
algebras, introduced by J. Myeielski [11], and some generalizations of
this notions. The equational compactness is a simple reformulation in
the language of general algebras of a definition of J. %o [8] of the notion
of algebraical compactness of Abelian groups introduced by I. Kaplansky.
The definitions of this and related notions are given in Section 1.

The main results of this paper are contained in Section 2 and give
a characterization of equationally compact algebras in terms of ultra-
powers and retracts. Perhaps the most interesting result is that positive
compactness and atomic-compactness coincide.

In Section 3 we add several remarks and propositions concerning
equationally and weakly equationally compact algebras of well-known
kinds such as linear spaces, groups and modules, and in Section 4 equa-
tionally compact Boolean algebras are studied. In Section 5 we prove
that equational compactness in general is not elementarily definable and
we mention gome open problems.

The author is indebted to Jan Mycielski and C. Ryll-Nardzewski
for their discussions which improved the theorems and simplified the
proofs, and to the first of them for many stimulating guestions and help
in composition of this paper.

The main results were announced in [17].

1. Preliminaries. For any non-empty sets X and ¥, ¥¥ denotes
the set of all functions f: X-»¥; the cardinality of a set X is denoted
by |X|; o={0,1,2,..}. U= <4, {Foleq){Grlreny is an algebraic
system if 4 is a non-void sot, there are maps f: @—+w and ¢: R—>o—{0}
such that Fg: A" A for f(q) > 0 and F, ¢ A for f(g) = 0,and &-C AW
for all r ¢ B. The sequence = <@, f, B, g5, uniquely determined by %,
is called the similarity type of A. If B is void, then A is called an algebra.
4 iy called the set of 9. In the sequal we denote algebraic systems by
%, B,C,... and their sets by 4, B, 0,..., respectively.

It BC 4 and, for each Fy, if by, ..., bygy ¢ B then Flby ..o bg) € By
then B = (B, {Filgeq, {Gi}rerd, Where Gh=Grn B and I are
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obtained from F, by restriction of ¥, to B'®, is an algebraic system.
Such a system B is called a subsystem of W and A is called an extension,
of B, in symbols BCA.
Itis easy to see that the intersection of arbitrary subsystems B, (i ¢ I)
of 9 is a subsystem of ¥ if ﬂI B; = 0. Thus we can talk about the smallest
1€

subsystem of W containing a given non-emply set X of elements of 9.

With any similarity type r we correlate the class L™ of all elementary
formulas with identity, with thelogical symbols: A (and), v (or), ~ (nons,
= (equals), V (there exists), A (for every) (), the distinet f(g)-ary
operation symbols F, (¢ € @), and g(r)-ary predicates G, (r € R) and indi-
vidual variables #,, where o is an arbitrary ordinal number (unlike in
the usual treatements which suppose that o < w).

For any class K CL® and any U of type 7, we denote by K(U) the
class of all formulas which can be obtained from formulas in K by sub-
stituting some elements of A for some free variables. Thus we have
KCK (M) CL® (A). Formulas of LV(A) are called formulas with con-
stants in UA.

The satisfaction of a set % of formulas of L¥(II) by a system {a.},es
of elements of ¥, where § is the set of indices of the free variables of 3,
is defined in the natural way (see [14]); for the notion of elementary
extensions and elementary subsystems of algebraic systems, see also [14].

Let K CL®. An algebraic system U of type v is called K -compact
(or weakly K-compact) if and only if each set ZC K () (or =CK) is
satisfiable in 9 whenever each finite subset of ¥ is satistiable in 9.

It K consists of all equations, then K -compactness (weak K-com-
pactness) is called equational compaciness (weak equational compaciness);
if K consists of all atomic formulas (i.e. formulas of the form G, (Pry ooy Byt
or # =4, where 4, ..., 9, #,9 are terms) this is called atomic-com-
pactness (weak atomic compaciness); it K congists of all positive formulas
(i.e.. .formulas which do not contain the symbol ~) (2), this is called
Ppositive compaciness (weak positive compaciness); it K = L9, this is called
elemntary compaciness (weak elementary compaciness) (3). All those
n.otlons are due to Jan Myelelski (for some properties weaker than equa-
tional and elementary compactness, see also his paper [11]).

An algebraic system U is called pure (weakly pure) in the algebraic
system B or B is called a pure (weakly pure) emtension of U if it is a sub-
system of B and any finite set of atomic formulas with constants (without
constants) in % which is satistiable in B is also satisfiable in A.

(:) It is import:ant for the futher definitions that = and <= are not here.
() The semantical theory of positive formulas was studied by R. C. Liyndon [7],

(*) Of course, a system 9[ is elementaril i
it y compact (weakly elementarily compact)
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Of course, each elementary subsystem of a system is a pure subsystem
of this system. It is easy to see that in case Abelian groups the motion
of pure subsystem coincides with the usual notion of pure subgroup.

Let % and B be two algebraic systems of similarity type 7. A fune-
tion h: A— B is called a homomorphism of A into B if for every atomic
formula @ (Tayy ooy Buy) If Py vy Ga,) holds in A for ay, .., a, < 4,
then (D{h(am), vy k(aﬂn)) holds in B. If, moreover, B is a subsystem
of 9 and h restricted to B is the identity map, then % is called a retraction
of A onto B and B is called a refract of A

It % and B are algebras, then those notions of homomorphism and
retraction coincide with the usual homomorphism and retraction of the
theory of general algebras.

An algebraic system U is called an absolute retract in a class K of
algebraic systems of the same similarity type if for each algebraic sys-
tem B e K, such that AC B, A is a retract of B.

‘We note the following three propositions which are due to Jan My-
cielgki (for a part of 1.1 and 1.2, see his paper [11]).

PrOPOSITION 1.1. The direct product of atomic compact (weak atomic
compact) similar algebraic sysiems is atomic compact (weak atomic compact).

PROPOSITION 1.2. A retract of an atomic (positively) compact algebraic
systems is atomic (positively) compact. If B CU and h: A~B is a homo-
morphism then weak atomic compaciness of any one of the three sysiems k(%)
or B or A implies the same property for remaining two systems (*).

PROPOSITION 1.3. An algebraic system U is a retract of B if and only
if each set of atomic formulas with constants in WA which is satisfiable in B
is also satisfiable in .

If U; (3¢ I) is a set of similar algebraic systems and D is a filter of
subsets of I, then PB;crWi/D denotes the reduced direct product, i.e. the
quotient of the direct product Piezr W by an equivalence =g defined as
follows:

{@()}ier =ay{b(8)}ier if and only if {iel:a(i)="Db(@)}eD.

I D ig an ultrafilter, then PierWefD is called an ultraproduct. If for
each i e I, %g = 9 and D is an ultvafilter over I, then PierWe/D is denoted
by U and called the wlirapower of . For each aed we put h(la)
= {a}ier[=q. It is easy to see that % is an isomorphism of U into Q:Ig).
When speaking of ultrapowers we shall identify % with k(). For a detailed
study of reduced products, see [4].

(¥ The proof of this proposition is based on the well-known invariance of positive
formulas under homomorphism. See Marczewski [10] and Le. (3.
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For the notion of elementary class EC,, universal class UC,, pseudo-
elementary class PC,, and guasi-elementary class QC,, see e.g. [4].

Tet K be an arbitrary class of similar algebraic systems; then by
JE,SK,TK, UK we denote the class of all isomorphic images, subsystems,
products, and ultraproducts of members of K, respectively. All clagses
in this paper are supposed to be similar and such that JK C K.

2. The main results. In this section we give several characteriza-
tions of positively compact and weakly positively compact algebraic
systems.

Lemma 2.1. If an atomic compact (wealk atomic compact) system 9
is a pure (weakly pure) subsystem of B, then A is a retract (contains a homo-
morphic image) of B ().

Proof. Let ¥ be an atomic compact and pure subsystem of B.
Let = 3, u X, be a set of atomic formulas, in which for simplicity we
denote the indices of free variables by elements of B defined as follows:

Iy = {“O(p,y ooy )"  byy ooy by € B and D(by, ..., by) holds in B},
To={“ty=0":becA}.

Clearly ¥ is satisfiable in 9B since it suffices to put @, = b for each
b ¢ B. Thus each finite subsystem of X is satisfiable in B. Since A is a pure
subsystem of B and constants of X belong to ¥, thus each finite subsystem
of ¥ is satisfiable in . But U is atomic compact; thus T is satisfiable
by a system {a}rep of elements of UA. The mapping h: B— A4 - defined
by 2(b)=ay (beB) is a homomorphism, because {m}scp satisties I,
in %, and it is a retraction since {ay}scp satisfies also X,.

In the “weakly” case, the proof can be obtained by restricting our
consideration to the set X, only.

Levus 2.2. Let X be a set of formulas of L™(N). If each finite subset

fof % is satisfiable in U, then there is an ultrapower of U in which 3 is salis-
iable.

Proof. Let I={0C 2:|0| < 5,}. For each pe 3, let D, = {@ ¢ I:
¢ € 0}. Let us observe that D, s O for each pe = (since {p}e.D,) and
that finite intersections of the sets D, are non-empty. Thus the smallest
D, co'xlfs.a«ining the family {D,: ¢ ¢ T} is proper. Let D be an ultrafilter
cont&lnmng Dy We will prove that £ is satistiable by a system of elements
f’f Aqp. For each @ cI, let the system {26(@)}ucs satisty @ in 90, where §
is the set of indices of free variables in 3. Hence, by the theorem of Liof,

H{au(O)eer/= o}, satisties % in A .

(*) This lemma, in the cage of algebras,

dzowski, 4 is due to Jan Myecielski and C. Ryll-Nar-
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This lemma can be obtained as a simple consequence of some theorems
of Keisler [6] by using Theorem 3 of [11]. We due the above proof to
0. Ryll-Nardzewski. This proof is analogous to the proof of Theorem 2.10
in [4]. Originally, the proofs of Theorems 2.3 and 2.4 below were obtained
using some results of Keisler, but Lemma 2.2 is much simpler.

TaEoREM 2.3. (%) The following conditions are equivalent:

(i) A s positively compact;

(ii) A is atomic compact;

(iii) A 48 a retract of cvery algebraic system in which U is pure;

(iv) U is a retract of cvery elemeniary emtension of U;

(v) U is a retract of every wltrapower of A.

Proof. (i) trivially implies (ii), (ii) implies (iii) by Lemma 2.1;
(iii) trivially implies (iv) and (iv) trivially implies (v) (by a theorem of
Eof on ultrapowers (see e.g. [4])).

Now we show that (v) implies (i). Let Z be an arbitrary set of positive
formulas of Z®(A) such that every finite subset of T is satistiable in A
By Lemma 2.2, there is a ultrapower 9153 of A in which it is satistied by
a system {G}ecy OF elements of g (§ denotes the set of indices of free
variables in X). But, by (v), there is a retraction A of Qlé) onto A, and
by Mavezewski’s theorem (7) the system {#(a.)}. s satisties T in . Thus,
since ¥ was arbitrary, % is positively compact and (v) implies (i).

If U is an algebra, then atomic formulas are equations, thus atomic
compactness and equational compactness coincide. Hence Theorem 2.3
gives a characterization of equationally compact algebras. For similar
results, see [12]. Additional characterizations of equationally compact
Boolean algebras will be given in Theorem 4.1 below. For Abelian groups,
two parts of Theorem 2.3 were known. Yo [8] proved that an Abelian
group ® 1s equationally compact if and only if ® is a direct summand of
each Abelian group in which & is a pure subgroup. And it was shown by
Baleerzyk [1] and Gacsélyi [5] that a subgroup G of an Abelian group $
is @ vetract of § if and only if it is a summand of D. Thus the equivalence
of (i) and (iii) follows. Also the equivalence of (ii) and (v) for Abelian
groups was established by Fo§ [9]. Another characterization of equa-
tionally compact Abelian groups was given by Balcerzyk [2]. By his result,
® is such if and only if every set of cquations
=1,2, .}

{#wy— o = mla,”: (a0 € &)

(%) The actual formulation of theorem 2.3 and its clause (i) was proposed. by
Jan Myecielski.
(") See footnote (4).
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is satisfiable in © whenever every finile subsel of this set is salisfiable (thus
countable sets of equations arve sufficient!).

TgEOREM 2.4. The following conditions are equivalent:

(1) U s weakly atomic compact;

(i) A contains a homomorphic image of every algebraic systems i
which U is weakly pure;

(i) U contains a homomorphic image of every elementary emtension
of %

(iv) A contains o homomorphic image of every ullrapower of 9.

The proof is analogous to that of Theorem 2.3; it nses the ‘“wealkly”
part of Lemmas 2.1 and 2.2.

From those theorems we obtain a corollary which is important for
applications.

CoROLLARY 2.5. Let K be a class of algebraic systems closed un-
der formation of ultrapowers and let W e K be an absolute retract in K
(see §1) or A contains a homomorphic image of each B ¢ K which is an
extension of W. Then W is positively compact or weakly atomic compact
respectively.

THEOREM 2.6. Let Ky= {Uy,...,Un} be a finite set of weakly atomic
compact algebraic systems and K be the smallest universal class (I e UCy)
containing K. Then for every We XK there is a weakly atomic compact
system B ¢ K such that A C B.

Proof. By a theorem of %o§ (*), we have K = §WK,. Since K, is
finite, WK, contains algebraic systems isomorphic with ultrapowers of
algebraic systems in X, only. By Theorem 2.4 ((i)=(iv)) and Proposi-

tion 1.2, we see that all algebraic systems of UK, are weakly atomic
compact. Thus Theorem 2.6 follows.

3. Applications to modules. Let K be an arbitrary class of
algebraic systems. We recall that 9 is injective in X if 9 ¢ K and for every
homomorphism h: B9, where B ¢ K and every extension € ¢ K of B,
h ean be extended to a homomorphism h': €9

o ProPOSITION 3.1. If K is an arbitrary class of algebraic systems and A
8 injective in K, then W is an absolute retract in K. Thus, if moreover
K =WK and A is injective in K, then A is positively compact.

Since we can put A = B and for i the identity map.

Corollary 2.5 and Proposition 3.1 can he applied for the proofs that
some a}lgebras are equationally compact or weakly equationally compact.

First we recall two known vesults for modules over an associative

(%) See e.g. [4]; Theorems 1.15 and 2.15.
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ring with uniby (see [3] I, § 3, Theorems 3.2 and 3.3) Now R is supposed
to be such a ring and let M be the class of all left modules over R *).

TarorEM 3.2. The module A e M is injective in M if and only if for
any left ideal J of R and any homomorphism h: I (where I denotes the
ideal J treated as a left module over R) there is an element a of A such that
h(r) = r-a, for each red.

TuEoREM 3.3. Fach We M has an extension B e M which is in-
jective in BL.

From Theorem 3.2, we see ab once that each linear space over amy
field is an equationally compact algebra (1°). Also, we see that every module
Ae M can be embedded into an equationally compact one. But somewhat
more will be proved in the next theorem. Let us recall that an algebra %
is topologically compact if we can introduce in U a compact Hausdorff
topology such that all operations in U are continuous (11).

The following theorem solves a problem of Mycielski, asking if every
equationally compact algebra is a retract of a compact topological algebra
(see [11], P 484) in the case of linear spaces over a field.

THEOREM 3.4. Fach W e M has an extension B e M which is topologically
compact. Thus if R s a field, then every linear space over R is a retract
of a topologically compact linear space.

Proof. Let A= <4, +, {Fr}rer> be an arbitrary left module
over R (the operations F, ave defined by F.(z)= r-a, for all r ¢ R and
wed); then A+t = (4, +> is an Abelian group and, for each 7 € B, F, can
be treated as an endomorphism of A+, Moreover, A+ with the discrete
topology is a locally compact Abelian group; hence it is isomorphic to
a dense subgroup of the Bohr compactificaton 9+ of 9+ Sinee, for each
7 ¢ R, F, is continuous on 2+, there is an endomorphism F, of I+ which
13 continuous on Y+ and is an extension of F,. But this implies that
A=A, +,{F}rer> is a topologically compact module which is an
extension of 9. :

Myecielski’s problem for an arbitrary class of modules is not solved.

4. Equationally compact Boolean algebras. By Corol-
lary 2.5, we see that each Boolean algebra is weakly equationally compact.
The aim of this section is to prove that for Boolean algebras equational
compactness and completeness coincide, and to show the related results.

TaEOREM 4.1. For a Boolean algebra W the following conditions are
equivalent:

() A left module over a ring % is & system having one operation of two variables
z-+y and the set of operations of one variable Fr(#) =7 », Where is any element
of R,

(1) See footnote (*). )

(1) Tor the definition and properties of topological algebras, see e.g. [11] and [16].
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A is complete;

A is injective in the class of all Boolean algebras;

A is an absolute retract in the class of all Boolean algebras.
A is equationally compact.

(ii)

(iti)

(iv)

Proof. (i)= (i) is known (see e.g. [13]).

(ii) = (iii) by Proposition 3.1.

(iii) = (iv) by Corollary 2.5.

(iv) =(i). Let us suppose that A is equationally compact and let
(@:)ier De an arbitrary family of elements of . Let us write X = {¢ce 4.
N ¢ ~ai = ¢}. Now, consider a following set of equations having one
1€l

free variable Zq only:
S={t,Aa=atell u{puec=n":1¢¢X}.
0 0 0 0

It is easy to see that each finite subset of T has a solution in %, thus by
compactness of U, T has a solution in UA. It is easy to verify that this
solution is (M) @;. Thus A is complete.

iel

The following corollary solves a problem of Mycielski (see [11], P 484)
in the case of Boolean algebras.

COROLLARY 4.2. A Boolean algebra s equationally compact if and
only if it is a retract of a compact topological algebra.

Proof. By Proposition 1.2 and the fact that topologically compact
algebras are equationally compact (12), all retracts of topologically compact
algebras are equationally compact. The converse follows from Theorem 4.1,
and from the fact that each algebra 9 is contained in the complete alge-
bra & of all subsets of the Stone space of %, and & has a compact topology
sinee it is isomorphic to a product of two-elements Boolean algebras.

5. Other remarks. Let K be an arbitrary class of algebras; denote
by Ko, Kroy Kwre classes of those algebras in K which can be endowed
with a compact topology (1¥), are equationally compact or weakly equa-
tionally compact, respectively.

We have the following example:

Exawpre 5.1. There is an equational class I such that no dass Kqg,
Kroy Ewro is elementary, i.e. Kyg, Kpoy, Kyrot¢ BECy. Moreover, Kqg,
Kroy Kwro¢ PCy, Ko, Kne, Kwreé QC, and 8K g, 8K pe, $Kwreé UCy.

Indeed, let K be an equational class of algebray having two 0-ary
operations (i.e. constants), say 0 and 1, and one 2-ary operation e ; and K
is defined by a single equation % « z = 0

() Bee [11], Proposition 1.
() Bee lLe. ().
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Let M= <{0,1,2,..},0,1, ), where - is defined as follows: z-y=10
if #=y and #-y=11if » 7 y. This algebra was defined by Myecielski
in [11] where he proved that there is no weakly equationally compact
algebra B e K such that M C B (1),

Now, let I, be the set of all finite subalgebras of M. Tt is easy to see
that Pt can be embedded in some ultraproduct P of members of K,. Thus
such a P is not weakly equationally compact, and moreover, there is
no weakly equationally compact algebra B e K such that BCB.

Since Ky C Kro C Kro C Kpae, then none of these classes is closed
under formation of ultraproducts and hence Kyc, Kre, Kpgre ¢ ECy4 and
Kre, Krey Kwre ¢ QCy.

Now, suppose e.g. that 8Kpc e UC,; then SKyo would be closed
under formation of ultraproducts, but this is impossible since we would
have WKy C WSKro= 8Kz¢, but P¢ $Kre which is a contradiction.
For SKgo and SKwgre the proof is the same.

Finally if one of the classes K¢, Kro, Kwro belonged to PC, , then
by a theorem of Lo§ and Tarski (see e.g. [15]) the class of subsystems of
this class would belong to UC,, but this was already disproved.

ExaMPLE 5.2. There is a class K of algebras closed under formation
of endomorphic images, products, and elementary extensions which is
not an elementary class (moreover, K ¢ PC4, K ¢ QC,, and SK ¢ UC,).

Such is Kype of Example 5.1.

Exaupre 5.3. There is a class K of compact topological algebras
closed under topological products (i.e. direct products with the Tychonov
product topology), closed subalgebras and continuous homomorphic
images, which is not an elementary class (moreover, K ¢ PC,, K ¢ QC,,
and SK ¢ UC,).

Such is Kg¢ of Example 5.1.

Remark 5.4. The assumption of finiteness of class K,in Theorem 2.6,
is essential since K,, defined in Example 5.1, satisfies the other assump-
tions of 2.6.

BExample 5.1 suggests the question if there are equational classes K
such that some (or all) of the classes K —Kq¢, K—Kpo, K—Kpro Or
K —8Kpq, K—8SKpy, K ~SKpgra ave not elementary, but I do not know
any such K (5).

For any algebra 2, the possibility of imbedding o in a compact
topological algebra implies that such an algebra can be choosen in the
smallest equational class containing 9. I do not know if an algebra having

(1) By a simple modification of his proof, we can show that even outside of K
there is no algebra B similar to M, which is weakly equationally compact and M c K.

(%) Now, I have proved that if K is the class of lattices, then K—Krc, K—Krc,
K—8Kp¢ and K—SKpo are not elementary. See [18].

Fundamenta Mathematicae, T. LIX 21
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o weak equational compactification has such a compactification in the
smallest equational class containing 2 (*°).

Beside the K -compactness (K CL™), we can consider for every
cardinal m, a weaker notion:

An algebraic system 2 of type 7 is called K-m-compact if the condition
of compactness holds for sets of formulas having at most the cardinality m.
This notion was considered in [11] and [12]; compare also [6]. I do not
know whether mt-completeness for Boolean algebras (nt+ denotes the
succesor of m) implies equational m-compactness or conversely?
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An addition to ¢“On defining well-orderings”
. . by
E. G. K. Lopez-Escobar (Cambrigde, Mass.)

In the paper On defining well-orderings [2] we proved that the class W
of well-orderings is not a PC,-class of any infinitary first-order language
of the type Lgy,. The addition that we wish to make is to prove that W
is not even a relativiced PC,-class (ie. that for all o, W¢ RPCa(Lyy);
(¢f. definition below).

The method used to show that for all a, W ¢ RPC(L,,) (this clearly
suffices in order to prove that for all a, W ¢ RPCy(L,,)) is basically the
same as that used in [2]. That is, from the agsumption that W e RPC(L,,)
we obtain a sentence @ of L,, which has a model of cardinality greater
(or possibly equal) to the Hanf-number for Ly, but which does not have
arbitrary large models. (%)

DEFINITION. Suppose that K is a class of relational systems of the
type <4, R> where R C A%, then:

(i) “K is a relativized PCy-class of Ly,”, in symbols: K ¢ RPCi(Lgo),
just in case that there exist a set T of sentences of Lg, such that K consisis
exactly of those systems {4, B) for which there exists a set BD A and rela-
tions S, on B such that (B, A, R, 8 u<y 18 @ model of T;

(i) “K is a relativized PC-class of Lg,", in symbols: K e RPC(Lgy),
just in case that for some sentence 0 € Lqy, K consists exacily of those systems
(A, R> for which there ewisis a set BD A and relations S, on B such that
(B, A, R, Sy>ucy s a model of 0.

Note that if for all a, W ¢ RPC(Lyy), then for all ¢, W ¢ RPCu(Lqo)-

TeEmoREM. There does not exist a cardinal a such that W e RPC(Lgp)-

Proof. Assume on the contrary that for some a, W e RPC(Lgo)-
It is clear that we may assume that a is a successor eardinal, i.e. that for
some cardinal =z, «= a+. The assumption that W ¢ RPC(L,,) means
that there exists a sentence 6 of Ly, such that:

(1) to every (non-zero) ordinal g there corresponds a set BD g and
relations §, on B such that (B, g, &, Sudu<y is & model of 6,

(1) For undelined notation, see [2].
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